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1. ABSTRACT

This paper presents the object-oriented image retrieval
mechanism which provides the content model, the indexing
scheme, and the query processing techniques as a whole.
Three types of image content, i.e., visual features, semantic
features, and keywords, are defined, and they are Tepre-
sented using the object-oriented data model. Three types of
index structures corresponding to the identified features are
elaborated to facilitate the search. The query processing
techniques to process complex queries which use multiple
types of indexes are also described. Experiments have been
carried out on large image collections to demonstrate the
effectiveness of the proposed retrieval mechanism.

1.1 Keywords
content-based retrieval, image indexing, object-oriented
model, multimedia database

2. INTRODUCTION

In everyday life, a large amount of images is produced in
various domains and their contents are diverse - news foot-
age, medical imagery, art collections, weather photos,
movie images, and more. An important research issue
caused from this widespread use of images is content-based
image retrieval which helps users retrieve relevant images
based on their contents. To provide such a facility images
are analyzed so that their content descriptions can be ex-
tracted and stored in a database. The descriptions are then
used to search the database and to determine which images
satisfy the user’s query selection criteria. These descrip-
tions are called metadata. The effectiveness of content-
based retrieval depends largely on the availability of rich
metadata. The discriminating power of the retrieval system
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increases as more information describing the image content
is included in the metadata. Thus, many kinds of informa-
tion may be included in the metadata, and some of them are
inherently unstructured and some others have certain
structures such as tree or graph. The motivation behind our
work is to unify the structured and unstructured metadata
through object-oriented data model.

Let us discuss the effect of the unstructured modeling,
which does not use any specific data model to describe and
represent the image content, on the image retrieval system.
The most obvious advantage of the unstructured approach
is that it is easy to query or browse for novice and infre-
quent users, because they need not to know about the
schema structure of the image database. However, the da-
tabase administrators or frequent users may want to query
in precise manner to restrict the search scope. The second
advantage of the unstructured approach is that it is simple
to insert, delete, and update data objects, because there is
not a complex schema structure. However, this unstruc-
tured approach loses many advantages that can be acquired
from the structured approach.

We model the metadata using object-oriented data
model. The reasons why we use the object-oriented ap-
proach to construct our content-based image retrieval sys-
tem are as follows:

¢ Using the structure of metadata promotes the clustering
of objects with similar characteristics on the secondary
storage when they are stored in the database;

* Queries using the schema restrict the search space only to
the given class or class hierarchy, and therefore, the
search performance may be improved and more exact re-
sults can be obtained.

e Schemas make efficient to browse the database due to
their structural organization;

¢ It is convenient to manage the objects with common
properties because they are grouped by inheritance rela-
tionship;




e The facilities, e.g., query by example and query by key-
words, allow novice users to query the database without
knowing about the schema structure.

We are developing the content-based image retrieval
system based on the object-oriented model. The work has
three goals: (1) to develop the content model of image to
describe the image content, (2) to develop the indexing
scheme to index the metadata, (3) to investigate the proc-
essing techniques for complex queries.

The first goal is to find what kinds of information are
necessary to make the image retrieval system effective. To
achieve the second goal we need separate indexes for the
feature sets describing the image content, because each
feature set has its own intrinsic properties which cannot be
mixed with others. For example, the visual features such as
colors and textures are quantifiable, while the features
which can be obtained only by human sense cannot be
quantified by any metric function. The third goal is to de-
velop the processing techniques for queries using multiple
feature sets. Efficient query processing is an essential re-
quirement in any information system.

3. OBJECT-ORIENTED CONTENT

MODEL
Conceptually, an object has a set of attributes and a set of
methods. An attribute corresponds to the instance variable
and can take object as its value. The methods are functions
act as an interface to other objects. In the following, even if
we mention only atiributes it is assumed that there are
methods associated to the attributes.

3.1 AnImage Object

The basic system unit that will be stored and retrieved is an
image object. An image object I consists of a body B and a
header H. The body is a binary bitmap image. The header
is a metadata that describes the content of the image. We
model the header as a triplet H= (C,, C,, C,), where

e C, is a class which consists of a fixed number of visual
feature attributes;

» C, is a class which consists of a fixed number of semantic
Jfeature attributes;

* C, is a class which consists of a variable number of key-
words.

An object O, instantiated from class C, includes the visu-
al features which are extracted automatically by the image
processing subsystem. The visual features would be colors,
textures, shapes, positions, and so on. We regard the O, as a
point in an »#-dimensional visual feature space, where 7 is
the number of visual features extracted. Each visual feature
represents one dimension and therefore n represents the
dimensionality of the visual feature space.

An object O, instantiated from class C, has a fixed num-
ber of semantic (i.e., non-quantifiable or abstract) features
that should be extracted manually by human sense or that
can be deduced by the system when the image is inserted
into the database. The semantic features contain higher
level of abstract information than the visual features. For
example we can enumerate the following common simple
semantic attributes of an image:

o title: title of image,

e subject: peace, love, architecture, nature, and so on,
e type: painting, scenery, portrait, and so on,

e perspective: aerial, ground, or close-up,

¢ orientation: horizontal or vertical,

» date: date when the picture is shot,

An object O, instantiated from class C, consists of a
variable number of keywords. The set of keywords has no
certain structure. Keywords give the gist of an image. They
are words or sequence of words which describe the content
of an image that can not be easily described using only
simple common atiributes. Keywords may contain the
highest level of abstract information among other features.
Figure 1 shows an example image class hierarchy con-
structed by our content model.

Image

Keyword

Animal

ANV ANd

Dog CatFlower Cactus Mount Sea Truck J

aggregation relationship
inheritance relationship

Semantic

\

Visual

/N

eep Helicopter Fighter Asia Europe Painting Sculpture

Figure 1. An example image class hierarchy
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3.2 Queries

A user query is the specification of a header that closely
corresponds to the information known about the image.
Users can query the image database based on the three
types of class attributes: the semantic, keyword, and visual.
Some attribute values may be omitted or given a specific
values or range of values. Keywords are specified by
providing a set of words that describe the image. Visual
features are given by example images, user-sketched
drawings, or selected color and texture patterns.

To summarize the different types of queries, we have the
following:

o Simple queries that specify a single attribute value for
each possible attribute and require the exact match;

® Range gueries that either explicitly specify a range of
values for some of the attributes, as in (10% < red <
30%) and (30% < green < 40%) and (80% < blue <
90%), or implicitly specify a range of values by leaving
one or more attributes values unspecified.

o Similarity or nearest neighbor gueries that give an ex-
ample image or user-sketched drawing and require to
find most similar images to a given one.

o Complex similarity queries that consist of one or more
similarity queries and other types of queries. For exam-
ple, retrieve five images which are most similar to a
given image and whose subject is nature.

Since the complex similarity query covers all other types
of queries, we will focus our attention on the complex
similerity query. The other types of query processing
methods can be found in [4].

4. INDEXING SCHEME

This section describes the indexing scheme that facilitate
the search. Our indexing scheme consists of three types of
index structures which correspond to visual class, semantic
class, and keyword class.

4.1 Visual Indexes

We assume that a set of » visual features have been ex-
tracted (semi-)automatically from each image. They may
be dominant colors, textures, shapes, and so on. A set of #
visual features is represented by a visual object O, = (f;,
Jou oy Ji), where f; . 1 < i< n, corresponds to one feature
value, and is mapped to a point in an »-dimensional visual
feature space. We use the HG-tree [4] as our underlying
index structure for organizing the visual feature indexes. It
is one of the most successful multidimensional point index
structures. The HG-tree guarantees the storage utilization
of 66.7% (2/3) in worst case and typically achieves more
than 80%. It was shown that the HG-tree is fairly robust
even in high dimensions and it achieves good response
time.
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Many other image retrieval systems used some other
index structures. The QBIC system adopted the R*-tree [1].
Petrakis and Faloutsos [24] used R-tree [14]. Mehrotra and
Gary [20] used the K-D-B-tree [26]. The systems, CAFIIR
[29], STAR [30], and Zhang and Zhong [32] employed the
iconic index tree based on the Self-Organizing Map [17].
Compared with the other index structures, the performance
of the spatial index structures such as R-tree and R*-tree
degenerates drastically with an increase in the dimension-
ality of the underlying feature space, because their fanout
decreases in inversely proportional to the dimensionality.
Fanout gives the number of entries expected within an in-
dex node. All current spatial index structures suffer from
this dimensionality curse.

The iconic index trees based on the SOM simplify the
multidimensional problem by converting it to a one-
dimensional clustering problem based on similarities. The
major problem of these index structures is that they are
static. Another problem is that they are constructed only for
nearest neighbor queries. Thus, it is difficult to process
range queries. In fact, most of the index structures, e.g.,
VP-tree [6] and GNAT [3], designed only for nearest
neighbor queries have these common problems, i.e., they
are static and appropriate only for similarity search.

The HG-tree, which is one of the multidimensional point
index structures, avoid all above problems. It is less influ-
enced by the increase of the dimensionality than the spatial
index structures, because it represents each directory region
covered by the data set by only two Hilbert values regard-
less of the dimensionality. In addition, the HG-tree is com-
pletely dynamic. Due to these reasons we adopted the HG-
tree as our underlying index structure. However, other re-
cent index structures such as M-tree [7], X-tree [2], and SS-
tree [28] may be applied to the system instead of the HG-
tree if they show better performance than the HG-tree.

In the HG-tree, all n-dimensional values are transformed
into 1-dimensional points using space-filling curve, and
specifically Hilbert curve [15], before they can be used.
This promotes the deferred node splitting to be used when
node overflow occurs, and therefore guarantees high stora-
ge utilization. A space-filling curve is a mapping that maps
the unit interval onto the n-dimensional unit hyper-
rectangle continuously. While there are other space-filling
curves such as the Peano curve [23] and the Gray-code
curve [11], it was shown that the Hilbert curve achieves
better clustering than the others [12, 16]. The desirable
features of the Hilbert curve are that the points close on the
Hilbert curve are.close in the domain space, and the points
close in the domain space are likely to be close on the Hil-
bert curve.

To minimize the dead space (i.e., the space which does
not include any actual data but covered by the directory
region) of the index node, the HG-tree encloses a set of




entries in a node by minimum bounding interval (MBI).
MBI is the smallest interval on the Hilbert curve, which
completely encloses all the regions at lower level. The MBI
1Iis represented by two Hilbert values at both ends of inter-
val, 1= (H,, H,), where H, is the starting point and H, is the
ending point on the MBI

The HG-tree consists of internal and leaf nodes as in
other index trees. A Jeaf node contains at most C, entries of
the form (vid, H), where C, is the capacity of the leaf node,
oid is a pointer to the object in database, and H is the Hil-
bert value for the feature vector. An infernal node contains
at most C, entries of the form (p#r, 1), where C, is the ca-
pacity of an internal node, pzr is a pointer to the child node,
and I is the MBI. The entries in nodes are maintained in
Hilbert order.

4.2 Semantic Indexes

Queries in object-oriented database are formulated with
reference to a target class ¢ with two possible interpreta-
tions: the query can be evaluated on the set of all objects
which belong exclusively to the target class c, or it may be
evaluated on the set of all objects belonging to any class in
the class hierarchy rooted at c¢. To support concurrently
both types of queries, we provide more efficient alternative
implementation based on the y-tree [5]. The central idea of
the y-tree is to transform the object indexing problem into a
2-dimensional range search problem by imposing an ap-
propriate linear order on classes in a class hierarchy. With
this transformation, every query O can be mapped to a 2-
dimensional search space with the class ordering as one
dimension and the indexed attribute as the other dimension.
This search space takes the form of a rectangular region Ry.
The answers to a query O consists of all the data points
which fall within the region R),.

Example 1. Consider the class hierarchy shown in Figure
2, which is mapped to the sequence 4, B, E, F, G, C, D
using the preorder traversal of the class hierarchy. The
query is represented by rectangular region ([c, ¢’], [r, 7’]),
where [c, ¢’} defines the class range and [r, 7’ defines the
range of attribute values. As illustrated at (b) in Figure 2,
the query 01 corresponds to a class hierarchy query on the
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class B on the attribute range [1, 5]. Query Q2 is a query on
the entire class hierarchy with the indexed attribute restrict-
ed to value 3. Query Q3 corresponds to a single class query
on class C with range [4, 6].

Unlike the y-tree which uses the K-D-B-tree-like struc-
ture as underlying structure, we employ the HG-tree as our
underlying structure for indexing the hierarchy of semantic
features, because of the performance advantages of the
HG-tree over the K-D-B-tree. We construct one (n+1)-
dimensional semantic index tree, which consists of # com-
mon semantic feature dimensions and one class ordering
dimension, rather than » 2-dimensional y-trees. Thus the
class hierarchy indexing problem is transformed into a
(m+1)-dimensional range search problem.

The advantages of using single multi-attribute (SMA)
index over using multiple single-attribute (MSA) indexes
are obvious. First, the clustering of index pages and data
pages on disk can reduce significantly the number of I/O
operations needed for database accesses. Second, to process
multi-attribute queries in MSA index, multiple independent
accesses to separate indexes and the intersection of the
multiple partial results are needed to get a final result.
Third, when new object is inserted into or deleted from a
database, SMA index organization needs only single update
for its index, while MSA index requires multiple updates.

4.3 Keyword Indexes

The signature file has proved to be a convenient indexing
technique for keywords [8, 18, 19, 25, 27, 33]. Multidi-
mensional index structures are not appropriate for indexing
keywords, because they assume that the dimensionality of
the domain space is small and constant. However, the num-
ber of keywords given by users to query may be variable.
Moreover, most of the multidimensional index structures
suffer from the dimensionality curse.

The main idea of the signature file is to derive properties
of data objects, called signatures, and store them in a sepa-
rate file. Signatures are hash-coded binary words of fixed
length. A collection of the derived signatures is called sig-
nature file. Although a lot of research has been done on the
improvement of the performance of a signature file, most

A
02

01

1 2 3 4 5 6 7
(b)

Figure 2. Transformation of class indexing to a 2-dimensional indexing problem
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of the researches have been performed for static environ-
ment where update operations are rarely occurred. Our in-
dexing scheme requires a dyramic environment. The two
representative dynamic signature files are S-tree [8] and
Quick filter [33]. The main idea of the S-tree is to group
adjacent signatures and build a B-tree on top of them. The
major problem of the S-tree is that the performance is de-
generated as the query signature weight becomes lower.
The number of 1’s in a signature is called the signature
weight. In the Quick filter, a signature file is partitioned by
2 hash function and the partitions are organized by linear
hashing. Therefore, it is appropriate for the dynamic envi-
ronment and results in good performance in the queries
with high signature weights. However, if the distribution of
signatures is nonuniform, then similar signatures are fre-
quently generated and therefore the overflow rate increases
and the storage utilization decreases. These degenerate the
performance of the Quick filter.

To attack the disadvantages of existing dynamic signa-
ture files, we combine the concepts of the HG-tree and the
frame-sliced signature file [19]. Using the HG-tree, which
is a complete dynamic index structure, we solve the prob-
lem caused by high overflow and low storage utilization.
We also tackle the problem caused by light weight signa-
tures by adopting of frame-sliced signature method. The
leaf nodes of the HG-tree are built using the concept of the
frame-sliced signature file. The directory regions in the
nodes are represented by the image signatures.

At first, a signature is divided into s frames, and ¢ frames
are selected out of a total of s frames using one hash func-
tion /;. To make up the word signature (i.e., the signature
corresponding one keyword) m bits are set to “1” in the
selected ¢ frames using the second hash function 4,. The
frame signature is constructed by superimposing the parts
belong to the corresponding frame of word signatures. At
last, the image signature describing the content of an image
is constructed by combining the frame signatures.

Example 2. Figure 3 shows the procedure of constructing
an image signature based on the frames when an image
consists of a set of four keywords, {‘sky’, ‘sea’, ‘bridge’,

b

a set of keywords O, = { ‘sky’, ‘sea’, ‘bridge’, ‘ship’ }

keywords framel frame2 frame3
sky 0010 1000

sea 0100 0100
bridge 0100_ 0001

ship 0010 1000
Image signature 0110 1101 1100

Figure 3. The procedure constructing the image signature
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*ship’}. In Figure 3, it is assumed that the length of an im-
age signature is 12 bits, the number of total frames is 3, the
number of frames to be selected is 2 and the number of bits
to be set is 2. The word signatures of keywords ‘sky’, ‘sea’,
‘bridge’ and ‘ship’ are assumed to be 0010 1000 0000,
0000 0100 0100, 0100 0001 0000, and 0010 0000 1000,
respectively. The image signature becomes 0110 1101
1100 when we concatenate the frame signatures 0110, 1101
and 1100.

The leaf and internal node structures of the HG-tree for
indexing keyword signatures are slightly modified to ac-
commodate the keyword indexes. The entry in a leaf node
has the form (oid, F), where oid is a pointer to the raw im-
age in the database and F is an image signature which con-
sists of s frames (F,, F>, ..., F). The entry in an internal
node has the form (prr, S), where pfr is a pointer to the
child node and S is a signature made by superimposing all
the image signatures in the corresponding child node.

When we construct the HG-tree with image signatures,
the values of the image signatures are interpreted as the
Hilbert values and they are inserted in the order of Hilbert
values. This interpretation procedure corresponds to the
mapping a point in s-dimensional space into a point in a
linear Hilbert curve. The number of frames, s, constituting
an image signature determines the dimensionality of the
keyword domain space and the image signature used in a
node of the HG-tree determines a directory region in the
domain space. The reason of using Hilbert mapping instead
of simply concatepating s frames is to place the similar
signatures into the same disk pages. Example 3 illustrates
this property.

Example 3. Figure 4 shows (2) the binary number se-
quence and (b) the Hilbert number sequence in a 4x4 grid
space. Since the two points B, and B, are adjacent, the cor-
responding signatures may be quite similar when we con-
catenate the codes in two directions. The signatures (or
numeric values) of B, and B, are 0011 and 0111, respec-
tively, and the signature suffixes are very similar. However,
the probability of placing the two signatures into same page

T B, 5 . H|l H f i
n @ @Bz! Al a1l O ’1. 0 —
TR — ! \ , ——
0 .0t 10 BRGNS
; + ; : { i ‘ | ) 1 ;
o1 . D oo F—‘— |
{ ‘ ' ‘, "’. ; : T .
00 s < ! < i < 00 _‘:_‘ _;—'»
00 01 10 11 00 01 10 11
(a) binary ordering (b) Hilbert ordering
Figure 4. IHustration of binary number sequence vs. Hilbert
number sequence
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is very low, because the numeric difference of two signa-
tures is relatively large. This may result in many random
accesses on disk. On the other hand, The signatures (or
Hilbert values) of H, and H, are 0101 and 0110, respec-
tively. Thus the probability of placing the two signatures
into same page may be very high, because the numeric dif-
ference of them is only 1. The points close on the Hilbert
curve are also close in the domain space. This characteristic
can achieve a better clustering of pages and can avoid ex-
pensive random disk accesses.

5. QUERY PROCESSING

The result of a Z-nearest neighbor query based on the visual
features is a sorted list with % most similar objects. On the
other hand, the results of queries based on the semantic
features and keywords are sets of objects which satisfy the
queries. When the complex similarity queries are issued to
retrieve, the search procedure must synthesize the results of
different types of queries in a certain consistent manner.

Example 4. Let us consider the query Q, where a user
wants to retrieve 3 most similar image to a given image /
and whose subject 1s ‘animal’:

Qq: (Ci(color-histogram) = I’y A (C{subject) = ‘animal’)
In this case, the query result is probably a list with 5 objects
sorted by the visual similarity to the image I, where the
value of subject attribute in C; is animal. A reasonable way
to evaluate these types of queries, in which the result of one
query is a set and the result of the other query is a sorted
list, wounld be to first evaluate the query whose result be-
comes a set, and then to find the sorted list consisting of the
required number of objects from the set. Therefore, to
evaluate the query Q, in this example we determine all ob-
Jects that satisfy the predicate C(subject) = ‘animal’, and
then obtain similarity scores of the objects, and finally re-
turn 5 objects which have highest similarity scores.

Example 5. Let us now consider the query Q, with two
similarity predicates where a user wants to retrieve k best
matches which are similar to both of images /7, and ;:

Qz: (Cﬂ(COIOT-hILVIOgTam): ‘II r)
A(C,(color-histogram)= “I,")

There are several ways to deal with this kind of queries. An
obvious fact is that it is not correct to retrieve the best
match only for single predicate. In the query where several
sample images are given, we can transform it to a query
containing an image which is best matched to all query
images. In the query Q,, we can find a point P which is
closest to both points P, and P, corresponding to the im-
ages /, and I, respectively. Then we retrieve k objects
closest to P.

Another solution to this kind of query is Fagin’s 4, algo-
rithm [9]. which independently evaluates the predicates in
the query and computes the overall similarity scores of the

objects in each result set based on a rule combining the
similarity scores. Finally it returns £ objects in the order of
highest similarity scores.

1t should be noted that the query results from the above
two methods, i.e., the method transforming the features in
several query images into the features of one best-matched
image in advance and Fagin’s 4, algorithm, may be differ-
ent. In the former, the search target is changed to the object
most common to the given query objects, while in the latter
method, the most similar objects among the separately se-
lected best matches are chosen. This difference for best
matches may make the final results different. To determine
which method produces more exact results is not trivial and
may be dependent on the user’s viewpoint. One obvious
fact is that the former is far more efficient than the latter.

Example 6. Consider a database where images are char-
acterized globally by colors and textures and also charac-
terized by shapes and locations of the components within
the image. Let us assume that the two sets of visual feature
attributes, ie., C,; = {color, texture}, C,, = {shape, loca-
tion}, are indexed separately. Consider the query Q;:

Q;: (C,, (color, texture)="1,")
A (C,, (shape, location)= ‘T,’).

In this case, since the domain space of two predicates are
made different, the evaluation of each predicate must be
performed independently and the algorithm such as Fagin’s
A, should be incorporated to combine two result sets. How-
ever, it is important to note that the visual features should
be integrated in a single index if possible, because the
independent evaluation of the predicates and the combina-
tion of the separate results are very expensive.

Fagin used the standard rules of fuzzy logic [31] for
evaluating Boolean combinations of atomic formulas:

Conjunction rule: s,,5(x) = min {5,(x), s5(x)}
Disjunction rule: s, 5(x) = max {s,(x), s(x)}
Negation rule: s_,(x) =1 - 5,()

where s,(x) is the similarity score of object x under the
query A. Although these rules have some attractive points
as shown in [9], the drawback is that it depends on only the
single operand, that is, 5,,5(x) (as well as s, 5(x)) is always
equal either to s54(x) or sg(x). This does not reflect the effect
of all predicates. With this observation, we use other rule to
synthesize the results evaluated independently, which will
depend on all predicates in the query.

The first step towards an evaluation of complex similar-
ity queries concerns how to compute the similarity score.
The next step is how to combine the similarity scores when
they are computed independently. As mentioned before, it
is desirable to build a single index which covers all features

-if possible. However, the method to synthesize other types
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of queries should be invented in the cases that data reside in
multiple systems or features describing the image have
inherently different characteristics, e.g., some features are
quantifiable and the others are not.

In general, evaluating the similarity of an object with
Tespect to a query value can be done through the distance
function measuring the distance between feature values.
Definition 1 gives the distance function used in our work.

Definition 1. Distance function

A distance function, d, for any pair of feature values (x, y)
from the domain space D yields a non-negative real value
between 0 and 1, which shows the normalized distance
between x and y.

& D*—>10,1]
The 0 distance denotes the exact match and the 1 distance
shows the maximum difference.
Definition 2 gives the similarity function which assigns
maximum similarity (i.e., 1) in case of 0 distance and mak-
es the similarity inversely related to the distance.

Definition 2. Similarity function

‘We define the similarity function, s, for any pair of feature
values (x, y) as

s, y)=1-dx, ),
where d Is a distance function. The similarity score is also a
real value in the range [0, 1].

Let us now consider how to combine the similarity
scores computed in independent predicate evaluations.
Fagin used the standard rule of fuzzy logic for this purpose.
Although it is not clear which is the best rule, it is impor-
tant to realize that any specific model has some advantages
and drawbacks. We do not consider the Fagin’s rule as our
combination method, because, in that rule, the best match
only for a certain specific predicate determines the overall
best match. We use the probability function on the inde-
pendent predicates as our combining rule. Then the overall
similarity score will be determined by the following defini-
tion.

Definition 3. Overall similarity function s

overall similarity score of objectx

m
= Spinntm )= H S; (x)
i=1

where s, the similarity function over the i-th predicate 4;
and m is the number of conjuncts, i.e., the number of simi-
larity predicates. This overall similarity function gives the
combined degree of similarity.

With these distance and similarity functions, the algo-
rithm ComplexNNSearch based on the Fagin’s A, algo-
rithm for processing the complex 4-nearest neighbor query
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can be given. Note that the procedure NNSearch(4;, %)
receives the predicate 4; and the number, £, of objects to
retrieve, and returns & objects with highest similarities.
Algorithm ComplexNNSearch(m, A4, k)

/l m is the number of conjuncts (or predicates) in the query,
A is the set which consists of m predicates 4,, i.e., 4 = {4;},
i=1 .. m, and k is the number of objects to retrieve //

1. [Initialize]

fori«—1tomdo

X
/I X' is initialized to empty set. X’ will contain the objects
returned from the k-nearest neighbor search. //

2. [Find the % matches]

do {

fori< 1tomdo {
G’ < NNSearch(4,, k)

I/l G is the set which will contain the objects and their
similarity values in the output from the processing of
the i-th k-nearest neighbor search conjunct 4;. //

XX UG
} .
LN, X'
// L is a set which has the intersection of Xs. //
} while (L] < k)
// Perform loop until L has at least & objects.
|| denotes the number of objects in the set L. //
3. [Compute the similarity scores for the candidates]

Ye{x|xeym X"}

j < the number of objects in ¥

fori=1tojdo {

Compute the similarity score ¢; of x; in Y using the
overall similarity function.
Restore (x;, ¢;) into Y.
3
4. [ Find the most similar & objects]

Return the sorted list of £ objects with highest similarity

scores.

6. EXPERIMENTS
To test the effectiveness of our content-based image re-
trieval mechanism, we have constructed an image database
that has a 1,064 images. The images are 256-color bitmaps
with a variety of contents.

6.1 Visual Feature Extraction

To acquire the visual features we used statistical color mo-
ments of the histogram of an image. Since most histogram
bins of an image are sparsely populated and only a small
number of bins have the majority of pixel counts, we used
only the largest 32 bins (in terms of pixel counts) as the




representative bins of the histogram. We used first two
moments of the histogram as descriptors of an image:

1 k
o= =D s

ng

15 3k i=1,2,3
- (i) o

where x;, is the value of color component of j-th bin, f; is
the frequency of x;;, % is the number of total bins, ie. 32,
and 7 is the total number of pixels in the histogram. Since
we use the RGB color model, the i-th color component
corresponds to one of red, green, and blue. The first mo-
ment, p,, defines the average intensity of each color com-
ponent. The second moment, o;, is a measure of contrast
that can be used to represent relative smoothness.

Measures of global color statistics using only histograms
suffer from the limitation that they carry no information
regarding the relative position of pixels. To overcome this
limitation to some extent, we divided the image into 4 sub-
areas and computed 2 moments for each sub-area, resulting
in a 24 (= 2 moments x 3 color components x 4 sub-areas)
visual features for an image. Using this 24-dimensional
feature vector, we estimate the similarity, s(S, T), between
two color histograms S and T as follows:

s(8,7)=

1 (3
Z [2 (uik(S)— wa(T)|+loit(S)—ox(T )])]

1- k=1\ 1=1

A
where A is a normalizing factor.

6.2 Sample i-Nearest Neighbor Queries

Figure 5 shows the results of two sample 12-nearest neigh-

bor queries:

(@) Query 1: “Find 12 images most similar to image
tigerad.bmp”

(b) Query 2: “Find 12 images most similar to image
tigera4.bmp and whose keyword is animal”.

The image on the upper-left corner in Figure 5(a) and
5(b) is the query image tigera4.bmp and 12 most similar
images are retrieved in left-right and top-down sequence:
In Figure 5(a), the query image, tigera4.bmp is, of course,
the most similar image, bench1.bmp is the second similar
image, and detaill4.bmp is the 12" similar image. The re-
sult of Figure 5(a) is obtained only using visual features.
Obviously, all images retrieved from a real image database
have similar color properties to the given query image. On
the other hand, the keyword animal is used together with
the color visual features in the processing of Query2. As
You can see¢, the more the features are specified in the
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{(b) Queries using color visual features together with the
keyword animal
Figure 5. Two sample 12-nearest neighbor queries

query, the higher the selectivity, i.e., the ratio of the expect-
ed number of answers over the total number of data in the
database, is increased.

7. CONCLUSIONS

In this paper, we have considered the issues concerned with
the content model, the indexing scheme, and the query
processing techniques as a whole in content-based image
retrieval system. The content of an image consists of a set
of visual features, a set of semantic features, and a set of
keywords. Each component of the content may have differ-
ent structural characteristics. We model these multiple
types of information using object-oriented approach. To
index three kinds of feature sets, three types of index




structures are proposed. The underlying index structure is
the HG-tree. The performance advantages of the HG-tree
make our indexing scheme efficient. The techniques for
processing complex similarity queries are also provided.
These three issues are very important things to construct
the effective and efficient image retrieval system. In the
future, we plan to consider whether the object-oriented data
model is still effective when more complex types of infor-
mation coexist and how the different types of index struc-
tures and query evaluation strategies can improve the re-
trieval performance of the system.
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