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ABSTRACT 
 

Education and training are expected to change dramatically 
due to the combined impact of the Internet, database, and 
multimedia technologies. However, the distance learning is 
often impeded by the lack of effective tools and system to 
manage and retrieve the lecture contents effectively. This 
paper introduces a new approach to realize the distance 
learning on the Web. The approach involves: (1) The XML 
(eXtensible Markup Language)-based semistructured model 
not only to represent lecture contents but also to exchange 
them on the Web; (2) The technique to build structural 
summaries, i.e., schemas, of XML lecture databases. The 
structural summaries are useful for browsing the database 
structure, formulating queries, building indexes, and ena-
bling query optimization; (3) Index structures to speed up 
the search to find appropriate lecture contents. Finally, an 
overall system architecture for Web-based distance learning 
is described. 
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1. INTRODUCTION 
 

Education and training are expected to change dramatically 
due to the combined impact of the Internet, database, and 
multimedia technologies. Besides the economic impact – 
online education means less traveling, hence lower cost – 
the expectation is that the educational process itself will 
change radically [13]. Video is the most effective medium 
for providing remote and future students with a lecture be-
cause of its expressive power that combines images and 
voice. Moreover, the ability of recording and subsequently 
playing back live instruction sessions could significantly 
enhance the students’  learning effectiveness because it al-
lows them to review class lectures repeatedly. Unfortu-
nately, however, the benefit of video-based lecture is often 
impeded by the fundamental diff iculties with information 
retrieval: if one is trying to locate specific information on a 
video source, finding it can be a process that is time con-

suming and tedious. In addition, the contents of class lec-
tures are diverse, and the same course can be given over 
and over again with different contents and structures by dif-
ferent instructors. Thus, we cannot conform the lecture con-
tent to a rigid, predefined schema. Three crucial issues that 
need to be addressed are: (1) the representation of lecture 
contents in a form that facilitates retrieval and interaction; 
(2) the structural summary of a lecture database that guides 
users to browse and query the database; and (3) the index-
ing scheme to expedite the search. 

Browsing and querying in a lecture database for dis-
tance learning should provide the same ease of use as flip-
ping through the pages of a book and scanning the table-of-
contents and index pages to get ideas of the content quickly, 
and then gradually focusing on particular chapters or sec-
tions of interest. For a lecture database, this is not as 
straightforward as browsing and querying in a book. We 
have to identify the chapters, sections, and subsections of a 
lecture, and create table-of-contents and index pages for 
lecture, both structured and unstructured, so that we can get 
an overview and know where to find relevant contents.   

The transformation of a simple lecture into a valuable 
educational tool requires five steps. First, we partition a 
lecture into individual lecture segments by exploiting the 
hierarchical structure of the lecture or book. A lecture seg-
ment consists of a set of lecture notes and any contiguous 
portion of a video clip which constitutes a digital video lec-
ture. Each lecture segment is associated with the system-
wide unique identifier. Second, we abstract the contents of 
lecture segments with text descriptions, meaningful attrib-
utes, and key images, and organize them into an effective 
structure that facilitates retrieval and interaction. Third, we 
need tools to aid the user for browsing a lecture database 
and formulating queries. Although it may be possible to 
manually browse a small database, in general forming a 
meaningful query is difficult without knowledge of the da-
tabase structure. Fourth, we index all useful objects appear-
ing in lecture segments to eff iciently locate specific lecture 
segments of interest. Finally, we need query optimization 
techniques to reduce the search space and expedite the 
search since there are numerous query plans for each query.  
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In this paper, the XML-based semistructured model is 
introduced for content-based lecture access. It fully sup-
ports XML data and represents lecture contents without 
rigid, fixed schema. Database structure summarization, i.e., 
schema extraction, technique for irregular lecture database 
is used to guide users in database browsing and querying. 
Various index structures are presented to efficiently locate 
not only a specific lecture segment but also a collection of 
semantically related lecture segments. The system 
architecture for implementing the Web-based distance 
learning system is presented. 
 

2. VIDEO SEGMENTATION 
 

While a video clip consists of a sequence of frames, it is not 
meaningful to use the individual frames as the units for 
video retrieval. Rather, it is advantageous to identify mean-
ingful segments of video to serve as retrieval units. As de-
fined in [12], the fundamental unit of video production is a 
shot that consists of a contiguous sequence of video frames. 
While the video segmentation based on image processing 
techniques automates the process of video parsing, it has 
the following problems for distance learning: 
 

• For a video clip of a class lecture, there can be no clear 
visual cue for shot change detection. Therefore, video 
segmentation using shot change detection algorithms 
would be difficult. 

• Shots do not capture the underlying semantic structure of 
a class lecture, based on which the user may wish to 
browse and retrieve the video lecture.  

 

On the ground of above motives, we do not pay special 
attention to the problem of the video segmentation based on 
image processing. Rather, we automatically extract descrip-
tive text information from the instructor’s lecture notes, and 
manually describe the necessary semantic video units and 
their contextual information. After that, the video lectures 

are automatically indexed, converted to a Web-ready format, 
and made available to end users through the Internet. 

A lecture is organized into presentation slides (i.e., 
lecture notes) and video segments. Each slide corresponds 
to a single page course note assumed to be written in XML. 
Instructors lecture by showing electronic course slides, and 
recording of lectures is expected to capture the video of live 
lecture sessions. In our work, we define a video shot as the 
video segment synchronized with a single slide. The syn-
chronization of slides with video segments can be easily 
made because instructors are required to explicitly switch 
slides during live lecture session. When students access a 
particular lecture in a course, they see the presentation simi-
lar to Figure 1. By allowing remote or future users to not 
just view presentation slides but also to see and hear the 
presenter, the instructor achieves a broader reach and in-
creased productivity and the audience gets a richer experi-
ence that enables them to retain more information and saves 
on travel costs. However, the more important things we 
need for is to locate and retrieve a particular piece of the 
video lecture because watching the whole video is time con-
suming. 
 
3. DATA MODEL 
 

Data modeling deals with the problem of how to represent 
the data to facil itate users’  access. To the best of our 
knowledge, there have been no efforts to model the lecture 
database. Previous work on data models for video data can 
be found in [3, 4, 5, 10, 12, 16, 17, 23, 24, 27]. Most of 
early research effort has been devoted to the shot-based 
video segmentation and each video shot is described using 
text descriptions and cinematic attributes. While this ap-
proach automates the video parsing, it lacks the contextual 
information between video shots, and thus it is difficult to 
describe the structure of the video content. Moreover, it 
lacks the flexibili ty and scalability since the video clips are 
segmented into independent shots. These problems are tack-
led by employing additional constructs to model contextual 
information. In [5, 10, 23, 27], a higher-level construct 
called scene is used to group together those shots that share 
some common properties. However, the two-layered scene-
shot structure is not sufficient to represent the rich content 
of a class lecture. In [12, 24], instead of representing video 
information as independent shots, it divides the video se-
quence into a set of layers or strata. A stratum consists of 
the descriptive information such as title, keywords, frame 
delimiters, etc. The strata can be overlapped and nested. 
Though the stratification is more general than the scene-
shot structure, it is also not suff icient to represent the class 
lecture by using a predefined set of attributes. The approach 
of [4] using the hierarchical Petri-nets focuses on only the 
spatio-temporal specification of events in video, and thus it 
is not concerned with the content of the class lecture. A data 
model called VideoText [17] employs free text annotation 

Figure 1.  Online presentation window 
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on logical video segments rather than a fixed set of attrib-
utes. However, it lacks the contextual and structural rela-
tionships among the video annotations.  

To tackle the problems of existing annotation-based 
video data models, we adopt the semistructured data model 
[1, 6, 22], specifically, XML [26]-based semistructured 
model. The motivation to employ the semistructured model 
comes from the need to provide the lecture content descrip-
tion with flexibil ity and diversity. Because the lecture con-
tents are diverse and rich, we cannot conform the lecture 
database to a rigid, predefined schema. Moreover, the moti-
vation to fully support XML data is to exchange lecture 
data on the Internet. By semistructured data we mean data 
that has no absolute schema fixed in advance, and whose 
structure may be irregular or incomplete. Like in the stan-
dard model [1, 6, 22] for semistructured data, a lecture da-
tabase is thought of as a labeled directed graph. For exam-
ple, Figure 2 depicts a portion of a lecture database contain-
ing three class lectures (two for a database course and one 
for a multimedia course). Each node corresponds to an 
XML element and can have attributes depicted as small cir-
cles in Figure 2. Our example database is almost tree-
structured because of the hierarchical nature of the book for 
lecture even though the semistructured model permits arbi-
trary graph-structured databases. Each level of our example 

lecture database represents the level of content granularity. 
For example, we can assume that nodes 2 through 4 are in 
the level of book, nodes 5 through 10 are in the level of 
chapter, nodes 11 through 20 are in the level of section, and 
so on. 

Unlike the standard semistructured model, our data 
model fully supports the XML data. In other words, it al-
lows us to associate attributes with graph nodes (XML ele-
ments). In our data model we call the nodes lecture objects 
(LOs) in which the video segments and presentation slides 
for lecture are associated. An LO can be viewed as a 6-tuple 
(PID, OID, a set of video segments, a set of presentation 
slides, a set of sub-elements, a set of attributes). We should 
note that the elements and the attributes attached to LO are 
not pre-fixed. Each LO has a unique object identifier (OID), 
such as 1 to 24 in Figure 3, and outgoing edges that corre-
spond to its sub-elements. Every LO belongs to a certain 
type and the type is identified by a path identifier (PID). In 
our model, a type is defined by a path on the extracted 
schema graph, which will be described in the next section. 
Labels are attached to the edges and they serve as names for 
LOs or attributes. Our example database in Figure 2 con-
tains one root LO which represents the Lecture database 
and contains three sub-LOs, two Databases and one Mul-
timedia. Database LO 2 has three attribute-value pairs 

        Database              Database        Multimedia 
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Figure 2.  An example class lecture video database (Some nodes are omitted and only a few values of attributes 
are shown in the diagram) 
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describing its instructor, textbook, and references, while 
Database LO 3 has two attributes prerequisite and room. 
Unlike the standard semistructured model, sub-LOs under 
an LO in our model are ordered to reflect the timing se-
quence of the video segments associated with them. We can 
see that the database structure based on the semistructured 
model is irregular since, for example, two Database ob-
jects (LO 2 and LO 3) have different structures. 
 
4. SUMMARIZING LECTURE DATABASE 
 

Two completely different types of lecture retrieval requests 
can be expected from the end-user: 
 

• Querying: The user retrieves particular lecture objects for 
viewing or reuse.  

• Browsing: The user traverses a lecture database along the 
semantic links. 

 

A query processor should respond to both types of retrieval 
requests by providing the user with query formulation tools 
for querying and optimal starting points for browsing. 
When we model a lecture retrieval request as an iterated 
sequence of querying and browsing, each step should act as 
an information filter reducing the search space and give a 
more refined search space to the next step. In a small data-
base, although it may be possible to browse the whole data-
base, in general it is difficult and tedious to browse a large 
database. It is reasonable to pose a query at the start by us-
ing some attributes. However, since our lecture database is 
based on the XML-based semistructured model, i.e., it is 
schemaless, it needs a tool that assists users in query formu-
lation by providing the information (i.e., schema) summa-
rizing the database structure. The schema allows users to 
browse and query easily through the database. Also, it im-
proves the system performance greatly by enabling to take 
advantage of indexes and query optimization.  

Figure 3 shows the structural summary of the lecture 
database given in Figure 2. A rectangle corresponds to an 
XML element in the database, and small black circles de-
note XML attributes in the XML element. Every XML ele-
ment of an original database is described exactly once in the 
structural summary, regardless of the number of times it 
appears in that database. There is no XML element that 
does not appear in the original database. From the structural 
summary, a user can interactively query and browse the 
graph-based database. Clicking on a rectangle on the struc-
tural summary expands or collapses LOs. The white rectan-
gle indicates that the LO has been expanded and the black 
rectangle indicates that the LO has not. For example, Data-
base and Multimedia LOs have been expanded, while Dy-
namic and Static LOs have not. 

We develop a summarizer that extracts a schema from 
an irregular lecture database. DataGuids [14] are concise 
and accurate summaries of semistructured databases. Unfor-
tunately, however, DataGuides can be very expensive to 

compute since they require a powerset construct over the 
underlying database. For a general graph, the algorithm to 
construct a DataGuide can be exponential in space and time 
with respect to the size of the underlying database. Bune-
man et al. [7] constructs database summaries based on the 
computation of simulations or bisimulations [15] for which 
eff icient construction algorithm exists. The size of a data-
base summary based on the simulation is guaranteed to be 
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 Figure 3. Structural summary of the example database in Figure 2 
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at most linear in the underlying database size. However, 
they still have redundancy in edges of the schema graph. 
Nestorov et al. [20] developed a technique to extract 
schema based on the greatest fixpoint semantics of monadic 
datalog program and the clustering. Although their method 
can reduce the size of the schema to a desired size, its run-
ning cost may be excessive because of its complexity of 
algorithm. Moreover, since it has to perform clustering to 
get a desired schema size, it may be difficult to use this 
method in dynamic environments.  

We develop a new technique to improve the running 
time to build the structural summary of a database. In our 
method, the structural summary does not have any redun-
dancy in nodes and edges in a schema graph. We can best 
explain the difference among our technique, Buneman et 
al.’s, DataGuide, and Nestorov et al.’s. Figure 4(a) illus-
trates a database graph DB and 4(b) is our summary of DB. 
Figures 4(c), 4(d), 4(e) show Buneman et al.’s schema 
based on simulation, strong DataGuide, and Nestorov et 
al.’s minimal perfect typing, respectively. We compare the 
schemas by their size. DataGuides require a powerset con-
struct over the underlying database, which in the worst case 
can be of exponential cost. As you can see in Figure 4(d), 
elements 7 and 13 are replicated in nodes in the DataGuide. 
The schema based on simulation guarantees its size, that is, 
the size of the schema is at most linear in that of the data-
base. However, as we can see in Figure 4(c), edge a outgo-
ing from the same node is replicated. Figure 4(e) also shows 
redundancy in nodes and edges. On the other hand, our da-

tabase schema in Figure 4(b) does not have any redundancy 
in nodes and edges. The compactness of our schema results 
in eff iciency in query evaluation as well as in database 
summarization.  
 

4.1 The Algorithm 
 

We define some terminologies before proceeding. 
 

Definition 1. A data object is a node, i.e., LO, in a database 
graph. 
 

Definition 2. A target set for a path l is a set of data objects 
that can be reached by traversing a path l in a database 
graph. 
 

Definition 3. A schema object is a node in the schema 
graph that corresponds to a target set of a path l in a data-
base graph. 
 

The schema extraction is easy to implement with our algo-
rithm. The root data object becomes a root schema object. 
In a depth-first fashion, we extract all child schema objects 
reachable by all unique paths outgoing from a schema ob-
ject. Each time we encounter a new target set for a unique 
path l, we create a new schema object s. If we reach a 
schema object s via a path l and a data object o is already 
included in the schema object s with a different path m, 
rather than creating a new schema object we instead add an 
edge l to the schema object s. The algorithm is specified as 
follows. 

 

Algorithm ExtractSchema(o) 
// Input: root oid o of a database 
// Output: database schema s 
{  
   s := CreateSchemaObject(); 
   Insert { o} to s; 
   RecursiveMake(s); 
}  
 

Algorithm RecursiveMake(s) 
{  
   Let S be a set of current target sets under s; 

Let Sj denote a certain target set included in S; 
     For each unique label li outgoing from s {  

o := target set reachable by li; 
If (o and Sj have data objects in common) {  

Add an edge li from s to the schema object corre-
sponding to Sj; 
Sj  :=  o ∪ Sj; 

}  
       Else {  
            s2:= CreateSchemaObject(); 
           Insert s2 to s; 
             Add an edge li from s to s2;   

RecursiveMake(s2); 
}  

}  
}  

1 

2 3 4 6 5 

t 
t t 

t 

7 8 9 10 11 12 13 

a a a a a b b d c 

t t 
1 

2 3 4 5 6 

7 8 10 12 13 11 9 

a b c d 

t 
1 

2 3 4 5 6 

7 8 10 12 13 11 9 

a 
b c d 

7 13 

t 
1 

2 3 4 5 6 

7 13 11 9 

a 
a c d 

8 10 12 

b 

 (c) schema by simulation                     (d) strong DataGuide 

 

(a) a database graph                         (b) our schema 

1 

2  6 

8 10 12 

4 3 4 5 

t t t 

7  13 

3 

9 11 

a  a c d 

t 

(e) minimal perfect typing 

Figure 4. Comparison of database schemas  

b 



 6 

5. INDEXING 
 

In traditional databases, an index is created on an attribute 
in order to locate objects for particular attributes quickly. 
Despite the cost of maintenance and the added storage, in-
dexes are useful and integral part of all database systems. In 
lecture databases with XML-based semistructured data 
model, such a value index alone used in traditional data-
bases is not suff icient since we have to eff iciently traverse 
the database graph. We need several index structures that 
are useful for finding relevant objects, specific edges, and 
paths within the database. Since the access to the lecture 
databases tends to be read-intensive, maintaining extensive 
index structures to speed up query processing is justified. 

In this paper, we propose two new index structures 
called P-index (path index) and LPC-index (local polar 
coordinate index) to index paths on the database graph and 
images in the lecture video, respectively. Example queries 
used in this paper are formulated in the query language 
similar to the Lorel query language [2] which is an exten-
sion of OQL [8]. The example queries are executed over the 
example lecture database in Figure 2.  

 
5.1 P-index 
 

Here we introduce the P-index to index the path on the da-
tabase graph with some motivating examples. 
 
5.1.1   Motivating Examples 
 

Example 1: Retrieve lecture objects whose title is “Spatial 
Indexing.”  

 

Select    x 
Where *.x.title = “Spatial Indexing”  
 

The wildcard “*”  means any path of length 0 or more. For 
this type of value queries, we can consider the B+-tree [11] 
index structure for the attribute title and can get the result of 
LO 24. However, if the structural and contextual relation-
ships between lecture objects are not provided together with 
the target lecture object, potentially useful results may not 
be found only by a simple value-matching search. For ex-
ample, the lecturer may assume that the reader would not 
read the lecture object unless he had read earlier lecture 
objects. As a result, the reader may not understand the con-
text if he does not read earlier lecture objects. Thus it is 
desirable to output the query result as follows so that the 
reader can traverse the graph hierarchy if he wants: 
 

�  Lecture (LO 1) 
            �  Database (LO 2) 
               �  Indexing (LO 5) 
                  �  Dynamic (LO 11) 
                     �  R-tree (LO 24) 
 

Example 2: Retrieve Database lecture objects in which 
the title is “Spatial Indexing.”  

  

Select   x 
From   Database x 
Where  x.*.title = “Spatial Indexing”   
 

This type of queries could be very expensive without ap-
propriate indexes because we have to traverse backward to 
every Database object after identifying lecture objects 
whose title is “Spatial Indexing.”  We can also employ a 
top-down execution strategy in which we find all Database 
lecture objects and begin at them and evaluate every path in 
a forward manner to check if their descendants’  title is 
“Spatial Indexing.”  It should be obvious that this query 
execution is also costly since we have to traverse every path 
from Database objects. To support this type of queries, we 
provide the P-index that stores all objects along the back-
ward path from the quali fying objects to the root of the da-
tabase graph. 
 
5.1.2   P-Index Structure 
 

When we consider the indexing of graph paths, it should be 
obvious that data models with a more relaxed typing para-
digm have to impose user-specified and dynamically con-
trolled type constraints on attributes and/or paths that are 
indexed. We impose types on the labeled paths on the struc-
tural summary graph of the database. For example, consid-
ering the path Database.Indexing.Dynamic.R-tree, four 
types are imposed: Database, Database.Indexing, Data-
base.Indexing.Dynamic, and Data-
base.Indexing.Dynamic.R-tree. Each type (or path) is 
uniquely identified by its path identifier (PID).  

The structure of the P-index is based on the B+-tree. 
The P-index consists of internal and leaf nodes as in other 
dynamic index structures. The internal node of the P-index 
has the same structure as that of the B+-tree. The leaf node 
has a format different from that of an internal node. It con-
sists of f index entries and each index entry has a form 
shown in Figure 5, where f is the fanout of a leaf node. For 
path indexing, the P-tree maintains in a leaf node the lecture 
objects on the label paths from the qualifying objects to the 
root. If the size of a leaf node entry exceeds a page size, 
additional overflow pages are allocated. The P-index is 

key 
value 

overflow 
page pointer 

no. of 
PIDs 

PID1 
no. of 
OIDs 

{ OID11,…, OID1i}  … PIDn 
no. of 
OIDs 

{ OIDn1,…, OIDnk}  

 

Figure 5. An entry of a leaf node of the P-index 
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somewhat similar to the class-hierarchy indexing [18] used 
in object-oriented databases. The class-hierarchy indexing 
maintains one index on a common attribute for a hierarchy 
of classes. On the other hand, there is no concept of a com-
mon attribute in the irregular semistructured database. In-
stead, the P-index maintains one index on every path from 
the qualifying objects to the root. 
 
5.2 LPC-index 
 

Users can query a database to find lecture objects whose 
video segments include an image similar to a user-specified 
image.  
 

Example 3:  Retrieve lecture objects including a video 
segment whose key frame is similar to a given 
image P.   

 

Select   x 
Where  x.*.keyframe similarto P  
 

Image query is performed over objects that have key 
frame image. The main issue in the image indexing is the 
curse of dimensionality [21], i.e., the search performance 
drastically deteriorates if the dimensionality (i.e., the num-
ber of feature elements of an image) goes high (e.g., larger 
than 10). In high dimensional data space, the performance 
of conventional index structures degenerates to being worse 
than that of the brute-force linear scan that compares the 
query object to each object sequentially. We propose the 
local polar coordinate index (LPC-index) for indexing im-
ages with high-dimensional feature vector. The perform-
ance of the LPC-index has been verified in high-
dimensional data space (e.g., > 100).  

The LPC-index employs a filter-based approach in 
which feature vectors are represented as compact approxi-
mations to the original vectors and by first scanning these 
smaller approximations, only a small fraction of the vectors 
are visited. The basic idea of the LPC-index is as follows: 
First, the LPC-index assigns the same number of bits b to 
each dimension of the feature vector and divides the whole 
data space into 2bd cells, where d is the number of dimen-
sions. Second, the LPC-index approximates the vector p 
using the polar coordinates (r, θ) within the cell in which p 
lies. As illustrated in Figure 5, the local origin O of each 
cell is determined by the lower left corner of the cell . The 
radius r is computed by the distance between the local ori-
gin O and the vector p. The angle θ is computed by the an-
gle between the vector p and the diagonal from the local 
origin to the opposite corner. As a result of this approxima-
tion, the vector p is represented by the triplet a = < c, r, θ >, 
where c, r, θ denote the approximation cell, the radius, and 
the angle between p and the main diagonal, respectively. 
The complete LPC-index is an array of approximations for 
all vectors. In spite of taking a small amount of information 
to represent the local polar coordinates, this information 

significantly enhances the discriminatory power of the ap-
proximation in high dimensions.  

When searching for the nearest neighbor image, the 
entire approximation file is scanned and lower bound (dmin) 
and upper bound (dmax) on the distance from the image vec-
tor p to the query vector q are determined such that 
 

dmin  ≤  L2(p, q)  ≤  dmax 
 

where L2 is the Euclidean distance. The dmin and dmax are 
computed as follows: 
 

dmin
2  =  | p |2 + | q |2 – 2 | p | | q | cos | θ1 − θ2 |                                             

dmax
2  =  | p |2 + | q |2 – 2 | p | | q | cos (θ1 + θ2)                                             

 

where θ1 is the angle between the vector p and the diagonal 
of the cell in which p lies and θ2 is the angle between the 
vector q and the diagonal of the cell in which p lies. As-
sume δ is the smallest upper bound found so far. If an ap-
proximation is encountered such that its lower bound ex-
ceeds δ, the corresponding object can be eliminated since at 
least one better candidate exists. Analogously, we can de-
fine a fil tering step when the k nearest neighbors must be 
retrieved. After the filtering step, a small set of candidates 
remain. These candidates are then visited in increasing or-
der of their lower bound on the distance to the query object 
q, and the accurate distance to q is determined. However, 
not all candidates must be accessed. Rather, if a lower 
bound is encountered that exceeds the k-th nearest distance 
seen so far, the LPC-index stops. 

Figure 7 shows the result of elapsed time experiments 
of the 10-nearest neighbor (NN) search on 1,000,000 ob-
jects for the linear can, the VA-file [25], and the LPC-index. 
The Scan algorithm is a simple linear scan of the vectors 
themselves, maintaining a ranked list of the 10 NN vectors 
encountered so far. The VA-file is the only NN index struc-
ture that results in exact results and outperforms the linear 
scan. In the synthetic (random and skewed) data set, the 
LPC-index outperforms the VA-file and the Scan by a fac-
tor of 2 and 3 on the average, respectively. In real data set, 
the performance of the VA-file decreases drastically as 
soon as its vector selectivity falls below a certain threshold 
point. In a 256-dimensional real image set, the performance 
of the VA-file using 8 bits per dimension for a cell degener-
ates close to that of the Scan. Even in this worst case of data 
distributions, the LPC-index shows a performance im-
provement over the Scan, reflecting the reduction of data as 
much as possible by approximation. 
 
6. OVERALL SYSTEM ARCHITECTURE 
 

We are currently developing a Web-based information 
system for distance learning called COVA (COntent-based 
Video Access) within our CyberUniversity project. The 
initial system was entirely written in Java language. The 
user can access the lecture database from anywhere using a 
popular Web browser. The system includes seven major 
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components for text processing and annotation, video 
processing and annotation, structural summarization, 
indexing, storage management, browse/query processing, 
and streaming media delivery (see Figure 8).  
 

Text Processing and Annotation 
 

The text processing automatically extracts the titles, free 
text, and keywords from the instructor’s presentation slides 
and attaches them to each LO. Using the text annotator, we 
can attach additional descriptive attributes to each VO, and 
link and group related LOs together so that the class lecture 
has contextual information.  
 
Video Processing and Annotation 
 

The video processing and annotation detects meaningful 
units of video and charaterizes these units. Although we do 
not focus on this issue in this paper, in fact, our system is 
ready to incorporate existing image and video processing 
techniques to support visual video querying and browsing.  
 
Structural Summarization 
 

The structural summarizer builds a schema of a 
semistructured database to provide the benefits of the 
schema. Users exploit the structural summaries for 
browsing database structure and formulating queries. The 
indexing scheme and query processor of COVA rely on the 
structural summaries to build indexes and to devise eff icient 
plans for computing query results, respectively. 
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Indexing 
 

Since the charateristics of database applications such as 
distance learning and training tend to be read-intensive, the 
extensive use of index structures to speed up query 
processsing is justified. COVA currently employs four 
index structures: B+-tree, inverted-file index, LPC-index, 
and P-index. 
 
Query Processing and Browsing 
 

In graph-based data model, there are many ways to execute 
a single query. The optimal query plan depends not only on 
the values in the database but also on the shape of the graph 
containing the data. Three types of query execution strate-
gies are general: top-down, bottom-up, and hybrid strategies. 
The top-down strategy begins at the top object and evalu-
ates the From clause by processing each simple path ex-
pression in a forward manner. This strategy results in a 
depth-first traversal of the graph following edges that ap-
pear in the path expressions. The bottom-up strategy first 
identifies all objects that satisfy the Where clause. Once 
we have an object satisfying the predicate, we traverse 
backwards through the data, going from child to parent, 
matching in reverse the path expressions appearing in the 
Where and then in the From. The hybrid strategy operates 
both top-down and bottom-up, meeting in the middle of a 

path expression. By intersecting the sets of objects resulted 
from both strategies we find the result of the query. 

One important thing in our browser/query processor is 
the user interface that integrates the navigational object 
browsing and declarative querying. Web users are familiar 
with specifying a simple query to begin a search and further 
exploring and refining the results. In other words, it repre-
sents querying as an extension of browsing. 
 
Storage Manager 
 

The storage manager is concerned with the allocation and 
clustering of data objects and indexes on disk, and the 
movement of data between disk and main memory. One of 
the major issues is how to incorporate the semantics of the 
semistructured model in the storage manager. In most 
graph-based data model, objects are identified by their in-
coming labels. This basic assumption is used by the storage 
manager, which clusters a database by grouping together 
objects with identical incoming labels on disk.  COVA also 
employs the segmented-page indexing (SP-indexing) 
scheme [9] for clustering of indexes. The SP-indexing 
scheme uses two kinds of I/O unit: page for random disk 
accesses and segment for sequential disk accesses. The SP-
indexing avoids that the related index nodes are scattered 
widely on the disk by storing them contiguously within a 
segment. It also provides a compromise between optimal 
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index node clustering and excessive full index reorganiza-
tion overhead. 
 
Streaming Media Server 
 

The streaming media server is responsible for delivering the 
video at the exact data rate associated with the compressed 
audio and video streams, and it responds to the feedback 
from the client.  
 
7. CONCLUSIONS 
 

The wide spread adoption of Internet streaming video and 
the advances of multimedia and database technologies pre-
sent a new opportunity of education and training. We pre-
sented a new approach to the distance learning based on the 
XML-based semistructured model. By employing this 
model, we could provide the lecture contents with flexibil-
ity and diversity as well as exchange them conveniently on 
the Internet. Based on this model, we described the tech-
nique to extract schemas from a graph-based database. In 
irregular semistructured database, without schema, it is dif-
ficult to query and browse the database, to construct in-
dexes, and to perform query optimization. Two index struc-
tures for path queries and image queries were also intro-
duced to speed up the search. Read-intensive lecture 
database applications justify the extensive use of index 
structures to speed up the query processsing. Finally, we 
presented the overall system architecture for implementing 
the video-based distance learning system. We believe that 
our system will provide a valuable education and training 
tool for remote or future users. 
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