
An Efficient XML Encoding and Labeling

Method for Query Processing and Updating

on Dynamic XML data ?

Jun-Ki Min 1 , Jihyun Lee 2 , Chin-Wan Chung ∗
1School of Internet-Media Engineering

Korea University of Technology and Education
Byeongcheon-myeon, Cheonan, Chungnam, Republic of Korea, 330-708

2,∗Division of Computer Science
Department of Electrical Engineering & Computer Science

Korea Advanced Institute of Science and Technology (KAIST)
Daejon, Republic of Korea, 305-701

Abstract
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sults show that EXEL enables complete avoidance of re-labeling for updates while
providing fairly reasonable query processing performance.
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1 Introduction

For the purpose of sharing and integrating data collected over diverse applica-
tion areas, the requirement of inter-operability has increased. Thus, W3C has
proposed the eXtensible Markup Language(XML) [3]. XML data comprises
hierarchically nested collections of elements, where each element is bounded
by a start tag and an end tag that describe the semantics of the element. In
addition, an element in XML data can contain either an atomic raw data(i.e.,
data value) or a sequence of nested subelements and can have a number of
attributes composed of name-value pairs. Generally, an XML document is
represented as a tree such as DOM [19]. The tree of XML data is implicitly
ordered according to the visiting sequence of the depth first traversal of the
element nodes. This order is called the document order.

To retrieve XML data, many query languages such as XPath [6] and XQuery [21]
have been proposed. In order to search the irregularly structured XML data,
path expressions are commonly used in these languages. Given a tree of XML
data, the path information and the structural relationships of nodes should be
efficiently evaluated. To determine the path information, diverse approaches
such as path index approaches [5,10] and the reverse arithmetic encoding [17]
have been proposed. In general, these techniques help to obtain the list of
nodes which are reached by a certain path. Thus, the computation of the
structural relationships is additionally required.

In order to facilitate the determination of relationships of nodes, the nodes
in a tree of XML data are typically labeled in such a way that the struc-
tural relationship (e.g., the ancestor-descendant relationship) between two
arbitrary nodes can be computed efficiently. Various labeling methods such
as the region numbering scheme [15,24] and the prefix labeling scheme [22]
have been proposed. In addition, structural modifications to the XML data
can occur. For example, insertions of nodes change the structure of a tree
of XML data, and the assigned labels may need to be changed. Thus, many
researches [2,7,14,18,23] have been conducted in order to provide an efficient
way to handle labels for updating XML data.

Our Contribution. In this paper, we consider the XML labeling scheme.
We devise a novel XML encoding and labeling scheme, called EXEL (Efficient
XML Encoding and Labeling). Our labeling scheme is simple but effective
to compute the structural relationships as well as to support the incremental
update.

The main contributions of this paper are summarized below:

• An efficient XML encoding and labeling method (EXEL) is pro-
posed:. A novel binary encoding method to generate ordinal bit strings is
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presented. The traditional region numbering scheme is mutated by using
the bit strings instead of decimal values.

• The query processing performance of EXEL is improved by the
optimization techniques: The query processing and optimization tech-
niques for the region numbering scheme can be applied to EXEL. We use the
Stack-Tree-Dec algorithm to efficiently conduct the structural join. Also, we
utilize the String B-tree index to improve the join performance.

• EXEL completely removes re-labeling for updates: we devise an algo-
rithm to generate a new bit string inserted between two bit strings without
any influences on the order of preexisting bit strings. The generation algo-
rithm is used to make a label for a newly inserted node in XML data. Thus,
the re-labeling of preexisting labels can be completely avoided for inserting
nodes in XML data.

In [16], we introduced the preliminary version of EXEL. There are several ma-
jor extensions and modifications in this paper. First, in our previous work, we
didn’t discuss any query processing technique, while, in this paper, we applied
query processing techniques such as the structural join algorithm and indexing
to our labeling approach. As a result, we could obtain the improvement in the
query processing performance. Second, we used an RDBMS for storing and
querying XML data in [16]. But, the query processing performance could be
decided by the performance of the query processor and the indexing strategy
of an RDBMS. Therefore, in this paper, we stored XML data on files and
implemented the structural join, indexing, and the updating programs. Third,
in this paper, we additionally devised algorithms inserting a sibling and a par-
ent while there is only the algorithm inserting a child in [16]. Fourth, in this
paper, we reinforced experiments. We performed the query processing and the
update on more diverse and larger data sets including real data sets. Also,
we added the experiment to measure the indexing effect. Finally, we provided
detailed explanation throughout the paper. Also, a large part of the section
on experiments in this paper was newly written.

The remainder of the paper is organized as follows. In Section 2, we review
various XML labeling schemes. We describe the details of EXEL in Section 3.
Then, we present the query processing mechanism of EXEL in Section 4 and
the update method of EXEL in Section 5. Section 6 contains the results of our
experiments. Finally, in Section 7, we summarize our work.

3



(1, 22)

(2, 3) (4, 5) (6, 19) (20, 21)

(7, 8) (9, 10) (11, 18)

(12, 13) (14, 15) (16, 17)
a

Fig. 1. The region numbering scheme

2 Related Work

In this section, we introduce several representative labeling schemes and an
encoding method for XML data. Also, we briefly mention the query processing
techniques.

2.1 Region numbering scheme

In the region numbering scheme [15,24], each node in a tree of XML data
is assigned a region consisting of a pair of start and end values which are
determined by the positions of the start tag and the end tag of the node,
respectively. Figure 1 shows a tree of XML data labeled by the region num-
bering scheme. Basically, ancestor-descendant relationships among nodes are
determined by containment relationships of their regions. Additionally, in or-
der to determine the parent-child relationship efficiently, the level of a node
is used. Even though all structural relationships represented in XPath can be
determined efficiently using <start, end, level>, an insertion of a node incurs
re-labeling of its following and ancestor nodes. For example, in Figure 1, the
insertion of node a incurs the re-labeling of the grey part. [15] and [2] have
tried to solve the re-labeling problem by extending a region and using float-
point values. However, the re-labeling problem can not be avoided for frequent
insertions after all.

2.2 Prefix labeling scheme

In the prefix label scheme [7,18,22], each node in a tree of the XML data
has a string label which is the concatenation of the parent’s label and its
own identifier (i.e., self-label). If there are two nodes x and y where x is an
ancestor of y, then label(x) is a prefix of label(y). Dewey labeling scheme [22]
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Fig. 2. The prefix labeling schemes

and Binary labeling scheme [7] do not require re-labeling for appending leaf
nodes. Fig 2(a) shows a tree of XML data labeled by the Dewey labeling
scheme and Fig 2(b) shows a tree of XML data labeled by the binary labeling
scheme.

The above mentioned prefix labeling schemes do not require re-labeling for
appending leaf nodes (e.g., inserting a node a in a tree of Figure 2(a) and
Figure 2(b)). However, they cannot avoid the re-labeling for insertions between
two sibling nodes. For example, in Figure 2(a) and Figure 2(b), the insertion of
a node b incurs the re-labeling of nodes in the circle. In addition, an insertion
of a node between parent and child nodes also incurs re-labeling. In Figure 2(a)
and Figure 2(b), the grey part should be re-labeled by inserting a node c.

Recently, several prefix labeling approaches [12,18], which are tolerant for
insertions, have been proposed. ORDPATH [18] follows a labeling principle
similar to the Dewey labeling scheme. In order to avoid re-labeling, it uses
only odd numbers for initial labels. When an insertion occurs, it uses an even
number between two odd numbers and concatenates an odd number. [12]
proposes Dynamic Level Numbering Scheme(DLN) based on the ORDPATH
concept. DLN leaves a gap between two odd numbers during initial labeling
in order to prevent the length of the label from rapid increasing for frequent
insertions.

2.3 Prime number labeling scheme

The prime number labeling scheme [23] uses an inherent feature of the prime
number which has only one and itself as its common divisors. Each node in
a tree of XML data is assigned a unique prime number as its own self-label.
The label of a node is a product of its parent node’s label and its self-label.
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To reflect the document order after insertions, the prime number labeling
scheme uses the simultaneous congruence (SC) values based on Chinese Re-
mainder Theorem. Even though re-labeling for nodes can be avoided for inser-
tions, the SC values should be re-calculated, and the re-calculation consumes
much time. Also, an insertion between parent and child nodes cannot be sup-
ported efficiently.

2.4 Encoding method for labeling

A binary encoding method QED [13] to avoid re-labeling for updates has been
proposed. QED is a novel dynamic quaternary encoding which is orthogonal
to a specific labeling scheme. QED uses only 4 digits, 0, 1, 2 and 3 and these
are replaced by their binary values (i.e., 01 for 1, 10 for 2, and 11 for 3).
QED partitions a list of numbers into three divisions, and assigns sequences
of digits to the numbers located at the 1/3th and the 2/3th of the list. In
Fig 3, the table shows the QED encoding of 16 numbers. Also, [13] presents
an algorithm to insert a new QED code between two consecutive QED codes
without any change of existing codes. For the encoding procedure in QED,
see details in [13]. In QED, the label size is sometimes large because the label
size increases by two bits for every insertion.

Recently, [14] proposed CDBS (Compact Dynamic Binary String) encoding
which supports the insertion of a new CDBS between any two consecutive
CDBSs with preserving the order and without any changes to the existing
CDBSs. CDBS encoding can be applied to any labeling schemes. The algo-
rithm generating a new binary string inserted between two consecutive CDBSs
is the same as our approach but is independently developed. However, CDBS
encoding scheme is quite different from our encoding scheme. The CDBS en-
coding algorithm is a recursive procedure. Given an interval [PL, PR] of num-
bers, CDBS encodes a middle number PM using the encoded value of the start
number PL and that of the last number PR. Then the encoding algorithm is
recursively applied to [PL, PM ] and [PM , PR]. For N numbers, CDBS assigns
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empty string to the 0-th number and the (N +1)-th number. Therefore, CDBS
needs to know the numbers to be encoded. In addition, since CDBS encodes
the numbers randomly- not sequentially, the encoding algorithm needs a tem-
porary array with size O(N) for encoding N numbers. Also, the fixed length
version of CDBS (F-CDBS) simply attaches zero or more ‘0’ to the variable
length version of CDBS (V-CDBS) which violates the insert-friendly property
of V-CDBS.

According to the label size analysis, the sizes of binary strings generated by
CDBS (i.e., log2N) and our enhanced binary encoding scheme (i.e., log2N +1,
see Section 3.2) are similar. The difference is too small to cause any degra-
dation of the performance. Thus, the query processing performance and the
scalability of EXEL using the enhanced binary encoding scheme will be simi-
lar to those of the containment labeling scheme using CDBS. In addition, we
expect that the update performances of them are also similar since CDBS and
our method generate the label for a newly inserted node by using the same
algorithm.

In contrast, our encoding methods provide the following advantages: (1) since
our methods generate binary strings sequentially and assign them to the
stream of numbers, our encoding schemes don’t need extra space to store
the previously assigned binary strings. Also, in our method, the generating
binary strings (i.e., encoding) and the labeling for nodes in XML data can be
performed at the same time. On the other side, in CDBS, only after encoding
the all numbers to be used for labels, it is possible to assign labels to nodes in
XML data. Consequently, the amount of time for labeling of EXEL is shorter
than those of labeling methods based on CDBS. (2) our basic binary encod-
ing method does not need to know the number of numbers to be encoded.
(3) our enhanced encoding method generating fixed length string obeys the
insert-friendly property (i.e., Property 1) (See details in Section 3). (4) we
provide inserting procedures for diverse insertion points and a kind of skewed
insertion in Section 5.2. (5) we consider the index structure for our labeling
technique to improve the query performance.

2.5 Query processing techniques

The structural join is regarded as the core operation in the XML query process-
ing. Thus, the performance of the structural join determines the performance
of the overall query processing. Various structural join algorithms [1,4,15,11]
have been proposed. Stack-Tree-Dec algorithm [1] uses a stack to maintain
elements that will be used later in the join. This algorithm needs only one
sequential scan of each ordered element list in contrast to the sort-merge join
proposed in [15] which may scan element lists many times.
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In addition, the query performance can be improved by an index which effi-
ciently removes unnecessary I/Os for scanning elements irrelevant to the join.
[4,11] use the indices on labels, such as the B+tree and the R-tree.

3 Efficient XML Encoding and Labeling (EXEL)

In this section, we present an efficient XML Encoding and Labeling method
(EXEL) which supports efficient query processing and update processing to-
gether.

3.1 Binary Encoding in EXEL

The label assigned to each node in a tree of an XML data should uniquely
identify the corresponding node as well as be able to represent the order of
the node to determine the structural relationships among nodes. Also, the
label should be immutable for updates. Thus, EXEL uses bit strings which
are ordinal as well as insert-friendly. The lexicographical order of bit strings
is defined as follows:

Definition 1 Lexicographical order ( < )
(i) 0 is lexicographically smaller than 1 (0 < 1).
(ii) if two bit strings a and b are the same (=), a is lexicographically equal to
b.
(iii) Given bit strings a, b, a′ and b′, ab < a′b′, if only if a < a′ or a = a′ and
b < b′ or a = a′ and b is null(i.e., empty string), where length(a) = length(a′).

Consider a bit string s which ends with ‘0’. The largest bit string among bit
strings which are lexicographically smaller than s is the s’s longest prefix p
(i.e., s = p0). However, we cannot generate any bit string which is greater
than the prefix p and smaller than s. For example, there is no bit string which
can be inserted between ‘110’ and its longest prefix bit string ‘11’. Thus, we
make a procedure that generates a bit string whose last bit is always ‘1’. In
other words, if the last bits of any two consecutive bit strings are ‘1’, we can
insert a new one between the bit strings without any changes on them.

The bit strings for labeling in EXEL are generated by the following binary
encoding method 3 :

3 In the following rule, we use ‘+’ as a binary addition and
⊕

as a binary concate-
nation
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(1) The first bit string b(1) = 1.

(2) Given the ith bit string b(i), if b(i) contains 0 bit then b(i+1) = b(i)+10.

Otherwise, b(i + 1) = b(i)
⊕

0k1, where k is the length of b(i).

Bit strings generated by the above binary encoding method have the lexico-
graphical orders presented in Definition 1. For example, 1<101<111<1110001.
Also, according to the above generating rule, the bit string always ends with
1. Thus, our encoding scheme satisfies Property 1. Property 1 is the key of
enabling to avoid re-labeling during the insertion of a node in the XML tree.

Property 1 Given bit strings s11 and s21 generated by the above binary en-
coding method, if s11 < s21, then s1 < s2 in the lexicographical order.

Theorem 1 presents the space requirement of our binary encoding scheme.

Theorem 1 In order to encode N ordinal values, the maximum size of the
binary encoding is 2dlog2log2N+1e − 1. In addition, the total size of the binary
encoding is

∑k
i=1(2

2i−1−1 · (2i − 1)) where k = dlog2log2N + 1e.

Proof: (i) 1-bit string (i.e., 1) can represent only 1 value. (ii) 3-bit string (i.e.,
101, 111) can represent 2 values. (iii) 7-bit string (i.e., 1110001,...,1111111)
can represent 23 values. (iv) consequently, by the mathematical induction on
k, (2k − 1)-bit string can represent 22k−1−1 values.

Let N = 20 + 21 + ... + 22k−1−1 =
∑k

i=1 22i−1−1.
By the mathematical induction, N =

∑k
i=1 22i−1−1 < 2 ∗ 22k−1−1 = 22k−1

.
Therefore k = dlog2log2N + 1e. Consequently, 2k − 1 = 2dlog2log2N+1e − 1.

2x − 1 bits can represent the (20 + 21 + 23 + ... + 22x−1−1)th ordinal values. 63
bits are enough to represent the 231th ordinal value. Generally, it is rare that
a tree for an XML document has more than 230 nodes. Therefore, 63 bits are
sufficient to encode ordinal labels for general XML data.

3.2 Enhancement of Binary Encoding

The binary encoding of EXEL uses double lengthed bits of the necessary
length in order to guarantee the lexicographical order among variable length
bit strings. In the binary encoding method of EXEL, k-bit string has (k−1)/2
bits consisting of only 1. It is the superfluous part. For example, the 7-bit string
begins from 1110001 to 1111111. In the binary encoding method, only 23 =
8 ordinal values are represented since the first three bits are 111 and the last
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bit is 1.

In order to remove the superfluous part, we devise another binary encoding
method with a predefined length of a bit string. The predefined length is ob-
tained from the total number of ordinal values which would be encoded. For
labeling a tree of XML data, it is determined by the total number of nodes.
The bit string with a predefined length is generated by the following rule:

Let N be the total number of values.

(1) The first bit string b(1) = 0log2N1.

(2) Given ith bit string b(i), b(i + 1) = b(i) + 10.

Note that, the bit strings generated by the above rule also obey the Property
1 since a bit string ends with 1 like the original binary encoding method. The
enhanced encoding can save the storage space and is of advantage to the query
processing since it generates shorter labels than the basic encoding. However,
the basic binary encoding still can be useful when we cannot use the enhanced
binary encoding in the case that we cannot find out the total number of nodes
in XML data.

In order to encode N ordinal values, the binary encoding using a predefined
length (i.e., enhanced binary encoding) needs log2N +1 bits for each bit string.
Thus, the total size of the enhanced binary encoding is N(log2N + 1) bits. In
order to encode 22 values, the size of the longest bit string of the enhanced
binary encoding is 6 bits while that of the basic binary encoding is 15 bits.
In addition, the total size of the enhanced encoding is 22 ∗ 6 = 132 bits while
that of the basic binary encoding is 20 ∗ 1 + 21 ∗ 3 + 23 ∗ 7 + 27 ∗ 15 = 1984
bits. To conclude, the enhanced binary encoding scheme can effectively save
the storage space, compared with the basic encoding scheme.

3.3 Labeling for XML Data

Like QED [13], the binary encoding presented in the previous section can be
applied to both region numbering scheme and prefix labeling schemes. How-
ever, we choose the region numbering scheme in EXEL because of following
two reasons. First, the query performance is affected by the kinds of operations
to compute structural relationships. The prefix based scheme needs a prefix
comparison operation to determine the ancestor-descendant relationship. It
is more expensive than ordering operations (e.g.,<, >, =). Second, the prefix
labeling scheme cannot intrinsically avoid the re-labeling problem for an inser-
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Fig. 4. EXEL with a predefined length

tion between child and parent nodes. Therefore, our labeling scheme is based
on the region numbering scheme, and solves the update sensitive problem of
the region numbering by using bit strings generated by the binary encoding
scheme proposed in the previous section instead of decimal values.

The region numbering scheme uses the level information in order to determine
the parent-child and the sibling relationship. However, the level information is
sensitive to updates since the level should be changed when an ancestor node is
deleted or a new node is inserted as an ancestor. Thus, EXEL uses the parent
information instead of the level. Even though the parent information requires
more storage space than level information, it is not changed for the insertion
or the deletion of any ancestor node (except the parent). Furthermore, if we
use the parent information in the query processing, the comparison of start
and end values is not required in order to determine the parent-child and the
sibling relationship. Thus, the query performance is improved.

Recall that both the basic binary encoding and the enhanced binary encoding
can be used for labeling the XML tree. Fig 4 shows an example of a tree labeled
by EXEL using the enhanced binary encoding with a predefined length. Since
we should assign start and end values to total 11 nodes in the tree, we need
to generate 22 ordinal bit strings using the binary encoding method. The
following theorem presents the space requirement of EXEL using the binary
encoding with a predefined length.

Theorem 2 Given the total number of nodes M , the enhanced binary en-
coding needs log22M + 1 bits for each bit string. Therefore, EXEL using the
enhanced binary encoding requires 3(log22M + 1) bits for each node’s label
since a label consists of start, end, and parent values. Consequently, the total
size of labels for M nodes is 3M(log22M + 1) bits.

11



4 Query Processing

In this section, we show how to determine the structural relationships between
nodes in EXEL. Also, we present the query processing techniques used in this
paper such as efficient structural join algorithm and indexing.

4.1 Query Processing Operator

The computation of a structural relationship is the beginning of an XPath
query processing. EXEL supports all XPath axes (i.e., ancestor, descendant,
parent, child, following, preceding, following-sibling, and preceding-sibling) in
the same way as the region numbering scheme because EXEL is based on the
original region numbering scheme. For example, in Fig 4, f is an ancestor of t
since sf (= 001011) < st(= 011011) and et(= 011101) < ef (= 100101), where
(sx,ex) is the region of a node x.

Given x and y nodes whose regions are (sx, ex) and (sy, ey), and whose parent’s
start values are psx and psy, respectively, structural relationships between x
and y can be determined as follows:

• Ancestor and Descendant axes: x is an ancestor of y, if and only if
sx < sy and ey < ex. For example, in Fig 4, f is an ancestor of t since
sf (= 001011) < st(= 011011) and et(= 011101) < ef (= 100101).

• Parent and child axes: x is a parent of y, if and only if psy = sx. For
example, in Fig 4, f is a parent of n since psn(= 001011) = sf (= 001011).

• Following axis: x is following y, if and only if sx > ey. For example, in
Fig 4, g is a following node of m because sg(= 100111) > em(= 001111).

• Preceding axis: x is preceding y, if and only if ex < sy. For example, in
Fig 4, e is a preceding node of v since ee(= 001001) < sv(= 010101).

• Following-sibling axis: x is a following-sibling of y, if and only if sx >
sy and psx = psy. For example, in Fig 4, f is a following-sibling of d since
sf (= 001011) > sd(= 000011) and psf (= 000001) = psd(= 000001).

• Preceding-sibling axis: x is a preceding-sibling of y, if and only if sx <
sy and psx = psy. For example, in Fig 4, g is a preceding-sibling of e since
sg(= 100111) < se(= 000111) and psg(= 000001) = pse(= 000001).
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4.2 Query processing and optimization technique

In order to efficiently process the structural join, we use the Stack-Tree-Desc
algorithm [1]. In our experiment, we applied this algorithm to all labeling
schemes and compared the structural join performance of EXEL with those
of other labeling schemes.

We additionally observed the query performance of EXEL with indexing. [4]
proposed a stack based structural join algorithm using B+-tree, called Anc-
Des-B+ algorithm. Generally, B+-tree supports numeric data efficiently, how-
ever our encoding scheme generates a bit string which obeys the lexicographi-
cal order. Thus, we bring in the String B-tree [9] to the Anc-Des-B+ algorithm
instead of the B+-tree. Fig 6 shows the Anc-Des-StringB algorithm. Note that
Anc-Des-StringB algorithm is identical to Anc-Des-B+ algorithm except using
String B-tree.

Anc-Des-StringB algorithm performs the structural join between two sorted
element lists A and D which are potential ancestors and descendants, respec-
tively. The algorithm sequentially scans A and D from their first elements and
performs the structural join until one of the lists becomes empty. Variables
a and d denote the currently accessed elements in A and D. During the ex-
ecution, a stack (i.e., AStack) is used to keep elements of A which may be
ancestors of elements remaining in D. Elements in A which are not ancestors
of d (line 8) or elements in D which are precedings or ancestors of a (line
12) should be skipped in the structural join. In order to efficiently skip such
unnecessary elements of A and D, the algorithm utilizes String-B trees (line
11 and line 15).

The String B-tree is a combination of B-trees and Patricia tries for internal-
node indices. The String B-tree has the same worst-case performance as the
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Algorithm Anc-Des-StringB( List A, List D )

begin

/* A and D are the lists of potential ancestors and descendants, respectively,

which are sorted in start value of their labels */

1. a := the first element of A, d := the first element of D

2. while( not at the end of A or D ) do

3. if(a.start < d.start and d.end < a.end ) then

4. AStack.push(all elements in A that are ancestors of d)

5. a := the last element pushed

6. output d as a descendants of all elements in AStack;

7. d := the next element in D

8. else if (a.end < d.start) then

9. AStack.pop(all elements whose end < d.start)

10. l := the last element popped

11. a := the element in A (locate using String B-tree)

having the smallest start that is larger than l.end

12. else

13. output d as a descendant of all elements in AStack

14. if(AStack is empty) then

15. d := the element in D (locate using String B-tree)

having the smallest start that is larger than a.start

16. else d := the next element in D

17. end if

18. end if

19. end while

end

Fig. 6. Anc-Des-StringB Algorithm

B-tree but it efficiently manages unbounded-length strings.

We have built a String B-tree index on sorted label values (i.e., start and
end values) in the bottom-up manner. The label values are partitioned into
value groups and each value group is stored into an internal node of the index.
The value group in each internal node is composed of copies of the leftmost
value and the rightmost value from each child node. Each internal node is
transformed into the corresponding Patricia trie. Fig 5 illustrates an example
of the String B-tree index built on labels of XML data. For simplicity, in
Fig 5(b), we use the numeric values generated by the original region numbering
scheme to represent the corresponding bit strings.

The index lookup is performed in the top-down manner. We traverse the index
from the root Patricia trie by visiting and searching Patricia tries where the
desired value is contained. Ultimately, we reach the leaf Patricia trie storing
the value and get the offset indicating the location where the element having
the value as the label is stored. For example, in order to find the element with
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Algorithm MakeNewBitString( leftB, rightB )

begin

1. if length(leftB) > length(rightB) then newB := leftB
⊕

1;

2. else newB := (rightB with the last bit changed to 0)
⊕

1;

3. return newB;

end

Fig. 7. MakeNewBitString Algorithm

start value of label ‘7’, we start the traversal from root. ‘7’ is between ‘1’ and
‘10’ which are copies of the leftmost and the right most value of the Patricia
trie P1. Thus, next P1 is visited. Finally, the Patricia trie P4 is visited in
the same way, and the location where the element ‘m’ is stored (i.e., ‘41’) is
returned by searching the Patricia trie P4.

5 Update

In this section, we present the update behaviors of EXEL. When a leaf node
or a whole subtree is deleted, the re-labeling of any nodes is not incurred.
However, if a non-leaf node is deleted, its children’s parent value should be
replaced by its parent’s start value while start and end values for any nodes
do not need to be updated. Since the delete algorithm is trivial, we omit it in
this paper. In this section, we present the algorithms for diverse insertions.

5.1 Generation of an inserted bit string in EXEL

The algorithm MakeNewBitString in Fig 7 makes a new bit string between
two preexisting bit strings. This algorithm can be applied to the basic encod-
ing method and the enhanced encoding method since both of these encoding
methods obey Property 1. But, for simplicity, we explain the update method
based on the enhanced encoding method.

Our algorithm is incidentally coincident with that of CDBS [14] which was
developed independently. Note that, our encoding scheme presented in Section
3 is quite different from that of CDBS.

If the length of the previous bit string leftB is longer than that of the next bit
string rightB, the new inserted bit string newB is the previous one concate-
nated by 1. Otherwise, the next bit string with the last bit changed to 0 and
appended by 1.

For example, when we make a new bit string between 101 and 111, the
new bit string is 1101 (101<1101<111) generated by line 2 in the algorithm
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Algorithm InsertChildOf( cur )

begin

1. snew := MakeNewBitString(scur, ecur);

2. enew := MakeNewBitString(snew, ecur);

3. psnew := scur;

4. Insert the new node with snew, enew, and psnew;

end

Fig. 8. InsertChildOf Algorithm

MakeNewBitString. When an additional a bit string between 1101 and 111
is required, 11011 (1101<11011<111) is generated by line 1 in the algorithm.
The length of bit string is increased by one bit for each insertion in contrast
with QED increasing 2 bits per every insertion.

For bit strings generated by our binary encoding method, the lexicographical
order has a property as follows.

Property 2 Given bit strings s11 and s21 generated by the binary encoding
method of EXEL, if s11 < s21, then s11 < s201 and s111 < s21, according to
Definition 1 and Property 1.

Thus, following the Theorem 3, a new bit string generated by the algorithm
MakeNewBitString preserves the lexicographical order.

Theorem 3 The bit string generated by the algorithm MakeNewBitString pre-
serves the lexicographical order.

Proof: If length(leftB) > length(rightB), then leftB < newB(=leftB
⊕

1) (by
Definition 1) and newB < rightB (by Property2). Otherwise, given leftB = s11 and
rightB = s21, newB(=s20

⊕
1) < rightB(=s21) (by Definition 1), and leftB(=s11)

< newB(=s201) (by Property 2)

5.2 Update Processing

There are three kinds of insertions in XML data according to the positions in
which nodes are inserted; inserting a child of a leaf node, inserting a sibling
and inserting a parent.

The algorithm InsertChildOf in Fig 8 inserts a node as a child of a leaf
node cur. In EXEL, a region of a child node is contained in that of its parent
node. Thus, a region of a inserted node new, (snew, enew) should satisfy scur <
snew < enew < ecur. Additionally, the parent information of new, psnew will
be the start value of cur (i.e., scur). For example, in Fig 4, a node a is inserted
into a child of a leaf node m. Thus, the region of a, (sa, ea) should satisfy
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Algorithm InsertSiblingAfter( cur )

begin

1. next := the start value of the nearest following-sibling of cur;

2. if next = null

3. then next := the end value of cur’s parent;

4. snew := MakeNewBitString(ecur, next);

5. enew := MakeNewBitString(snew, next);

6. psnew := pscur

7. Insert the new node with snew, enew, and psnew;

end

Fig. 9. InsertSiblingAfter Algorithm

sm < sa < ea < em. sa and ea will be computed as follows:

sa = MakeNewBitString(sm, em)
= MakeNewBitString(001101, 001111) = 0011101

ea = MakeNewBitString(sa, em)
= MakeNewBitString(0011101, 001111) = 00111011

Additionally, psa = sm = 001101.

The algorithm InsertSiblingAfter in Fig 9 inserts a new node as a next
sibling of a node cur. For example, in Fig 4, a node b is inserted after a node
m. The next node n is the following-sibling of m. Thus, the region of b, (sb,
eb) should satisfy em < sb < eb < sn. sb and eb will be computed as follows:

sb = MakeNewBitString(em, sn)
= MakeNewBitString(001111, 010001) = 0100001

eb = MakeNewBitString(sb, sn)
= MakeBitString(0100001, 010001) = 01000011

Additionally, psnew = psm = 001011.

The behavior of inserting a new sibling node before a node is similar to that
of inserting a node after.

Inserting a child and inserting a sibling have been efficiently supported by
other labeling schemes. However, inserting a parent node has not been handled
by any previous labeling schemes. EXEL supports an efficient insertion of a
parent node without re-labeling.

The algorithm InsertParentOf in Fig 10 inserts a node as a parent of a node
cur. In EXEL, the new parent node will be positioned between the previous
and next sibling nodes of cur. Thus, the start and end values of the new
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Algorithm InsertParentOf( cur )

begin

1. prev := the end value of the nearest preceding-sibling of cur;

2. if prev = null

3. then prev := the start value of cur’s parent;

4. next := the start value of the nearest following-sibling of cur;

5. if next = null

6. then next := the end value of cur’s parent;

7. snew := MakeNewBitString(prev, scur);

8. enew := MakeNewBitString(ecur, next);

9. psnew := pscur

10. Update pscur to snew

11. Insert the new node with snew, enew, and psnew;

end

Fig. 10. InsertParent Algorithm

parent node will be values between the end value of the previous sibling node
of cur (i.e., prev) and the start value of the next sibling node of cur (i.e.,
next). If there is no preceding-sibling or following-sibling of cur, the start or
end values of the inserted node are bounded by the start or end values of the
parent node of cur, respectively. The region of the new parent node of cur
(snew, enew) should satisfy that prev < snew < scur and ecur < enew < next.
Also, the previous parent of cur become the parent of new, and the parent of
cur is changed to new. Thus, psnew = pscur and pscur = snew. For example, in
Fig 4, a node c is inserted as the parent of a node v. Because a node n is the
previous node of v, prev = en. Also, since there is no following-sibling node of
v, next = ef . Therefore, the region of c should satisfy that en < sc < scur and
ecur < ec < ef . sc and ec are generated as follows:

sc = MakeNewBitString(en, scur)
= MakeNewBitString(010011, 010101) = 0101001

ec = MakeNewBitString(ecur, ef )
= MakeBitString(100011, 100101) = 1001001

In addition, psc = psv = 001011. After the insertion, the parent of v should
be changed from f to c. Therefore, psv = sc = 0101001.

The insertion of the parent incurs an increase of the levels of its all descendants.
The original region numbering scheme uses the level information to find parent
and child relationships, so it is needed to update the level information of the
descendants. However, EXEL keeps the parent information instead of the level.
Even if a node is inserted as an ancestor, the parents of the descendant are
still unchanged except the child of the inserted node. Consequently, EXEL
completely removes re-labeling for all kinds of updates.
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In the case of a subtree insertion, the labeling can be efficiently handled.
We first apply our labeling method to the subtree. Second, we generate a
new bit-string x according to the inserting point (p, q) using the algorithm
MakeNewBitString, then truncate the last bit (i.e., ‘1’) of x. Let the truncated
bit-string be x′. We complete labeling for the subtree by attaching x′ as a prefix
into the labels of the subtree’s nodes. Since the prefixes of subtree’s nodes are
equal, lexicographical orders among labels of subtree’s nodes are preserved.
Note that, in the lexicographical order, p ≤ x′ < q. Thus, by Definition 1-
(iii), labels of subtree’s nodes (whose prefixes are x′) are greater than p and
smaller than q. Therefore, the generated labels still keep the lexicographical
order among the pre-existing labels.

For the skewed insertions of N nodes, EXEL needs three bit strings (i.e., start,
end and parent information) with the size increased by O(N) as the labels of
the newly inserted nodes in the worst case. The other deterministic encoding
scheme designed to avoid re-labeling like CDBS [14] also has the same com-
plexity of label size [7]. However, the algorithm to insert a subtree is a kind
of a hybrid method combining dynamic and static labeling schemes. There-
fore, our algorithm to insert a subtree requires an increase in the size of bit
strings by O(log2N) for the labels in the worst case since the bit string gener-
ated by our encoding is O(log2N) and the prefix generated by the algorithm
MakeNewBitString is smaller than or equal to the maximum size of all labels.

6 Experiments

6.1 Experimental Environment

The experiments were performed on an Intel Pentium 3GHz with 1GB mem-
ory, running Windows XP. We implemented labeling, query processing and
update processing codes in Java. We stored the labeled XML data on the
local disk. For each individual element name n, we created a file named
elementfilen, and stored the corresponding records for elements with the
name. Each record is composed of the label and the name of the element.
In order to find the structural relationships between two elements, we load
the corresponding element files of the elements into a buffer sized 64KB.

In addition, we created a file called datafile which contains records of all
elements in the original XML data. The data file is used for wild card ‘∗’
queries which need to scan the entire data. In the element files and the data
file, records were sorted by the label in ascending order.

All experiments were repeated 10 times and we used the average of the pro-
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Table 1
Data Set

Data Name Size(MB) # of elements Max.Depth Avg.Depth

X1 1 17,132

XMark X50 50 476,646 12 5

X115 115 1,666,315

X500 500 7,182,068

Shakespeare S7 7.7 179,690 7 5

Nasa N24 24 476,646 8 6

Treebank T84 84 2,437,666 37 8

cessing times excluding the minimum and maximum values.

Labeling methods We implemented EXEL using the binary encoding with
a predefined length. As presented in Section 2, there are many labeling tech-
niques. It is quite hard to implement all labeling techniques. Thus, among
them, we choose the representative techniques: region numbering and ORD-
PATH (a prefix technique) to show the efficiency of EXEL.

The label organization of each label scheme is as follows: In the region number-
ing scheme, each label consists of < start, end, parent > where the type of each
constituent is a decimal value. The label organization of EXEL is the same with
that of the region numbering scheme except that the type of each constituent
is a bit string. The label of ORDPATH is composed of < ordpath, parent >
where the type of each component is a bit string. The parent information is
the start value of the parent element in the region numbering scheme and
EXEL, and the self-label of the parent element in ORDPATH.

Data Set We evaluated EXEL using XMark benchmark data [20], Shake-
speare data [8], Nasa data, and Treebank data 4 . The XMark data contains
the information of the internet auction. The Shakespeare data is the collec-
tion of plays of Shakespeare. In our experiment, we concatenated 37 plays
of Shakespeare into a single XML document. The Nasa data is astronomical
data. The Treebank data is encoded DB of English records of Wall Street
Journal. The characteristics of the data sets in our experiments are summa-
rized in Table 1. In Table 1, ‘Name’ column presents the abbreviation name
of the corresponding data.

Query Set The queries used in our experiments are described in Table 2. The
first character in a query name indicates the data set on which the query is
executed: ‘X’ denotes XMark, ‘S’ is for Shakespeare, ‘N’ is for Nasa, and ‘T’
is for Treebank. In our experiments, we evaluated the query performance for
four kinds of axes, descendant, child, following, and following-sibling in XPath.
The number in a query name denotes the type of a query according to the axis

4 XML Data Repository. http://www.cs.washington.edu/research/xmldatasets
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Table 2
Query Set

Name Query Definition

XQ1 //item//incategory

XQ2 //item/name

XQ3 //open auction[n]/following::bidder

(where n = 60 for X1, 2580 for X50, 6000 for X115, and 258000 for X500)

XQ4 //bidder[n]/following-sibling::bidder

(where n = 354 for X1, 12845 for X50, 29743 for X115, and 129101 for X500)

XQ5 //item//∗
XQ6 //person/∗
XQ7 //closed auction//∗
XQ8 //open auction//∗
SQ1 //ACT//TITLE

SQ2 //SPEECH/LINE

SQ3 //TITLE[10]/following::SPEECH

SQ4 //SPEECH[5]/following-sibling::SPEECH

SQ5 //SPEECH//∗
NQ1 //field//definition

NQ2 //author/initial

NQ3 //journal[20]/following::name

NQ4 //journal[10]/following-sibling::journal

NQ5 //journal//∗
TQ1 //NP//JJ

TQ2 //NP/NP

TQ2 //CC[20]/following:VP

TQ2 //NP[1]/VP

TQ5 //NP//∗

contained in the query( i.e., 1 for descendant, 2 for child, 3 for following, 4 for
following-sibling, and over 4 for wildcard ‘*’ query). Other axes can be handled
by the similar ways with these axes. Therefore we omitted the evaluation for
them.

In XMark queries, variables in order predicates (e.g., n in XQ4) have the order
values of the current elements positioned in the midst among its siblings with
the same name. For example, in XQ3, open auction[60] is the midst one among
about 120 ‘open auction’ elements in X1.

6.2 Experimental Results

In this section, we analyze the experimental results for query processing, up-
date processing, and storage size according to labeling schemes.
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Fig. 11. Query execution time

6.2.1 Query Performance

Fig 11 shows the query execution time of each labeling schemes for various
XML data sets. As shown in this figure, EXEL provides the best query pro-
cessing performance among labeling schemes in almost all cases.

First, EXEL is superior to the ORDPATH since basically EXEL supports
simple and efficient computations for all kinds of structural relationships like
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the region numbering scheme. This is achieved by the binary encoding scheme
generating the ordinal bit strings which can be effectively adopted to the re-
gion numbering scheme. Also, in order to determine an ancestor-descendant
relationship between two elements, ORDPATH needs a prefix comparison op-
eration for two bit string labels, which requires the comparison of bit strings
as the length of the shorter bit string. This operation is more time consum-
ing than the lexicographical ordering operation (i.e., >, <, and =) which
compares two bit strings to the first different bit. For example, when we com-
pare two bit strings ‘100011101’ and ‘10111101’, the prefix comparison needs
8 bit-comparisons while the lexicographical ordering operation needs only 3
bit-comparisons. Therefore, in order to determine the ancestor-descendant re-
lationship, EXEL outperforms ORDPATH, even if EXEL requires two lexi-
cographical ordering comparisons for start and end values, while ORDPATH
needs only one prefix comparison.

Second, the performance of EXEL is better than the original region numbering
scheme even if the size of labels in the original region numbering scheme is
shorter than that in EXEL. The reason is that the label of the original region
numbering has the numeric order which needs comparisons of the entire byte
sequences of two values, while the label of EXEL has the lexicographical order
which is determined by comparing only the front parts of byte sequences of
two values.

The performance gap between EXEL and other labeling schemes increases
as the size of XML data gets larger. We can see the the query processing
performance for various the data sizes using XMark data in Fig 12.

Fig 13 shows the effectiveness of the use of an index structure in the query
processing. In this figure, EXEL-SB denotes the performance of EXEL with
the String B-tree Index. The index helps to avoid unnecessary comparisons
by skipping the scanning of irrelevant elements. Especially, the query perfor-
mance of some queries (i.e., XQ6, XQ7, and XQ8) with a wildcard ‘*’ is largely
improved since a large part of the data can be skipped by indexing. For exam-
ple, in Fig 13(c), the query execution time of the query XQ7 decreased from
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Fig. 13. Query execution time (EXEL vs. EXEL with String B-tree Index)

Table 3
Update Query

Name Insert location Location details

UQ1 //person[m] m = 5482 for X50, and 12250 for X115

UQ2 //closed auction[c] c = 2096 for X50, and 4875 for X115

UQ3 //namerica[1]

10885 ms to 3682 ms, since the number of buffer I/Os was reduced. However,
occasionally, the index can be unhelpful. In case that data size or the scope
skipped by the index is small, the index lookup overhead outweighs the im-
provements obtained by the index. For example, in Fig 13(c), in case of the
query XQ5, the performance of EXEL-SB is a little worse than EXEL because
there is no part skipped by indexing.

6.2.2 Update Performance

We evaluated the performance of three kinds of insertions; inserting a child
node of a leaf node, inserting a next sibling node of a node, and inserting a
parent node. The effect of inserting a subtree on preexisting labels is the same
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Table 4
The performance of inserting a child

Query Labeling Scheme Data Time(ms) #.Relabeling Data Time(ms) #.Relabeling

EXEL 5 0 15 0

UQ1 ORDPATH X50 5 0 X115 15 0

Region numbering 3,570 397,914 8,546 931,108

EXEL 5 0 5 0

UQ2 ORDPATH X50 5 0 X115 5 0

Region numbering 974 40,999 2,120 95,572

EXEL 5 0 5 0

UQ3 ORDPATH X50 5 0 X115 5 0

Region numbering 4,411 484,739 10,177 1,126,901

Table 5
The performance of inserting a sibling

Query Labeling Scheme Data Time(ms) #.Relabeling Data Time(ms) #.Relabeling

EXEL 229 0 489 0

UQ1 ORDPATH X50 239 0 X115 510 0

Region numbering 3,927 397,913 9,306 931,107

EXEL 448 0 989 0

UQ2 ORDPATH X50 453 0 X115 989 0

Region numbering 1,312 40,998 2,974 95,571

EXEL 180 0 359 0

UQ3 ORDPATH X50 193 0 X115 365 0

Region numbering 4,500 484,738 10,599 1,126,900

Table 6
The performance of inserting a parent

Query Labeling Scheme Data Time(ms) #.Relabeling Data Time(ms) #.Relabeling

EXEL 229 1 500 1

UQ1 ORDPATH X50 224 21 X115 453 11

Region numbering 5,359 397,934 8,859 93,118

EXEL 453 1 1,015 1

UQ2 ORDPATH X50 416 29 X115 937 21

Region numbering 2,260 41,027 2,120 95,592

EXEL 182 1 396 1

UQ3 ORDPATH X50 1,109 112,078 X115 2,427 259,689

Region numbering 5,369 596,816 12,198 1,386,589

as that of inserting a node. Therefore, we omitted the experiment of inserting
a subtree.

Table 3 shows the description of updates conducted in our experiments. ‘Insert
location’ denotes a current node on which updates occur. We executed thee
kinds of insertions on each location. For instance, the update query UQ1
inserts a new node as a child, a sibling, or a parent of the current node indicated
by the path ‘//person[5482]’.
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Table 4, Table 5, and Table 6 show the performances of inserting a node for
three kinds of insertions. In the region numbering scheme, the re-labeling was
inevitable for all kinds of insertions, and the scope requiring the re-labeling
is wide. Thus, the update performance of the region numbering scheme is the
worst among labeling schemes for all kinds of insertions.

Table 4 shows the update performance of inserting a child node. While EXEL
and ORDPATH did not incur re-labeling, the region numbering scheme cannot
avoid re-labeling over a wide scope. Therefore, the update performances of the
region numbering scheme is the worst.

Table 5 shows the update performance of inserting a next sibling node. In
EXEL and ORDPATH, re-labeling of nodes is not incurred. Thus, there is
no difference of update performance by the re-labeling. However, as shown
in algorithm of Fig 9, in order to generate a label for a newly inserted node,
EXEL needs to know the label of the next sibling. ORDPATH also need the
information. The performance of EXEL to find the sibling node is slightly
better than ORDPATH, so the performance of EXEL is a little better than
that of ORDPATH.

Table 6 shows the update performance of inserting a node between parent
and child nodes. ORDPATH should re-assign labels for the child and its all
descendants while EXEL needs only one re-labeling which is the change of
the parent value of the child node. Thus, if there are many descendants of
the child node, EXEL outperforms ORDPATH. For example, in Table 6, see
the results of the update query UQ3. Since the difference of the number of
re-labelings between EXEL and ORDPATH is big, the performance of EXEL
is much better than that of ORDPATH.

In addition, as presented in algorithm of Fig 10, EXEL needs the labels of
the previous and next sibling nodes in order to generate a new label for an
inserted node. But ORDPATH doesn’t require the labels of the relevant nodes.
Thus, EXEL requires the additional time to find the sibling information com-
pared with ORDPATH. In case that the child node has a small number of
descendants, the overhead to find the sibling information can overwhelm the
advantage of avoiding re-labeling. For instance, in Table 6, UQ1 needs only
a small number of re-labelings, so the performance of ORDPATH is a little
better than that of EXEL.

6.2.3 Storage Space

Table 7 shows the size of the labeled data for each labeling scheme. For all
data sets, the region numbering scheme requires the smallest storage space
among labeling schemes. EXEL needs larger space than the region numbering
scheme due to the use of the insert-friendly bit string. However, the significant
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Table 7
Labeled Data Size

Labeling scheme Labeled Data Size (MB)

X1 X50 X115 X500 S7 N24 T84

Region numbering 302 13,605 33,446 154,600 3,140 8,960 41,554

EXEL 326 15,732 36,551 157,706 3,165 8,989 44,792

ORDPATH 320 14,830 35,002 156,163 3,483 9,743 46,005

improvement of the update performance according to the use of the bit strings
compensates for the space overhead.

Although EXEL uses three binary coding values (i.e., start, end, and parent
information as a bit string type), the efficiency of the storage space for EXEL
compared with ORDPATH depends on the data. In a prefix based scheme,
an element in a deep level is assigned a long label. Thus, in case that many
elements are located in deep levels of the tree of an XML data, ORDPATH
is more disadvantageous than EXEL. For example, ORDPATH requires more
space than EXEL for Treebank and Nasa data. On the other hand, EXEL can
need more space than ORDPATH for data where the average depth of XML
data tree is shallow (i.e., XMark data).

7 Conclusion

In this paper, we proposed EXEL, an efficient XML encoding and labeling
method which supports efficient query processing and updates.

A novel binary encoding method used in EXEL generates ordinal and insert-
friendly bit strings. In order to reduce the label size, we enhanced the binary
encoding method using a predefined length which is determined by the total
number of nodes in a tree of XML data. EXEL is a variant of the region
numbering scheme using bit strings generated by the novel binary encoding
method. Therefore, all efficient query processing techniques for the original
region numbering scheme can be applied to EXEL. We took advantage of the
Stack-Tree-Desc algorithm for efficient computing of structural joins. Also, we
improved the join performance by using the String B-tree index.

The experimental results show that EXEL provides fairly reasonable query
performance. In addition, we can observe that EXEL can save much time in
updates through the complete avoidance of re-labeling.
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