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ABSTRACT

Education and training are expeded to change dramaticaly
due to the cmbined impad of the Internet, database, and
multimedia techndogies. However, the distance leaning is
often impeded by the lad of effedive tools and system to
manage and retrieve the lecture contents effedively. This
paper introduces a new approac to redize the distance
learning onthe Web. The gproad involves: (1) The XML
(eXtensible Markup Language)-based semistructured model
not only to represent ledture contents but also to exchange
them on the Web; (2) The technique to build structural
summeries, i.e., schemas, of XML ledure databases. The
structural summaries are useful for browsing the database
structure, formulating queries, building indexes, and ena-
bling query optimization; (3) Index structures to speed up
the seach to find appropriate ledure mntents. Finally, an
overall system architecure for Web-based dstance leaning
is described.
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1. INTRODUCTION

Education and training are expeded to change dramaticaly
due to the cmbined impad of the Internet, database, and
multimedia techndogies. Besides the economic impad —
online education means less traveling, hence lower cost —
the expedation is that the educational process itself will
change radicaly [13]. Video is the most effedive medium
for providing remote and future students with a ledure be-
cause of its expressve power that combines images and
voice Moreover, the aility of recording and subsequently
playing bad live instruction sessons could significantly
enhance the students' leaning effediveness becaise it al-
lows them to review class ledures repeaedly. Unfortu-
nately, however, the benefit of video-based ledure is often
impeded by the fundamental difficulties with information
retrieval: if oneistrying to locate spedfic information on a
video source finding it can be aprocessthat istime @n-
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suming and tedious. In addition, the contents of classlec-
tures are diverse, and the same urse can be given over
and over again with different contents and structures by dif-
ferent instructors. Thus, we cannot conform the ledure @n-
tent to arigid, predefined schema. Three cucial isues that
need to be aldresed are: (1) the representation o ledure
contents in a form that fadlitates retrieval and interadion;
(2) the structural summary of a lecture database that guides
users to browse and query the database; and (3) the index-
ing scheme to expedite the seach.

Browsing and querying in a ledure database for dis-
tance leaning should provide the same ea&e of use & flip-
ping throughthe pages of a bodk and scanning the table-of-
contents and index pages to get ideas of the mntent quickly,
and then gradually focusing on particular chapters or sec-
tions of interest. For a ledure database, this is not as
straightforward as browsing and querying in a book. We
have to identify the chapters, sedions, and subsedions of a
ledure, and crede table-of-contents and index pages for
lecture, both structured and unstructured, so that we can get
an overview and know where to find relevant contents.

The transformation of a simple ledure into a valuable
educational tool requires five steps. First, we partition a
ledure into individual ledure segments by exploiting the
hierarchicd structure of the ledure or book. A lecture seg-
ment consists of a set of ledure notes and any contiguous
portion d avideo clip which constitutes a digital video lec-
ture. Each ledure segment is associated with the system-
wide unique identifier. Second, we abstrad the contents of
lecdure segments with text descriptions, meaningful attrib-
utes, and key images, and organize them into an effedive
structure that fadlitates retrieval and interadion. Third, we
neel todls to aid the user for browsing a ledure database
and formulating queries. Although it may be possble to
manually browse asmall database, in genera forming a
meaningful query is difficult withou knowledge of the da-
tabase structure. Fourth, we index all useful objeds appea-
ing in ledure segments to efficiently locae spedfic ledure
segments of interest. Finally, we neal query optimizaion
techniques to reduce the seach space a&d expedite the
seach sincethere ae numerous query plans for each query.
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Figure 1. Online presentation window

In this paper, the XML-based semistructured model is
introduced for content-based lecure acces It fully sup-
ports XML data and represents ledure mntents without
rigid, fixed schema. Database structure summarization, i.e.,
schema extradion, technique for irregular lecure database
is used to guide users in database browsing and querying.
Various index structures are presented to efficiently locae
not only a specific lecure segment but also a @llection of
semanticdly related ledure segments. The system
architecure for implementing the Web-based dstance
leaning system is presented.

2. VIDEO SEGMENTATION

While avideo clip consists of a sequence of frames, it is not
meaningful to use the individual frames as the units for
video retrieval. Rather, it is advantageous to identify mean-
ingful segments of video to serve s retrieval units. As de-
fined in [12], the fundamental unit of video production is a
shot that consists of a @ntiguous Lquence of video frames.
While the video segmentation based on image processng
techniques automates the process of video parsing, it has
the foll owing problems for distance leaning;

 For avideo clip o a dass ledure, there can be no clea
visual cue for shot change detedion. Therefore, video
segmentation using shot change detedion agorithms
would be difficult.

« Shots do not capture the underlying semantic structure of
a dass ledure, based on which the user may wish to
browse and retrieve the video ledure.

On the ground of above motives, we do not pay spedal
attention to the problem of the video segmentation based on
image processing. Rather, we automaticdly extrad descrip-
tive text information from the instructor’s ledure notes, and
manually describe the necessary semantic video units and
their contextual information. After that, the video ledures

are automaticaly indexed, converted to a Web-realy format,
and made available to end users through the Internet.

A lecture is organized into presentation dides (i.e.,
ledure nates) and video segments. Each dlide aorresponds
to asingle page curse note assumed to be written in XML.
Instructors ledure by showing eledronic course dlides, and
recording of lecturesis expeded to capture the video of live
ledure sessons. In our work, we define avideo shot as the
video segment synchronized with a singe slide. The syn-
chronization of dides with video segments can be eaily
made because instructors are required to explicitly switch
dlides during live lecure sesson. When students access a
particular lecurein a curse, they seethe presentation simi-
lar to Figure 1. By allowing remote or future users to not
just view presentation slides but also to see ad hea the
presenter, the instructor achieves a broader reach and in-
creased productivity and the audience gets a richer experi-
ence that enables them to retain more information and saves
on travel costs. However, the more important things we
need for is to locae and retrieve aparticular pieceof the
video |ecture because watching the whole video is time con-
suming.

3. DATA MODEL

Data modeling deds with the problem of how to represent
the data to fadlitate users acess. To the best of our
knowledge, there have been no efforts to model the ledure
database. Previous work on data models for video data can
be foundin [3, 4, 5, 10, 12, 16, 17, 23, 24, 27]. Most of
ealy reseach effort has been devoted to the shot-based
video segmentation and ead video shot is described using
text descriptions and cinematic atributes. While this ap-
proach automates the video parsing, it ladks the contextual
information between video shots, and thus it is difficult to
describe the structure of the video content. Moreover, it
lacks the flexibility and scdability since the video clips are
segmented into independent shots. These problems are tack-
led by employing additional constructs to model contextual
information. In [5, 10, 23, 27], a higher-level construct
cdled sceneis used to group together those shots that share
some @mmon properties. However, the two-layered scene-
shot structure is not sufficient to represent the rich content
of a dassledure. In[12, 24], instead of representing video
information as independent shots, it divides the video se-
guence into a set of layers or strata. A stratum consists of
the descriptive information such as title, keywords, frame
delimiters, etc. The strata @an be overlapped and nested.
Though the stratification is more general than the scene-
shot structure, it is also nat sufficient to represent the dass
lecure by using a predefined set of attributes. The goproac
of [4] using the hierarchicd Petri-nets focuses on only the
spatio-tempora spedfication of events in video, and thus it
isnat concerned with the content of the classledure. A data
model cdled VideoText [17] employs free text annotation
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on logicd video segments rather than a fixed set of attrib-
utes. However, it lacks the contextual and structural rela-
tionships among the video annotations.

To tackle the problems of existing annotation-based
video data models, we alopt the semistructured data model
[1, 6, 22], spedficdly, XML [26]-based semistructured
model. The motivation to employ the semistructured model
comes from the need to provide the lecure content descrip-
tion with flexibility and dversity. Because the ledure @mn-
tents are diverse and rich, we canot conform the ledure
database to arigid, predefined schema. Moreover, the moti-
vation to fully support XML data is to exchange lecture
data on the Internet. By semistructured data we mean data
that has no absolute schema fixed in advance, and whose
structure may be irregular or incomplete. Like in the stan-
dard model [1, 6, 22] for semistructured data, a lecture da-
tabase is thought of as a labeled direded graph. For exam-
ple, Figure 2 depicts a portion of aledure database @ntain-
ing threeclassledures (two for a database murse and one
for a multimedia ourse). Each node corresponds to an
XML element and can have attributes depicted as snall cir-
cles in Figure 2. Our example database is amost tree
structured because of the hierarchicd nature of the bodk for
lecdure even though the semistructured model permits arbi-
trary graph-structured databases. Each level of our example

lecture database represents the level of content granularity.
For example, we can assume that nodes 2 through 4 are in
the level of book, nodes 5 through 10 are in the level of
chapter, nodes 11 through 20 are in the level of section, and
so on.

Unlike the standard semistructured model, our data
model fully supports the XML data. In other words, it al-
lows us to associate dtributes with graph nades (XML ele-
ments). In our data model we cdl the nodes lecture objects
(LOs) in which the video segments and presentation dides
for ledure ae axciated. An LO can be viewed as a 6-tuple
(PID, OID, a set of video segments, a set of presentation
dlides, a set of sub-elements, a set of attributes). We should
note that the dements and the dtributes attached to LO are
not pre-fixed. Each LO has a unique object identifier (OID),
such as 1 to 24 in Figure 3, and outgoing edges that corre-
spond to its sub-elements. Every LO belongs to a certain
type and the type is identified by a path identifier (PID). In
our model, a type is defined by a path on the extraded
schema graph, which will be described in the next sedion.
Labels are dtached to the edges and they serve & names for
LOs or attributes. Our example database in Figure 2 con-
tains one root LO which represents the Lecture database
and contains three sub-L Os, two Databases and one Mul-
timedia. Database LO 2 has three attribute-value pairs



describing its instructor, textbook, and references, while
Database LO 3 has two attributes prerequisite and room.
Unlike the standard semistructured model, sub-LOs under
an LO in our model are ordered to refled the timing se-
guence of the video segments associated with them. We can
seethat the database structure based on the semistructured
model is irregular since, for example, two Database ob-
jeds (LO 2 and LO 3) have different structures.

4. SUMMARIZING LECTURE DATABASE

Two completely different types of ledure retrieval requests
can be expeded from the end-user:

* Querying: The user retrieves particular ledture objeds for
viewingor reuse.

» Browsing: The user traverses aledure database dongthe
semantic links.

A query processor should respond to both types of retrieval
requests by providing the user with query formulation tools
for querying and optimal starting points for browsing.
When we model a ledure retrieval request as an iterated
sequence of querying and browsing, ead step should ad as
an information filter reducing the search space ad give a
more refined seach spaceto the next step. In a small data-
base, although it may be posdble to browse the whole data-
base, in general it is difficult and tedious to browse alarge
database. It is reasonable to pase aquery at the start by us-
ing some dtributes. However, since our lecture database is
based on the XML-based semistructured mode, i.e, it is
schemaless it needs atod that asgsts users in query formu-
lation by providing the information (i.e., schema) summa-
rizing the database structure. The schema alows users to
browse and query easily through the database. Also, it im-
proves the system performance grealy by enabling to take
advantage of indexes and query optimization.

Figure 3 shows the structural summary of the ledure
database given in Figure 2. A redangle crresponds to an
XML element in the database, and small black circles de-
note XML attributes in the XML element. Every XML ele-
ment of an original database is described exadly oncein the
structural summary, regardless of the number of times it
appears in that database. There is no XML element that
does not appea in the original database. From the structural
summary, a user can interactively query and browse the
graph-based database. Clicking on a redange on the struc-
tural summary expands or collapses LOs. The white redan-
gle indicates that the LO has been expanded and the bladk
redange indicaes that the LO has not. For example, Data-
base and Multimedia LOs have been expanded, while Dy-
namic and Static LOs have nat.

We develop a summarizer that extrads a schema from
an irregular ledure database. DataGuids [14] are @ncise
and acarate summaries of semistructured databases. Unfor-
tunately, however, DataGuides can be very expensive to
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Figure 3. Structural summary of the example database in Figure 2

compute since they require apowerset construct over the
uncerlying database. For a general graph, the dgorithm to
construct a DataGuide can be exponential in space ad time
with resped to the size of the underlying database. Bune-
man et al. [7] constructs database summaries based on the
computation of simulations or bisimulations [15] for which
efficient construction algorithm exists. The size of a data
base summeary based on the simulation is guaranteed to be



(@

t
ST

(b) our schema

vy
SR

(a) adatabase graph

(e) minimal perfed typing
Figure 4. Comparison of database schemas

a most linea in the underlying database size However,
they till have redundancy in edges of the schema graph.
Nestorov et a. [20] developed a tedchnique to extrad
schema based on the gredest fixpoint semantics of monadic
datalog program and the clustering. Although their method
can reduce the size of the schema to a desired size, its run-
ning cost may be excessve because of its complexity of
algorithm. Moreover, since it has to perform clustering to
get a desired schema size, it may be difficult to use this
method in dynamic environments.

We develop a new technique to improve the running
time to build the structural summary of a database. In our
method, the structural summary does not have ay redun-
dancy in nodes and edges in a schema graph. We can best
explain the difference anong our technique, Buneman et
a.'s, DataGuide, and Nestorov et a.’s. Figure 4(a) illus-
trates a database graph DB and 4(b) is our summary of DB.
Figures 4(c), 4(d), 4(e) show Bureman et a.’s <hema
based on smulation, strong DataGuide, and Nestorov et
a. s minimal perfed typing, respedively. We compare the
schemas by their size. DataGuides require apowerset con-
struct over the underlying database, which in the worst case
can be of exporential cost. As you can seein Figure 4(d),
elements 7 and 13are replicaed in nodes in the DataGuide.
The schema based on simulation guarantees its sze, that is,
the size of the schema is a most linea in that of the data-
base. However, as we can seein Figure 4(c), edge a outgo-
ing from the same node s replicated. Figure 4(€) also shows
redundancy in nodes and edges. On the other hand, our da-

tabase schema in Figure 4(b) does not have aty redundancy
in nodes and edges. The mmpadnessof our schema results
in efficiency in query evaluation as well as in database
summarization.

4.1 TheAlgorithm

We define some terminol ogies before proceeding.

Definition 1. A data objectisanode, i.e,, LO, in adatabase
graph.

Definition 2. A target set for apath | is aset of data objeds
that can be readed by traversing a path | in a database
graph.

Definition 3. A schema object is a node in the schema
graph that corresponds to a target set of a path | in a data
base graph.

The schema extradion is easy to implement with our ago-
rithm. The root data objed bemmes a root schema objed.
In a depth-first fashion, we extrad all child schema objeds
reatable by all unique paths outgoing from a schema ob-
jed. Each time we encounter a new target set for a unique
path |, we aeate anew schema objea s. If we read a
schema objed s via apath | and a data objed o is arealy
included in the schema objed s with a different path m,
rather than creaing a new schema objed we instead add an
edge | to the schema objed s. The dgorithm is gedfied as
follows.

Algorithm ExtractSchema(o)
/l Input: root oid o of adatabase
// Output: database schema's

s := CreaeSchemaObjed();
Insert{o} tos;
ReaursiveM ake(s);

}

Algorithm RecursiveM ake(s)

Let She a set of current target setsunder s
Let S denote acertain target set included in S
For ead urique label |; outgoing from s{
0 := target set reatable by I;;
If (0 and § have data objedsin common) {
Add an edge |; from s to the schema objed corre-
spondingto S;
§ =o00S;

Else{
s;:= CreaeSchemaObjed();
Insert s, to s
Addan edgel; fromsto s,
RecursiveM ake(sy);

}



5. INDEXING

In traditional databases, an index is creaed on an attribute
in order to locate objects for particular attributes quickly.
Despite the cost of maintenance and the alded storage, in-
dexes are useful and integral part of al database systems. In
ledure databases with XML-based semistructured data
model, such a value index alone used in traditional data-
bases is not sufficient since we have to efficiently traverse
the database graph. We need several index structures that
are useful for finding relevant objeds, specific edges, and
paths within the database. Since the accssto the lecture
databases tends to be real-intensive, maintaining extensive
index structures to speed up query processngis justified.

In this paper, we propose two new index structures
cdled P-index (path index) and LPC-index (local polar
coordinate index) to index paths on the database graph and
images in the ledure video, respedively. Example queries
used in this paper are formulated in the query language
similar to the Lorel query language [2] which is an exten-
sion of OQL [8]. The example queries are exeauted over the
example ledure database in Figure 2.

5.1 P-index

Here we introduce the P-index to index the path on the da-
tabase graph with some motivating examples.

5.1.1 Motivating Examples

Example 1. Retrieve ledure objeds whose title is “ Spatial
Indexing.”

Select  x
Where = .x.title="Spatial Indexing’

The wildcard “*” means any path of length 0 or more. For
this type of value queries, we can consider the B*-tree [11]
index structure for the dtribute title and can get the result of
LO 24. However, if the structural and contextua relation-
ships between lecture objeds are not provided together with
the target ledure objed, potentially useful results may not
be found only by a simple value-matching search. For ex-
ample, the ledurer may assume that the reader would not
read the ledure objed unless he had read ealier ledure
objeds. As aresult, the reader may not understand the mn-
text if he does not read ealier ledure objeds. Thus it is
desirable to output the query result as follows  that the
reader can traverse the graph hierarchy if he wants:

* Lecture (LO 1)
¢ Database (LO 2)
¢ Indexing (LO 5)
+ Dynamic (LO 11)
* R-tree (LO 24)

Example 2: Retrieve Database ledure objeds in which
thetitleis“ Spatial Indexing.”

Select x
From Database x
Where x.x.title = “ Spatial Indexing’

This type of queries could be very expensive without ap-
propriate indexes becaise we have to traverse badkward to
every Database objed &fter identifying ledure objects
whose title is “Spatial Indexing.” We @n also employ a
top-down exeaution strategy in which we find all Database
lecure objeds and begin at them and evaluate every path in
a forward manner to chedk if their descendants title is
“Spatial Indexing” It should be obvious that this query
exeadution is also costly sincewe have to traverse every path
from Database objeds. To suppart this type of queries, we
provide the P-index that stores all objeds aong the badk-
ward path from the qualifying objeds to the roct of the da-
tabase graph.

5.1.2 P-Index Structure

When we @nsider the indexing of graph paths, it should be
obvious that data models with a more relaxed typing para
digm have to impose user-spedfied and dynamicaly con-
trolled type nstraints on attributes and/or paths that are
indexed. We impose types on the labeled paths on the struc-
tural summary graph of the database. For example, consid-
ering the path Database.Indexing.Dynamic.R-tree, four
types are imposed: Database, Database.Indexing, Data-
base.Indexing.Dynamic, and Data-
base.Indexing.Dynamic.R-tree. Each type (or path) is
uniquely identified by its path identifier (PID).

The structure of the P-index is based on the B'-tree.
The P-index consists of internal and led nodes as in other
dynamic index structures. The internal node of the P-index
has the same structure & that of the B*-tree. The led node
has a format different from that of an internal node. It con-
sists of f index entries and ead index entry has a form
shown in Figure 5, where f is the fanout of a led node. For
path indexing, the P-tree maintains in aled node the lecure
objeds on the label paths from the qualifying objeds to the
root. If the size of a led node entry excedls a page size,
additional overflow pages are dlocaed. The P-index is

key overflow no. of PID. | MO of
vaue | pagepointer | PIDs 1l oIbs

{OIDy,...,OIDy} | ... | PID,

no. of

oiDs | {00, OID}

Figure 5. An entry of aleaf nocke of the P-index



somewhat similar to the dasshierarchy indexing [18] used
in objed-oriented databases. The dasshierarchy indexing
maintains one index on a cmmon attribute for a hierarchy
of classes. On the other hand, there is no concept of a wm-
mon attribute in the irregular semistructured database. In-
stead, the P-index maintains one index on every path from
the qualifying objeds to theroat.

5.2 LPC-index

Users can query a database to find ledure objeds whose
video segments include an image similar to a user-spedfied
image.

Example 3: Retrieve ledure objeds including a video
segment whase key frame is smilar to a given
image P.

Select x
Where x.* .keyframe similarto P

Image query is performed over objeds that have key
frame image. The main isale in the image indexing is the
curse of dimensionality [21], i.e., the seach performance
drasticdly deteriorates if the dimensionality (i.e., the num-
ber of feaure dements of an image) goes high (e.g., larger
than 10). In high dimensional data space the performance
of conventional index structures degenerates to being worse
than that of the brute-force linea scan that compares the
guery object to ead dbject sequentially. We propose the
local polar coordinate index (LPC-index) for indexing im-
ages with high-dimensional feaure vedor. The perform-
ance of the LPC-index has been verified in high-
dimensiona data space(e.g., > 100).

The LPC-index employs a filter-based approach in
which fegure vedors are represented as compad approxi-
mations to the original vedors and by first scanning these
smaller approximations, only a small fradion of the vedors
are visited. The basic ideaof the LPC-index is as follows:
First, the LPC-index assgns the same number of bits b to
ead dimension of the feaure vedor and dvides the whole
data spaceinto 2 cdls, where d is the number of dimen-
sions. Sewond, the LPC-index approximates the vedor p
using the polar coordinates (r, 8) within the cél in which p
lies. Asillustrated in Figure 5, the locd origin O of eat
cdl is determined by the lower left corner of the cdl. The
radius r is computed by the distance between the locd ori-
gin O and the vedor p. The angle 6 is computed by the an-
gle between the vedor p and the diagona from the locd
origin to the oppasite mrner. As a result of this approxima-
tion, the vector pis represented by thetripleta=<c, r, 0>,
where ¢, r, 6 denate the goproximation cdl, the radius, and
the ange between p and the main diagonal, respedively.
The complete LPC-index is an array of approximations for
all vectors. In spite of taking a small amount of information
to represent the locd polar coordinates, this information

significantly enhances the discriminatory power of the g-
proximation in high dmensions.

When seaching for the nearest neightor image, the
entire gproximation file is sanned and lower bound (dpmin)
and upper bound (dmax) 0N the distance from the image vec-
tor p to the query vedor q are determined such that

dmin < LZ(p: Q) < dmax
where L, is the Euclidean distance The dyin and dy, are
computed as foll ows:

dvin- = [pP+1qF-2]pllq|cos|6; - 6]
Orad = [PF+1qF=2]p]||qg|cos(8:+62)

where 6, is the angle between the vedor p and the diagonal
of the cél in which p lies and 6, is the ange between the
vedor g and the diagona of the cél in which p lies. As-
sume 9 is the smallest upper bound found so far. If an ap-
proximation is encourtered such that its lower bound ex-
cedls 9, the arresponding objed can be diminated since &
least one better candidate exists. Analogowsly, we can de-
fine afiltering step when the k nearest neighbors must be
retrieved. After the filtering step, a small set of candidates
remain. These candidates are then visited in increasing or-
der of their lower bound on the distanceto the query objed
g, and the acarate distance to q is determined. However,
not al candidates must be acessed. Rather, if a lower
bound is encountered that exceeds the k-th neaest distance
seen <o far, the LPC-index stops.

Figure 7 shows the result of elapsed time experiments
of the 10-neaest neighbor (NN) seach on 1,000,000 ob-
jedsfor the linear can, the VA-file [25], and the LPC-index.
The Scan agorithm is a simple linea scan of the vedors
themselves, maintaining a ranked list of the 10 NN vedors
encountered so far. The VA-fileisthe only NN index struc-
ture that results in exad results and outperforms the linea
scan. In the synthetic (random and skewed) data set, the
LPC-index outperforms the VA-file and the Scan by a fac-
tor of 2 and 3 m the average, respedively. In red data set,
the performance of the VA-file deaeases dragticdly as
soon as its vedor seledivity falls below a cetain threshold
point. In a 256-dimensional red image set, the performance
of the VA-file using 8 bits per dimension for a cél degener-
ates close to that of the Scan. Even in thisworst case of data
distributions, the LPC-index shows a performance im-
provement over the Scan, refleding the reduction of data &
much as possible by approximation.

6. OVERALL SYSTEM ARCHITECTURE

We ae arrently developing a Web-based information
system for distance leaning cdled COVA (COntent-based
Video Accesy within our CyberUniversity projed. The
initial system was entirely written in Java languege. The
user can accessthe ledure database from anywhere using a
popuar Web browser. The system includes sven major
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components for text procesing and annotation, video
processng and annotation, structural summarizaion,
indexing, storage management, browse/query processng,
and streaming media delivery (seeFigure 8).

Text Processing and Annotation

The text procesing automaticdly extracts the titles, free
text, and keywords from the instructor’s presentation slides
and attaches them to ead LO. Using the text anndtator, we
can attach additional descriptive attributes to ead VO, and
link and group related L Os together so that the classledure
has contextual information.

Video Processing and Annotation

The video processing and annotation deteds meaningful
units of video and charaterizes these units. Althoughwe do
not focus on this iswe in this paper, in fad, our system is
ready to incorporate existing image and video processng
techniques to support visual video queryingand browsing.

Structural Summarization

The structura summarizer builds a schema of a
semistructured database to provide the benefits of the
schema. Users exploit the structural summaries for
browsing database structure and formulating queries. The
indexing scheme and query processor of COVA rely on the
structural summaries to build indexes and to devise dficient
plans for computing query results, respedively.
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Indexing path expresson. By interseding the sets of objeds resulted

Since the darateristics of database gplicaions such as
distance leaning and training tend to be read-intensive, the
extensve use of index structures to speal up query
processsng is justified. COVA currently employs four
index structures. B*-tree, inverted-file index, LPC-index,
and P-index.

Query Processing and Browsing

In graph-based data model, there ae many ways to exeaute
asingle query. The optimal query plan depends nat only on
the values in the database but also on the shape of the graph
containing the data. Threetypes of query exeaution strate-
gies are general: top-down, bottom-up, and hybrid strategies.
The top-down strategy begins at the top dbjed and evalu-
ates the From clause by processng ead smple path ex-
presson in a forward manner. This strategy results in a
depth-first traversal of the graph following edges that ap-
pea in the path expressons. The bottom-up strategy first
identifies al objeds that satisfy the Where clause. Once
we have an objed satisfying the predicae, we traverse
badkwards through the data, going from child to parent,
matching in reverse the path expressons appeaing in the
Where and then in the From. The hybrid strategy operates
both top-down and bottom-up, meding in the middle of a

from both strategies we find the result of the query.

One important thing in ou browser/query procesor is
the user interface that integrates the navigational objed
browsing and declarative querying. Web users are familiar
with spedfying asimple query to begin a seach and further
exploring and refining the results. In other words, it repre-
sents querying as an extension of browsing.

Storage M anager

The storage manager is concerned with the dlocdion and
clustering of data objeds and indexes on disk, and the
movement of data between disk and main memory. One of
the major issues is how to incorporate the semantics of the
semistructured model in the storage manager. In most
graph-based data model, objects are identified by their in-
coming labels. This basic assumption is used by the storage
manager, which clusters a database by grouping together
objeds with identica incoming labels on disk. COVA aso
employs the segmented-page indexing (SP-indexing)
scheme [9] for clustering of indexes. The SP-indexing
scheme uses two kinds of 1/0 unit: page for random disk
accesss and segment for sequential disk accesses. The SP-
indexing avoids that the related index nodes are scatered
widely on the disk by storing them contiguously within a
segment. It also provides a compromise between optimal



index node dustering and excessve full index reorganiza-
tion overhead.

Streaming M edia Server

The streaming media server is responsible for delivering the
video at the exad data rate ssociated with the compressed
audio and \video streams, and it responds to the feedback
from the dient.

7. CONCLUSIONS

The wide spread adoption of Internet streaming video and
the advances of multimedia and database techndogies pre-
sent a new opportunity of education and training. We pre-
sented a new approach to the distance learning based on the
XML-based semistructured model. By employing this
model, we could provide the lecure contents with flexibil-
ity and dversity as well as exchange them conveniently on
the Internet. Based on this model, we described the tech-
nigue to extract schemas from a graph-based database. In
irreguar semistructured database, without schema, it is dif-
ficult to query and browse the database, to construct in-
dexes, and to perform query optimization. Two index struc-
tures for path queries and image queries were aso intro-
duced to speed up the seach. Real-intensive ledure
database applications justify the extensive use of index
structures to speed up the query processsng. Finally, we
presented the overall system architedure for implementing
the video-based dstance leaning system. We believe that
our system will provide avaluable education and training
tool for remote or future users.
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