
HG-Tree: An Index Structure for Multimedia Databases

Guang-Ho Cha Chin-Wan Chung
Department of Information and Communication Engineering

Korea Advanced Institute of Science and Technology
Seoul 130-012, Korea

Abstract
We propose a new index structure, called the HG-tree,

to support content-based retrieval in multimedia
databases. Our goals are twofold: increasing the storage
utilization and decreasing the directory coverage of the
index tree. The first goal is achieved by absorbing
splitting if possible, and when splitting is n8ecessary,
converting two nodes to three. This is done by proposing a
good ordering on the directory nodes. The second goal is
achieved by representing the directory regions compactly.
We note that there is a trade-off between above two design
goals, but the HG-tree is so flexible that it can control the
trade-ofl We present the design of our index tree and
associated algorithms. In addition, we report the results of
a series of tests, comparing the proposed index tree with
the buddy-tree, which is one of the most successjiul access
methods for a multidimensional space. The resailts show
the superiority of our method.

1. Introduction
Multimedia databases are becoming increasingly

popular with many applications such as medical databases,
CAD/CAM, geographic information systems and digital
libraries. One of the key issues of these areas is content-
based retrieval which helps users to retrieve relevant
images based on their contents. In these applications,
typical queries are the range queries and the: nearest
neighbor queries. Similarity queries correspond to range
queries or nearest neighbor queries. The exact-miatch and
partial-match queries fall within the range queries.

It is assumed that image objects lie in an n-dimensional
feature space and each dimension corresponds to it specific
feature. A domain of a feature is a set of values from
which a value for the feature can be drawn. Thi: feature
space or domain space is defined as a Cartesian product of
the domains of all organizing features. We call any subset
of the domain space a region. We can map each image
object into a point in an n-dimensional feature space by
using n feature-extraction functions. Thus we formulate
the content-based indexing problem as a multidiniensional
point indexing problem. We distinguish between point
access methods (PAMs) and spatial access methods
(SAMs) which are designed to handle multidimensional
point and spatial data, respectively.

The basic principle of multidimensional PAM is to
partition the n-dimensional feature space intal several
regions, each containing not more than a fixed number of
entries. Each region corresponds to one disk page and,
upon becoming full, is split into two. Our index tree, the
HG-tree, improves the performance by allowing the

regions to have more general shape and by representing
them compactly, contrary to previously suggested PAMs.

The paper is organized as follows. Section 2 presents the
ideas and properties of the HG-tree and its associated
algorithms. Section 3 gives the experimental results and
analysis which demonstrate the superiority of the HG-tree
to the buddy-tree. Section 4 contains the conclusions.

2. HG-tree
The major aims of the HG-tree are to increase the

storage utilization and to decrease the directory coverage.
The high storage utilization both in the directory and data
nodes results in a small number of nodes and in turn a
small number of disk accesses. The small directory
coverage reduces the area covered by the directory regions.

Definition 1. The storage utilization U of a tree Tis:
1 ” Ft U = -
n z x ,

where F, is the number of entries in node i, PI is the
maximum number of entries that a node i can have, and n
is the number of nodes in the tree.

Definition 2. The node coverage C, of node i and the
directory coverage Cd of tree Tare:

C,(i) = the area spanned by all the entries enclosed
in the node i,

where k is the number of nodes in the tree T.

To achieve above design goals, we use a space filling
curve, and specifically, the Hilbert curve to apply a linear
ordering on the data objects and the directory regions. A
space-filling curve is a mapping that maps the unit interval
onto the n-dimensional unit hypercube continuously. The
path of space-filling curves provides a linear ordering on
the grid points. The Peano curve (also known as the Z-
curve) [IO], the Hilbert curve [5], and the Gray-code curve
[2] are examples of space filling curves. In [6] arid [3], it
was shown that the Hilbert curve achieves the better
clustering than the others. The basic Hilbert curve on a
2x2 grid, denoted by HI, and the Hilbert curve of order 2,
denoted by H2, are shown in Fig. 1 . The Hilbert curve can
be generalized for higher dimensionalities.

The zkdb tree [9], G-tree [8], and the MB+-tree 1131 also
use linear orders such as z order and column-wise order.
However, they have a shortcoming in common with
respect to tlhe spatial locality (see Fig. 2). The MB+-tree

0-8186-7436-9196 $5.00 0 1996 IEEE
Proceedings of MULTIMEDIA ’96

449

HI H1

Fig. 1 Hilbert curves of order 1 and 2

HI

H2 H3

(a) MB+-tree (b) zkdb tree (c) HG-tree
Fig. 2. The points in a 2-dimensional space are arranged in
(a) column-wise scan order (b) Z order (c) Hilbert order.
The dashed lines show the ordering path and the heavy
lines show the partitioning boundaries. The squares
represent data points.

divides the data space into three regions M 1, M2 and M3
in this example. This may distribute objects such that the
distant objects are clustered in the same region instead of
nearby objects. The zkdb tree and G-tree have the same
problem as shown in Fig. 2(b). On the other hand, the
directory regions, HI, H2 and H3 of the HG-tree are
compact and the near objects are clustered in the same
region.

The Hilbert R-tree [7] also uses a Hilbert ordering
scheme, however it is one for spatial data, not point data
and its directory regions are rectangular and overlapping
unlike the HG-tree. The HG-tree improves performance
through more general shape of directory region. Moreover,
since its directory regions are disjoint, the insertion,
deletion, and exact match search is restricted to exactly
only one path.

2.1 Basic Ideas and Properties
The main idea of the HG-tree is to create an indexing

scheme that it can support the following:
0 when an overflow occurs in a node, try to absorb it and
when splitting is necessary, convert two nodes to three
nodes. As a result of this the index tree has higher storage
utilization;
e maintain the directory region in a minimal way to reduce
the directory coverage;
0 control the correlation between the storage utilization
and the directory coverage to compromise the trade-off
between them;
e maintain the node occupancy not to be fallen below a
certain minimum to have predictable and controllable
worst-case characteristics.

To absorb splitting we need the ordered list of the
objects. We transform Cartesian coordinates in an n-
dimensional feature space into locations on the Hilbert
curve. Thus, objects are represented by points on the

Hilbert curve and we can store them in a sorted order.
Through this ordering every node has a well-defined set of
siblings and the HG-tree absorbs splitting by redistributing
the objects of the oveflowing node into adjacent sibling
and adjusting the directory regions. When splitting is
necessary, convert the two nodes, the overflowing node
and one of the two adjacent siblings, to thee. Thus this
splitting is called 2-to-3 splitting. When we select one of
the two adjacent siblings, we select one that makes the
directory coverage minimal. Resulting from this, the HG-
tree yields average storage utilization more than 80% and
guarantees the worst-cast storage utilization is more than
66.7% (2/3) of full capacity. This concept is similar to that
used with the B*-tree [I]. However, the B*-tree operates
on a I-dimensional space and the HG-tree can be viewed
as a generalization of it.

To reduce the directory coverage we introduce the
concept of minimum bounding interval (MBI) that covers
all regions of the lower nodes. This plays a similar role as
a minimum bounding rectangle(MBR) used in the SAM
such as R-tree[4]. But it does not allow overlap and is not
rectangular. For every internal node of the HG-tree, its
MBI is stored. Specifically, an internal node in the HG-
tree contains at most C,, entries of the form

where C,, is the capacity of an internal node, I is the MBI
that encloses all the children of that entry and that i s
represented by two Hilbert values at either end of the
interval, and ptr is a pointer to the child node. We
maintain these entries in a Hilbert order. Another
advantage of using a linear order is that binary search can
be used in searching the entries within a node. When a
node is large, the difference between a binary search
method, with a log(n) cost and linear search, with an
average cost of n/2 is significant, where n is the number of
entries in a node.

Although it is known that the trees with best storage
utilization may produce nearly best query performance, it
is not always the case. Depending on the data distribution,
the minimal directory coverage may play more important
role than the maximal storage utilization in query
performance. From the extensive performance tests we
have got the experience that there is a trade-off between
them. When we increase the storage utilization by
absorbing splitting, there is also a tendency to increase the
directory coverage. On the other hand, the storage
utilization is reduced if we only intend to reduce the
directory coverage. With this insight we can relax the 213
minimum node occupancy resulting from 2-to-3 splitting
to some extent to reduce the directory coverage. In HG-
tree, we can get a good search performance in a wide
range of data distribution by controlling these two
parameters, the storage utilization and the directory
coverage, adaptively depending on data distribution.

2.2 Insertion
To insert an object on the HG-tree, we first calculate the

Hilbert value h of the object and traverse the tree using it
as a key. In each level we choose the branch with
minimum Hilbert distance from h among the entries in the
node. Once we reach the leaf level, we insert the object in
its correct order.

(4 PtT)

450

Algorithm Insert(node N , object U)
I* Insert object o into tree rooted at N.

h is the Hilbert value of o *I

11. Use ChooseLeaf(u, h) to choose a leaf node L
in which to place 0.

12. Insert o into L in the appropriate place according
to the Hilbert order.
If L overflows, invoke HandleOverflow(L, (0).

13. Form a set S that contains L, its adjacent sibling, and
the new leaf (if split occurred). Use Adjustlree(S)
to update the MBIs that have been changed.

14. If node split propagation caused the root to split,
create a new root.

{

1
2.3. Deletion

A deletion is straightforward, unless it causes an
underflow. In such a case, an underflowing node resulting
from a deletion can borrow keys from or merge with its
adjacent siblings.

2.4. Range Searching
The search algorithm starts with the root and examines

each branch that intersects the query region recursively
following these branches. At the leaf level it reports all
entries that intersect the query region as qualified objects.

Algorithm RangeSearch(node N, QueryRegion r)
I* Perform a query with range r on the tree rooted at N.

N,.child is a child node of node NI *I

RI. [Search nonleaf node]
{

For every entry NI in N

lies outside r.

Invoke Overlap(MBR(Ni), r) to determine
whether it is contained in, overlaps, or

If it is contained in r , output all objects
belonging to N,.

Else if it overlaps,
invoke RangeSearch(Nbchild, r).

R2. [Search leaf node]
Output all the objects that intersect r.

1
2.5 Nearest-Neighbor Searching

Nearest-neighbor queries can be handled with a branch-
and-bound algorithm [1 1 1 on the HG-tree. Two lower and
upper distance value bounds &,, and &gh are introduced
to order and prune the paths of the search space in the HG-
tree:

S,,, gives the minimum distance between a given point
and an MBI. However, due to empty space inside the
MBIs, the actual nearest neighbor might be much farther
than &,,;

0 &gh gives the distance between a given poinl and an
MBI, which guarantees the finding of an object in MBI
at a Euclidean distance less than or equal to this distance.

Given a query point, the algorithm examines the top-
level branches, computes &,,, and && for the (distance,
and traverses the most promising branch with the depth
first order. At each stage of traversal, the order of search is
determined by the nondecreasing order of S,,,,. The objects

with the distance to a given query point greater than high
of the farthest MBI and the MBIs with greater than the
distance between the query point and the farthest object
are discarded in each traversal stage.

Algorithm NNSearch(Node N, Point P, Neighbor Near)
/* Return the k nearest neighbors. N is a current node, P
is a search point, Near is a list holding the k current
nearest neighbors in nondecreasing distance order. BrList
is a list holding branches of nonleaf nodes. E,.child is a
child of node E, */
{

N1. [Search leaf node]
For every entry N I in N

Determine the distance, dist,, between P and NI.
If dist, is less than Near[k].dist

Assign NI to the Near[k].
Rearrange Near in correct order.

N2. [Search Nonleaf Node]
For every entry NI in N

Compute Go,,, &gh and store them with NI
into a BrList.

Sort 1 he BrList based on &.
Remove the unnecessary branches in BrList as

For arranged entries E, in BrList

(compared with Near.

compared with Near

Invoke NNSearch(Ebchild, P, Near)
Remove the unnecessary branches in BrList as

I
3. Experimental Results

To assess the performance of the HG-tree, we
implemented it and ran experiments on a four dimensional
space. We compared our tree against the buddytree. In
[12], it is reported that the buddy-tree is the best one
among PAlMs with respect to the average range query
performancle. For all operations, we have measured the
number of disk accesses per operation.

3.1 Experimental Setup
To experiment we generated 5 groups of 4 dimensional

data files that contained different distributions of data:
uniform, diagonal, bit, x-parallel, and clustered. E:ach file
contains 100,000 objects. To test the range queries we
generated six groups of range queries. The regions of the
six groups are squares varying in size which are 0.01%,
0.1%, 1%, IO%, 20%, and 40% of the data space and their
centers are uniformly distributed in the data space. To test
the nearest neighbor queries, the numbers of neighbors we
used are 20,, 40,60, 80 100, and 120. For each experiment,
1,000 randomly generated queries were asked and the
results were averaged.

We experimented two types of the HG-tree with
minimum storage utilization of 66.7% (213) and 25% (1/4),
which are aibbreviated by HG* and HG+, respectively, in
the results. 'The buddy-tree is abbreviated by BUDDY.

3.2 Results and Analysis
Tables 1 , 2, and 3 show the range query, nearest

neighbor query, and insertion costs for each distribution as
averages over all six types of queries, respectively. For the
sake of an easier comparability, we have normalized the
average number of disk accesses for the range and nearest

451

neighbor queries and the average index file size in
BUDDY to 100% in each table. In Table 4 we computed
the unweighted average over all five distributions.

3.2.1 Search Costs
The HG-tree outperforms the buddy-tree in all range

query performance as shown in Table 1. For the nearest-
neighbor queries, the HG-tree outperforms the buddy-tree
with the exception of the x-parallel distribution. In the x-
parallel distribution, the directory coverage of the HG-tree
was even larger than that of the buddy-tree relative to
other distributions. So the area of the HG-tree to be
inspected becomes larger than that of the buddy-tree.
Considering Table 4, the HG-tree offers itself to be the
winner of our comparison.

3.2.2 Insertion Cost
Since the HG-tree tries to absorb splitting and employs

the 2-to-3 splitting, the number of nodes need to be
inspected at overflow increases. However, Table 3 shows
that there is no clear winner.

3.2.3 Storage Requirements
The HG-tree requires fewer number of nodes (and thus

less storage) than the buddy-tree. The savings are around
30%.

Table 2. average over 6 types of nearest neighbor queries

I I I I I

HGt I 4.67 I 4.75 I 4.09 I 4.59 I 4.72

Table 3. average over 6 types of inserts

Table 4. average over 5 distributions

4. Conclusions
In this paper, we proposed the HG-tree as an access

method for content-based retrieval in multimedia
databases. Contrary to previously suggested PAMs, the
HG-tree tries to absorb splitting and employs the 2-to-3
splitting by using the Hilbert ordering. Using these two
properties, the HG-tree achieved the average storage
utilization more than 80%. Also, it reduces the directory
coverage by maintaining the directory regions as minimal
as possible. Moreover, by controlling the trade-off
between the maximal storage utilization and the minimal
directory coverage, it can cope with a wide range of data
distributions

Based on these ideas, we implemented the HG-tree and
carried out performance experiments, comparing our
method to the buddy-tree. Summarizing the outcome of
our comparisons, we can state that the HG-tree exhibits on
the average 18% better range query performance than the
buddy-tree, and results in a reduction in the size of a tree,
and hence its storage cost. The good performance of the
HG-tree comes from the overall control over the storage
utilization and the directory coverage.

Acknowledgments
This research was supported in part by the Korea

Science and Engineering Foundation (KOSEF) grant and
in part by the Samsung Advanced Institute of Technology
(SAIT) grant.

References
[l] D. Comer, “The Ubiquitous B-tree,” ACM Computing

Surveys, Vol.11, No.2, pp.121-137, June 1979.
[2] C. Faloutsos, “Gray codes for partial match and range

queries,” IEEE Trans. on Software Engineering, vol. 14,
no.10, pp.1381-1393, Oct. 1988.

[3] C. Faloutsos and S.Roseman, “Fractals for secondary key
retrieval,” Proc. 8th ACM SIGACT-SIGMOD-SIGART
Symposium on PODS, pp.247-252, 1989.

[4] A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD Conf.’, pp. 47-57,
1984.

[5] D. Hilbert, “Uber die stetige Abbildung einer Link auf ein
Flachenstuck,” Math. Ann., vo1.38, 1891.

[6] H.V. Jagadish, “Linear Clustering of Objects with Multiple
Attributes,” Proc. ACMSIGMOD Conf.’, pp.332-342, 1990.

[7] 1. Kame1 and C. Faloutsos, “Hilbert R-tree: An improved R-
tree using fractals,” Proc. VLDB Con$, pp.500-509, 1994.

[8] A. Kumar, %-Tree: A New Data Structure for Organizing
Multidimensional Data,” IEEE Trans. on Knowledge and
Data Engineering, Vol.6, No2 pp.34 1-347, April 1994.

[9] J.A. Orenstein and T.H. Merrett, “A Class of Data Structures
for Associative Searching,” Proc. 3rd ACM SIGACT-
SIGMOD Symposium on PODS, pp. 1 8 1 - 190, 1984.

[I O] G. Peano, “Sur une courbe qui remplit toute une aire plane,”
Math. Ann., vo1.36, 1890.

[l I] N. Roussopoulos, et al., “Nearest Neighbor Queries,” Proc.
ACMSIGMOD ConJ.’, pp. 71-79, 1995.

[I21 B. Seeger and H.-P. Kriegel, “The Buddy-Tree: An
Efficient and Robust Access Method for Spatial Data Base
Systems,” Proc. 16th VLDB Conf.’, pp.590-601, 1990.

[I31 Q. Yang, A. Vellaikal, and S. Dao, “MB+-Tree: A New
Index Structure for Multimedia Databases,” Proc. Intl.
Workshop on Multi-Media Database, pp. 151- 158, 1995.

452

