
 1

Content-Based Lecture Access for
Distance Learning on the Web

Guang-Ho Cha

Department of Multimedia Engineering
Tongmyong University of Information Technology

Pusan 608-711, South Korea
 82-51-629-7269

ghcha@tmic.tit.ac.kr

Chin-Wan Chung
Department of Computer Science

 Korea Advanced Institute of Science and Technology
Taejon 305-701, South Korea

 82-42-869-3537
 chungcw@islab.kaist.ac.kr

ABSTRACT

Education and training are expected to change dramatically
due to the combined impact of the Internet, database, and
multimedia technologies. However, the distance learning is
often impeded by the lack of effective tools and system to
manage and retrieve the lecture contents effectively. This
paper introduces a new approach to realize the distance
learning on the Web. The approach involves: (1) The XML
(eXtensible Markup Language)-based semistructured model
not only to represent lecture contents but also to exchange
them on the Web; (2) The technique to build structural
summaries, i.e., schemas, of XML lecture databases. The
structural summaries are useful for browsing the database
structure, formulating queries, building indexes, and ena-
bling query optimization; (3) Index structures to speed up
the search to find appropriate lecture contents. Finally, an
overall system architecture for Web-based distance learning
is described.

Keywords

Distance learning, lecture modeling, lecture browsing, lecture
querying, lecture indexing, semistructured data, XML, Web

1. INTRODUCTION

Education and training are expected to change dramatically
due to the combined impact of the Internet, database, and
multimedia technologies. Besides the economic impact –
online education means less traveling, hence lower cost –
the expectation is that the educational process itself will
change radically [13]. Video is the most effective medium
for providing remote and future students with a lecture be-
cause of its expressive power that combines images and
voice. Moreover, the ability of recording and subsequently
playing back live instruction sessions could significantly
enhance the students’ learning effectiveness because it al-
lows them to review class lectures repeatedly. Unfortu-
nately, however, the benefit of video-based lecture is often
impeded by the fundamental diff iculties with information
retrieval: if one is trying to locate specific information on a
video source, finding it can be a process that is time con-

suming and tedious. In addition, the contents of class lec-
tures are diverse, and the same course can be given over
and over again with different contents and structures by dif-
ferent instructors. Thus, we cannot conform the lecture con-
tent to a rigid, predefined schema. Three crucial issues that
need to be addressed are: (1) the representation of lecture
contents in a form that facilitates retrieval and interaction;
(2) the structural summary of a lecture database that guides
users to browse and query the database; and (3) the index-
ing scheme to expedite the search.

Browsing and querying in a lecture database for dis-
tance learning should provide the same ease of use as flip-
ping through the pages of a book and scanning the table-of-
contents and index pages to get ideas of the content quickly,
and then gradually focusing on particular chapters or sec-
tions of interest. For a lecture database, this is not as
straightforward as browsing and querying in a book. We
have to identify the chapters, sections, and subsections of a
lecture, and create table-of-contents and index pages for
lecture, both structured and unstructured, so that we can get
an overview and know where to find relevant contents.

The transformation of a simple lecture into a valuable
educational tool requires five steps. First, we partition a
lecture into individual lecture segments by exploiting the
hierarchical structure of the lecture or book. A lecture seg-
ment consists of a set of lecture notes and any contiguous
portion of a video clip which constitutes a digital video lec-
ture. Each lecture segment is associated with the system-
wide unique identifier. Second, we abstract the contents of
lecture segments with text descriptions, meaningful attrib-
utes, and key images, and organize them into an effective
structure that facilitates retrieval and interaction. Third, we
need tools to aid the user for browsing a lecture database
and formulating queries. Although it may be possible to
manually browse a small database, in general forming a
meaningful query is difficult without knowledge of the da-
tabase structure. Fourth, we index all useful objects appear-
ing in lecture segments to eff iciently locate specific lecture
segments of interest. Finally, we need query optimization
techniques to reduce the search space and expedite the
search since there are numerous query plans for each query.

 2

In this paper, the XML-based semistructured model is
introduced for content-based lecture access. It fully sup-
ports XML data and represents lecture contents without
rigid, fixed schema. Database structure summarization, i.e.,
schema extraction, technique for irregular lecture database
is used to guide users in database browsing and querying.
Various index structures are presented to efficiently locate
not only a specific lecture segment but also a collection of
semantically related lecture segments. The system
architecture for implementing the Web-based distance
learning system is presented.

2. VIDEO SEGMENTATION

While a video clip consists of a sequence of frames, it is not
meaningful to use the individual frames as the units for
video retrieval. Rather, it is advantageous to identify mean-
ingful segments of video to serve as retrieval units. As de-
fined in [12], the fundamental unit of video production is a
shot that consists of a contiguous sequence of video frames.
While the video segmentation based on image processing
techniques automates the process of video parsing, it has
the following problems for distance learning:

• For a video clip of a class lecture, there can be no clear
visual cue for shot change detection. Therefore, video
segmentation using shot change detection algorithms
would be difficult.

• Shots do not capture the underlying semantic structure of
a class lecture, based on which the user may wish to
browse and retrieve the video lecture.

On the ground of above motives, we do not pay special
attention to the problem of the video segmentation based on
image processing. Rather, we automatically extract descrip-
tive text information from the instructor’s lecture notes, and
manually describe the necessary semantic video units and
their contextual information. After that, the video lectures

are automatically indexed, converted to a Web-ready format,
and made available to end users through the Internet.

A lecture is organized into presentation slides (i.e.,
lecture notes) and video segments. Each slide corresponds
to a single page course note assumed to be written in XML.
Instructors lecture by showing electronic course slides, and
recording of lectures is expected to capture the video of live
lecture sessions. In our work, we define a video shot as the
video segment synchronized with a single slide. The syn-
chronization of slides with video segments can be easily
made because instructors are required to explicitly switch
slides during live lecture session. When students access a
particular lecture in a course, they see the presentation simi-
lar to Figure 1. By allowing remote or future users to not
just view presentation slides but also to see and hear the
presenter, the instructor achieves a broader reach and in-
creased productivity and the audience gets a richer experi-
ence that enables them to retain more information and saves
on travel costs. However, the more important things we
need for is to locate and retrieve a particular piece of the
video lecture because watching the whole video is time con-
suming.

3. DATA MODEL

Data modeling deals with the problem of how to represent
the data to facil itate users’ access. To the best of our
knowledge, there have been no efforts to model the lecture
database. Previous work on data models for video data can
be found in [3, 4, 5, 10, 12, 16, 17, 23, 24, 27]. Most of
early research effort has been devoted to the shot-based
video segmentation and each video shot is described using
text descriptions and cinematic attributes. While this ap-
proach automates the video parsing, it lacks the contextual
information between video shots, and thus it is difficult to
describe the structure of the video content. Moreover, it
lacks the flexibili ty and scalability since the video clips are
segmented into independent shots. These problems are tack-
led by employing additional constructs to model contextual
information. In [5, 10, 23, 27], a higher-level construct
called scene is used to group together those shots that share
some common properties. However, the two-layered scene-
shot structure is not sufficient to represent the rich content
of a class lecture. In [12, 24], instead of representing video
information as independent shots, it divides the video se-
quence into a set of layers or strata. A stratum consists of
the descriptive information such as title, keywords, frame
delimiters, etc. The strata can be overlapped and nested.
Though the stratification is more general than the scene-
shot structure, it is also not suff icient to represent the class
lecture by using a predefined set of attributes. The approach
of [4] using the hierarchical Petri-nets focuses on only the
spatio-temporal specification of events in video, and thus it
is not concerned with the content of the class lecture. A data
model called VideoText [17] employs free text annotation

Figure 1. Online presentation window

 3

on logical video segments rather than a fixed set of attrib-
utes. However, it lacks the contextual and structural rela-
tionships among the video annotations.

To tackle the problems of existing annotation-based
video data models, we adopt the semistructured data model
[1, 6, 22], specifically, XML [26]-based semistructured
model. The motivation to employ the semistructured model
comes from the need to provide the lecture content descrip-
tion with flexibil ity and diversity. Because the lecture con-
tents are diverse and rich, we cannot conform the lecture
database to a rigid, predefined schema. Moreover, the moti-
vation to fully support XML data is to exchange lecture
data on the Internet. By semistructured data we mean data
that has no absolute schema fixed in advance, and whose
structure may be irregular or incomplete. Like in the stan-
dard model [1, 6, 22] for semistructured data, a lecture da-
tabase is thought of as a labeled directed graph. For exam-
ple, Figure 2 depicts a portion of a lecture database contain-
ing three class lectures (two for a database course and one
for a multimedia course). Each node corresponds to an
XML element and can have attributes depicted as small cir-
cles in Figure 2. Our example database is almost tree-
structured because of the hierarchical nature of the book for
lecture even though the semistructured model permits arbi-
trary graph-structured databases. Each level of our example

lecture database represents the level of content granularity.
For example, we can assume that nodes 2 through 4 are in
the level of book, nodes 5 through 10 are in the level of
chapter, nodes 11 through 20 are in the level of section, and
so on.

Unlike the standard semistructured model, our data
model fully supports the XML data. In other words, it al-
lows us to associate attributes with graph nodes (XML ele-
ments). In our data model we call the nodes lecture objects
(LOs) in which the video segments and presentation slides
for lecture are associated. An LO can be viewed as a 6-tuple
(PID, OID, a set of video segments, a set of presentation
slides, a set of sub-elements, a set of attributes). We should
note that the elements and the attributes attached to LO are
not pre-fixed. Each LO has a unique object identifier (OID),
such as 1 to 24 in Figure 3, and outgoing edges that corre-
spond to its sub-elements. Every LO belongs to a certain
type and the type is identified by a path identifier (PID). In
our model, a type is defined by a path on the extracted
schema graph, which will be described in the next section.
Labels are attached to the edges and they serve as names for
LOs or attributes. Our example database in Figure 2 con-
tains one root LO which represents the Lecture database
and contains three sub-LOs, two Databases and one Mul-
timedia. Database LO 2 has three attribute-value pairs

 Database Database Multimedia

 Indexing Searching Multimedia Relational Processing Indexing

Dynamic Static Exact Similarity Image Video
Image Video

1

 2

5

11

Lecture

instructor
textbook

topic
 title

BOOK

 CHAPTER

SECTION

 references

keywords

Figure 2. An example class lecture video database (Some nodes are omitted and only a few values of attributes
are shown in the diagram)

prereguisite

room

instructor

textbook

title
textbook

instructor

Multimedia

topic
topic keywords

project

Content

Granularity

“Spatial Indexing”

“Smith”

SLIDE 21 22 23 24
title

title

start frame 41

R-tree

12 13 14 15 16 17 18 19 20

3 4

6 7 8 9 10

instructor

software

…

…

end frame
102 keyframe

vector256

Dynamic Static

keywords

“binary search”

school
city

XML element

XML attribute

“ Multidimensional”

“High-dimensional”

“Database
Systems”

 4

describing its instructor, textbook, and references, while
Database LO 3 has two attributes prerequisite and room.
Unlike the standard semistructured model, sub-LOs under
an LO in our model are ordered to reflect the timing se-
quence of the video segments associated with them. We can
see that the database structure based on the semistructured
model is irregular since, for example, two Database ob-
jects (LO 2 and LO 3) have different structures.

4. SUMMARIZING LECTURE DATABASE

Two completely different types of lecture retrieval requests
can be expected from the end-user:

• Querying: The user retrieves particular lecture objects for
viewing or reuse.

• Browsing: The user traverses a lecture database along the
semantic links.

A query processor should respond to both types of retrieval
requests by providing the user with query formulation tools
for querying and optimal starting points for browsing.
When we model a lecture retrieval request as an iterated
sequence of querying and browsing, each step should act as
an information filter reducing the search space and give a
more refined search space to the next step. In a small data-
base, although it may be possible to browse the whole data-
base, in general it is difficult and tedious to browse a large
database. It is reasonable to pose a query at the start by us-
ing some attributes. However, since our lecture database is
based on the XML-based semistructured model, i.e., it is
schemaless, it needs a tool that assists users in query formu-
lation by providing the information (i.e., schema) summa-
rizing the database structure. The schema allows users to
browse and query easily through the database. Also, it im-
proves the system performance greatly by enabling to take
advantage of indexes and query optimization.

Figure 3 shows the structural summary of the lecture
database given in Figure 2. A rectangle corresponds to an
XML element in the database, and small black circles de-
note XML attributes in the XML element. Every XML ele-
ment of an original database is described exactly once in the
structural summary, regardless of the number of times it
appears in that database. There is no XML element that
does not appear in the original database. From the structural
summary, a user can interactively query and browse the
graph-based database. Clicking on a rectangle on the struc-
tural summary expands or collapses LOs. The white rectan-
gle indicates that the LO has been expanded and the black
rectangle indicates that the LO has not. For example, Data-
base and Multimedia LOs have been expanded, while Dy-
namic and Static LOs have not.

We develop a summarizer that extracts a schema from
an irregular lecture database. DataGuids [14] are concise
and accurate summaries of semistructured databases. Unfor-
tunately, however, DataGuides can be very expensive to

compute since they require a powerset construct over the
underlying database. For a general graph, the algorithm to
construct a DataGuide can be exponential in space and time
with respect to the size of the underlying database. Bune-
man et al. [7] constructs database summaries based on the
computation of simulations or bisimulations [15] for which
eff icient construction algorithm exists. The size of a data-
base summary based on the simulation is guaranteed to be

�
 Lecture

 • school

 • city
�

 Database

• instructor

• textbook

• references

• prerequisite

• room
�

 Indexing

• topic

• title

• keywords
�

 Dynamic
�

 Static
�

 Searching

• title
�

 Exact
�

 Similarity

�

 Multimedia

 • instructor

 • textbook

�

 Image

�

 Video

�

 Relational

�

 Multimedia

 • instructor

 • textbook

�

 Processing

• topic

• keywords
�

 Image
�

 Video

�

 Indexing

• topic

• project
�

 Dynamic
�

 Static

 Figure 3. Structural summary of the example database in Figure 2

 5

at most linear in the underlying database size. However,
they still have redundancy in edges of the schema graph.
Nestorov et al. [20] developed a technique to extract
schema based on the greatest fixpoint semantics of monadic
datalog program and the clustering. Although their method
can reduce the size of the schema to a desired size, its run-
ning cost may be excessive because of its complexity of
algorithm. Moreover, since it has to perform clustering to
get a desired schema size, it may be difficult to use this
method in dynamic environments.

We develop a new technique to improve the running
time to build the structural summary of a database. In our
method, the structural summary does not have any redun-
dancy in nodes and edges in a schema graph. We can best
explain the difference among our technique, Buneman et
al.’s, DataGuide, and Nestorov et al.’s. Figure 4(a) illus-
trates a database graph DB and 4(b) is our summary of DB.
Figures 4(c), 4(d), 4(e) show Buneman et al.’s schema
based on simulation, strong DataGuide, and Nestorov et
al.’s minimal perfect typing, respectively. We compare the
schemas by their size. DataGuides require a powerset con-
struct over the underlying database, which in the worst case
can be of exponential cost. As you can see in Figure 4(d),
elements 7 and 13 are replicated in nodes in the DataGuide.
The schema based on simulation guarantees its size, that is,
the size of the schema is at most linear in that of the data-
base. However, as we can see in Figure 4(c), edge a outgo-
ing from the same node is replicated. Figure 4(e) also shows
redundancy in nodes and edges. On the other hand, our da-

tabase schema in Figure 4(b) does not have any redundancy
in nodes and edges. The compactness of our schema results
in eff iciency in query evaluation as well as in database
summarization.

4.1 The Algorithm

We define some terminologies before proceeding.

Definition 1. A data object is a node, i.e., LO, in a database
graph.

Definition 2. A target set for a path l is a set of data objects
that can be reached by traversing a path l in a database
graph.

Definition 3. A schema object is a node in the schema
graph that corresponds to a target set of a path l in a data-
base graph.

The schema extraction is easy to implement with our algo-
rithm. The root data object becomes a root schema object.
In a depth-first fashion, we extract all child schema objects
reachable by all unique paths outgoing from a schema ob-
ject. Each time we encounter a new target set for a unique
path l, we create a new schema object s. If we reach a
schema object s via a path l and a data object o is already
included in the schema object s with a different path m,
rather than creating a new schema object we instead add an
edge l to the schema object s. The algorithm is specified as
follows.

Algorithm ExtractSchema(o)
// Input: root oid o of a database
// Output: database schema s
{
 s := CreateSchemaObject();
 Insert { o} to s;
 RecursiveMake(s);
}

Algorithm RecursiveMake(s)
{
 Let S be a set of current target sets under s;

Let Sj denote a certain target set included in S;
 For each unique label li outgoing from s {

o := target set reachable by li;
If (o and Sj have data objects in common) {

Add an edge li from s to the schema object corre-
sponding to Sj;
Sj := o ∪ Sj;

}
 Else {
 s2:= CreateSchemaObject();
 Insert s2 to s;
 Add an edge li from s to s2;

RecursiveMake(s2);
}

}
}

1

2 3 4 6 5

t
t t

t

7 8 9 10 11 12 13

a a a a a b b d c

t t
1

2 3 4 5 6

7 8 10 12 13 11 9

a b c d

t
1

2 3 4 5 6

7 8 10 12 13 11 9

a
b c d

7 13

t
1

2 3 4 5 6

7 13 11 9

a
a c d

8 10 12

b

 (c) schema by simulation (d) strong DataGuide

(a) a database graph (b) our schema

1

2 6

8 10 12

4 3 4 5

t t t

7 13

3

9 11

a a c d

t

(e) minimal perfect typing

Figure 4. Comparison of database schemas

b

 6

5. INDEXING

In traditional databases, an index is created on an attribute
in order to locate objects for particular attributes quickly.
Despite the cost of maintenance and the added storage, in-
dexes are useful and integral part of all database systems. In
lecture databases with XML-based semistructured data
model, such a value index alone used in traditional data-
bases is not suff icient since we have to eff iciently traverse
the database graph. We need several index structures that
are useful for finding relevant objects, specific edges, and
paths within the database. Since the access to the lecture
databases tends to be read-intensive, maintaining extensive
index structures to speed up query processing is justified.

In this paper, we propose two new index structures
called P-index (path index) and LPC-index (local polar
coordinate index) to index paths on the database graph and
images in the lecture video, respectively. Example queries
used in this paper are formulated in the query language
similar to the Lorel query language [2] which is an exten-
sion of OQL [8]. The example queries are executed over the
example lecture database in Figure 2.

5.1 P-index

Here we introduce the P-index to index the path on the da-
tabase graph with some motivating examples.

5.1.1 Motivating Examples

Example 1: Retrieve lecture objects whose title is “Spatial
Indexing.”

Select x
Where *.x.title = “Spatial Indexing”

The wildcard “*” means any path of length 0 or more. For
this type of value queries, we can consider the B+-tree [11]
index structure for the attribute title and can get the result of
LO 24. However, if the structural and contextual relation-
ships between lecture objects are not provided together with
the target lecture object, potentially useful results may not
be found only by a simple value-matching search. For ex-
ample, the lecturer may assume that the reader would not
read the lecture object unless he had read earlier lecture
objects. As a result, the reader may not understand the con-
text if he does not read earlier lecture objects. Thus it is
desirable to output the query result as follows so that the
reader can traverse the graph hierarchy if he wants:

� Lecture (LO 1)
 � Database (LO 2)
 � Indexing (LO 5)
 � Dynamic (LO 11)
 � R-tree (LO 24)

Example 2: Retrieve Database lecture objects in which
the title is “Spatial Indexing.”

Select x
From Database x
Where x.*.title = “Spatial Indexing”

This type of queries could be very expensive without ap-
propriate indexes because we have to traverse backward to
every Database object after identifying lecture objects
whose title is “Spatial Indexing.” We can also employ a
top-down execution strategy in which we find all Database
lecture objects and begin at them and evaluate every path in
a forward manner to check if their descendants’ title is
“Spatial Indexing.” It should be obvious that this query
execution is also costly since we have to traverse every path
from Database objects. To support this type of queries, we
provide the P-index that stores all objects along the back-
ward path from the quali fying objects to the root of the da-
tabase graph.

5.1.2 P-Index Structure

When we consider the indexing of graph paths, it should be
obvious that data models with a more relaxed typing para-
digm have to impose user-specified and dynamically con-
trolled type constraints on attributes and/or paths that are
indexed. We impose types on the labeled paths on the struc-
tural summary graph of the database. For example, consid-
ering the path Database.Indexing.Dynamic.R-tree, four
types are imposed: Database, Database.Indexing, Data-
base.Indexing.Dynamic, and Data-
base.Indexing.Dynamic.R-tree. Each type (or path) is
uniquely identified by its path identifier (PID).

The structure of the P-index is based on the B+-tree.
The P-index consists of internal and leaf nodes as in other
dynamic index structures. The internal node of the P-index
has the same structure as that of the B+-tree. The leaf node
has a format different from that of an internal node. It con-
sists of f index entries and each index entry has a form
shown in Figure 5, where f is the fanout of a leaf node. For
path indexing, the P-tree maintains in a leaf node the lecture
objects on the label paths from the qualifying objects to the
root. If the size of a leaf node entry exceeds a page size,
additional overflow pages are allocated. The P-index is

key
value

overflow
page pointer

no. of
PIDs

PID1
no. of
OIDs

{ OID11,…, OID1i} … PIDn
no. of
OIDs

{ OIDn1,…, OIDnk}

Figure 5. An entry of a leaf node of the P-index

 7

somewhat similar to the class-hierarchy indexing [18] used
in object-oriented databases. The class-hierarchy indexing
maintains one index on a common attribute for a hierarchy
of classes. On the other hand, there is no concept of a com-
mon attribute in the irregular semistructured database. In-
stead, the P-index maintains one index on every path from
the qualifying objects to the root.

5.2 LPC-index

Users can query a database to find lecture objects whose
video segments include an image similar to a user-specified
image.

Example 3: Retrieve lecture objects including a video
segment whose key frame is similar to a given
image P.

Select x
Where x.*.keyframe similarto P

Image query is performed over objects that have key
frame image. The main issue in the image indexing is the
curse of dimensionality [21], i.e., the search performance
drastically deteriorates if the dimensionality (i.e., the num-
ber of feature elements of an image) goes high (e.g., larger
than 10). In high dimensional data space, the performance
of conventional index structures degenerates to being worse
than that of the brute-force linear scan that compares the
query object to each object sequentially. We propose the
local polar coordinate index (LPC-index) for indexing im-
ages with high-dimensional feature vector. The perform-
ance of the LPC-index has been verified in high-
dimensional data space (e.g., > 100).

The LPC-index employs a filter-based approach in
which feature vectors are represented as compact approxi-
mations to the original vectors and by first scanning these
smaller approximations, only a small fraction of the vectors
are visited. The basic idea of the LPC-index is as follows:
First, the LPC-index assigns the same number of bits b to
each dimension of the feature vector and divides the whole
data space into 2bd cells, where d is the number of dimen-
sions. Second, the LPC-index approximates the vector p
using the polar coordinates (r, θ) within the cell in which p
lies. As illustrated in Figure 5, the local origin O of each
cell is determined by the lower left corner of the cell . The
radius r is computed by the distance between the local ori-
gin O and the vector p. The angle θ is computed by the an-
gle between the vector p and the diagonal from the local
origin to the opposite corner. As a result of this approxima-
tion, the vector p is represented by the triplet a = < c, r, θ >,
where c, r, θ denote the approximation cell, the radius, and
the angle between p and the main diagonal, respectively.
The complete LPC-index is an array of approximations for
all vectors. In spite of taking a small amount of information
to represent the local polar coordinates, this information

significantly enhances the discriminatory power of the ap-
proximation in high dimensions.

When searching for the nearest neighbor image, the
entire approximation file is scanned and lower bound (dmin)
and upper bound (dmax) on the distance from the image vec-
tor p to the query vector q are determined such that

dmin ≤ L2(p, q) ≤ dmax

where L2 is the Euclidean distance. The dmin and dmax are
computed as follows:

dmin
2 = | p |2 + | q |2 – 2 | p | | q | cos | θ1 − θ2 |

dmax
2 = | p |2 + | q |2 – 2 | p | | q | cos (θ1 + θ2)

where θ1 is the angle between the vector p and the diagonal
of the cell in which p lies and θ2 is the angle between the
vector q and the diagonal of the cell in which p lies. As-
sume δ is the smallest upper bound found so far. If an ap-
proximation is encountered such that its lower bound ex-
ceeds δ, the corresponding object can be eliminated since at
least one better candidate exists. Analogously, we can de-
fine a fil tering step when the k nearest neighbors must be
retrieved. After the filtering step, a small set of candidates
remain. These candidates are then visited in increasing or-
der of their lower bound on the distance to the query object
q, and the accurate distance to q is determined. However,
not all candidates must be accessed. Rather, if a lower
bound is encountered that exceeds the k-th nearest distance
seen so far, the LPC-index stops.

Figure 7 shows the result of elapsed time experiments
of the 10-nearest neighbor (NN) search on 1,000,000 ob-
jects for the linear can, the VA-file [25], and the LPC-index.
The Scan algorithm is a simple linear scan of the vectors
themselves, maintaining a ranked list of the 10 NN vectors
encountered so far. The VA-file is the only NN index struc-
ture that results in exact results and outperforms the linear
scan. In the synthetic (random and skewed) data set, the
LPC-index outperforms the VA-file and the Scan by a fac-
tor of 2 and 3 on the average, respectively. In real data set,
the performance of the VA-file decreases drastically as
soon as its vector selectivity falls below a certain threshold
point. In a 256-dimensional real image set, the performance
of the VA-file using 8 bits per dimension for a cell degener-
ates close to that of the Scan. Even in this worst case of data
distributions, the LPC-index shows a performance im-
provement over the Scan, reflecting the reduction of data as
much as possible by approximation.

6. OVERALL SYSTEM ARCHITECTURE

We are currently developing a Web-based information
system for distance learning called COVA (COntent-based
Video Access) within our CyberUniversity project. The
initial system was entirely written in Java language. The
user can access the lecture database from anywhere using a
popular Web browser. The system includes seven major

 8

components for text processing and annotation, video
processing and annotation, structural summarization,
indexing, storage management, browse/query processing,
and streaming media delivery (see Figure 8).

Text Processing and Annotation

The text processing automatically extracts the titles, free
text, and keywords from the instructor’s presentation slides
and attaches them to each LO. Using the text annotator, we
can attach additional descriptive attributes to each VO, and
link and group related LOs together so that the class lecture
has contextual information.

Video Processing and Annotation

The video processing and annotation detects meaningful
units of video and charaterizes these units. Although we do
not focus on this issue in this paper, in fact, our system is
ready to incorporate existing image and video processing
techniques to support visual video querying and browsing.

Structural Summarization

The structural summarizer builds a schema of a
semistructured database to provide the benefits of the
schema. Users exploit the structural summaries for
browsing database structure and formulating queries. The
indexing scheme and query processor of COVA rely on the
structural summaries to build indexes and to devise eff icient
plans for computing query results, respectively.

10-NNS, N=1,000,000

0

20

40

60

80

100

120

16 (8) 32 (8) 64 (8) 128 (8) 256 (8)

Dimensionali ty (no of bits used/dimension)

(a) Random distribution

T
ot

al
 e

la
ps

ed
 ti

m
e

(s
ec

)

Scan VA-f ile LPC-index

Figure 7. Total elapsed time

10-NNS, N=1,000,000

0

20

40

60

80

100

120

16 (4) 32 (4) 64 (6) 128 (6) 256 (6)

Dimensionali ty (no of bits used/dimension)

(b) Skewed (Zipf) distribution

T
ot

al
 e

la
ps

ed
 ti

m
e

(s
ec

)

Scan VA-f ile LPC-index
10-NNS, N=1,000,000

0

20

40

60

80

100

120

16 (8) 32 (8) 64 (8) 128 (8) 256 (8)

Dimensionality (no bits used/dimension)

(c) Real image data

T
ot

al
 e

la
ps

ed
 ti

m
e

(s
ec

)

Scan VA-file LPC-index

 00 01 10 11

11

10

01

00

 cell c for vector p data space

Figure 6. 2-dimensional vector p and its approximation
(c, r, θ) in the LPC-index

θ p′
 p

 θ
 r

O

 9

Indexing

Since the charateristics of database applications such as
distance learning and training tend to be read-intensive, the
extensive use of index structures to speed up query
processsing is justified. COVA currently employs four
index structures: B+-tree, inverted-file index, LPC-index,
and P-index.

Query Processing and Browsing

In graph-based data model, there are many ways to execute
a single query. The optimal query plan depends not only on
the values in the database but also on the shape of the graph
containing the data. Three types of query execution strate-
gies are general: top-down, bottom-up, and hybrid strategies.
The top-down strategy begins at the top object and evalu-
ates the From clause by processing each simple path ex-
pression in a forward manner. This strategy results in a
depth-first traversal of the graph following edges that ap-
pear in the path expressions. The bottom-up strategy first
identifies all objects that satisfy the Where clause. Once
we have an object satisfying the predicate, we traverse
backwards through the data, going from child to parent,
matching in reverse the path expressions appearing in the
Where and then in the From. The hybrid strategy operates
both top-down and bottom-up, meeting in the middle of a

path expression. By intersecting the sets of objects resulted
from both strategies we find the result of the query.

One important thing in our browser/query processor is
the user interface that integrates the navigational object
browsing and declarative querying. Web users are familiar
with specifying a simple query to begin a search and further
exploring and refining the results. In other words, it repre-
sents querying as an extension of browsing.

Storage Manager

The storage manager is concerned with the allocation and
clustering of data objects and indexes on disk, and the
movement of data between disk and main memory. One of
the major issues is how to incorporate the semantics of the
semistructured model in the storage manager. In most
graph-based data model, objects are identified by their in-
coming labels. This basic assumption is used by the storage
manager, which clusters a database by grouping together
objects with identical incoming labels on disk. COVA also
employs the segmented-page indexing (SP-indexing)
scheme [9] for clustering of indexes. The SP-indexing
scheme uses two kinds of I/O unit: page for random disk
accesses and segment for sequential disk accesses. The SP-
indexing avoids that the related index nodes are scattered
widely on the disk by storing them contiguously within a
segment. It also provides a compromise between optimal

user
(Web browser)

live instruction

capture
digital
video

video
processing &
annotation

visual
summaries

synchronize

Web-ready
slides

presentation
tool

lecture notes

text
processing &
annotation

text
summaries

structural
summarizer

structural
summaries

indexing indexes

streaming
video

visual
summaries

structural
summaries

text
summaries

digital video

Web-ready
slides

DATABASE

storage
manager

browser/query
processor

streaming
media server

Figure 8. System architecture

 10

index node clustering and excessive full index reorganiza-
tion overhead.

Streaming Media Server

The streaming media server is responsible for delivering the
video at the exact data rate associated with the compressed
audio and video streams, and it responds to the feedback
from the client.

7. CONCLUSIONS

The wide spread adoption of Internet streaming video and
the advances of multimedia and database technologies pre-
sent a new opportunity of education and training. We pre-
sented a new approach to the distance learning based on the
XML-based semistructured model. By employing this
model, we could provide the lecture contents with flexibil-
ity and diversity as well as exchange them conveniently on
the Internet. Based on this model, we described the tech-
nique to extract schemas from a graph-based database. In
irregular semistructured database, without schema, it is dif-
ficult to query and browse the database, to construct in-
dexes, and to perform query optimization. Two index struc-
tures for path queries and image queries were also intro-
duced to speed up the search. Read-intensive lecture
database applications justify the extensive use of index
structures to speed up the query processsing. Finally, we
presented the overall system architecture for implementing
the video-based distance learning system. We believe that
our system will provide a valuable education and training
tool for remote or future users.

REFERENCES

[1] S. Abiteboul, “Querying Semistructured Data,” Proc.
of the International Conference on Database Theory,
pp. 1-18, 1997.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.
Wiener, “The Lorel query language for semistructured
data,” International Journal on Digital Libraries, Vol.
1, No. 1, pp. 68-88, 1997.

[3] P. Aigrain, HongJiang Zhang, and D. Petkovic, “Con-
tent-based representation and retrieval of visual media:
A state-of-the-art review,” Multimedia Tools and Ap-
plications, Vol. 3, No. 3, pp. 179-202, 1996.

[4] W. Al-Khatib and A. Ghafoor, “An Approach for
Video Meta-Data Modeling and Query Processing,”
Proc. of the ACM International Multimedia Confer-
ence, 1999.

[5] R.M. Bolle, B.-L. Yeo, and M.M. Yeung, “Video
Query: Research Directions,” IBM Journal of Research
and Development,” Vol. 42, No. 2, pp. 233-252, 1998.

[6] P. Buneman, “Semistructured Data,” Proc. of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 117-121. 1997.

[7] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu,
“Adding Structure to Unstructured Data,” Proc. of the
International Conference on Database Theory, 1997.

[8] R.G.G. Cattell, The Object Database Standard:
ODMG-93, Morgan Kaufmann, San Francisco, CA,
1994.

[9] G.-H. Cha, X, Zhu, D. Petkovic, and C.-W. Chung,
“Segmented Page Indexing for Range Queries in Mul-
tidimensional Data Spaces,” IBM Research Report RJ
10176 (95050), 1999.

[10] T.-S. Chua and L.-Q. Ruan, “A Video Retrieval and
Sequencing System,” ACM Transactions on Informa-
tion Systems, Vol. 13, No. 4, pp. 373-407, 1995.

[11] D. Comer, “The Ubiquitous B-tree,” ACM Computing
Surveys, Vol. 11, No. 2, pp. 121-137, 1979.

[12] G. Davenport, T.A. Smith, and N. Pincever, “Cine-
matic Primitives for Multimedia,” IEEE Computer
Graphics and Applications, pp. 67-74, 1991.

[13] A. Ginsberg, P. Hodge, T. Lindstrom, B. Sampieri, and
D. Shiau, “The Little Web Schoolhouse:” Using Vir-
tual Rooms to Create a Multimedia Distance Learning
Environment,” Proc. of the ACM International Multi-
media Conference, pp. 89-98, 1998.

[14] R. Goldman and J. Widom, “DataGuides: Enabling
Query Formulation and Optimization in Semistructured
Databases,” Proc. of the International Conference on
Very Large Data Bases, pp. 436-445, 1997.

[15] M. Henzinger, T. Henzinger, and P. Kopke, “Comput-
ing simulations on finite and infinite graphs,” Proc. of
Symp. on Foundations of Computer Sciences, pp. 453-
462, 1995

[16] R. Hjelsvold and R. Midtstraum, “Modeling and Que-
rying Video Data,” Proc. of the International Confer-
ence on Very Large Data Bases, pp. 686-694, 1994.

[17] H. Jiang, D. Montesi, and A.K. Elmagarmid, “ Inte-
grated Video and Text for Content-Based Access to
Video Databases, Multimedia Tools and Applications,
Vol. 9, pp. 227-249, 1999.

[18] W. Kim, K.-C. Kim, and A. Dale, “Indexing Tech-
niques for Object-Oriented Databases,” Object-
Oriented Concepts, Databases, and Applications, pp.
372-394, Eds. W. Kim and F.H. Lochovsky, ACM
Press, 1989.

[19] J. McHugh and J. Widom, “Query Optimization for
XML,” Proc. of the International Conference on Very
Large Data Bases, pp. 315-326. 1999.

[20] S. Nestorov, S. Abiteboul, R. Motwani, “Extracting
Schema from Semistructured Data,” Proc. of ACM
SIGMOD, pp. 295-306, 1998.

[21] W. Niblack et al., “The QBIC Project: Querying Im-
ages By Content Using Color, Texture, and Shape,”
Proc. of the SPIE Conf. on Storage and Retrieval for
Image and Video Databases II, pp.173-187, 1993.

[22] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom,
“Object Exchange Across Heterogeneous Information

 11

Sources,” Proc. of the International Conference on
Data Engineering, pp. 251-260. 1995.

[23] Y. Rui, T.S. Huang, and S. Mehrotra, “Exploring
Video Structure Beyond the Shots,” Proc. of the IEEE
International Conference on Multimedia Computing
and Systems, pp. 237–240, 1998.

[24] T.G.A. Smith and G. Davenport, “The stratification
system: A design environment for random access
video,” Proc. of the Workshop on Networking and Op-
erating System Support for Digital Audio and Video,
1992.

[25] R. Weber, H.-J. Schek, and S. Blott, “A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces,” Proc. of the
24th VLDB Conference, pp. 194-205, 1998.

[26] The World Wide Web Consortium (W3C)’s XML web page,
1998. http://www.w3c.org/XML/.

[27] B.-L. Yeo and M.M. Yeung, “Retrieving and Visualiz-
ing Video,” Communications of the ACM, Vol. 40, No.
12, pp. 43- 52, 1997.

[28] M. Zloof, “Query By Example,” IBM Systems Journal,
Vol. 16, No, 4, pp. 324-343, 1977.

