
HG-Tree: An Index Structure for Multimedia Databases 

Guang-Ho Cha Chin-Wan Chung 
Department of Information and Communication Engineering 

Korea Advanced Institute of Science and Technology 
Seoul 130-012, Korea 

Abstract 
We propose a new index structure, called the HG-tree, 

to support content-based retrieval in multimedia 
databases. Our goals are twofold: increasing the storage 
utilization and decreasing the directory coverage of the 
index tree. The first goal is achieved by absorbing 
splitting if possible, and when splitting is n8ecessary, 
converting two nodes to three. This is done by proposing a 
good ordering on the directory nodes. The second goal is 
achieved by representing the directory regions compactly. 
We note that there is a trade-off between above two design 
goals, but the HG-tree is so flexible that it can control the 
trade-ofl We present the design of our index tree and 
associated algorithms. In addition, we report the results of 
a series of tests, comparing the proposed index tree with 
the buddy-tree, which is one of the most successjiul access 
methods for a multidimensional space. The resailts show 
the superiority of our method. 

1. Introduction 
Multimedia databases are becoming increasingly 

popular with many applications such as medical databases, 
CAD/CAM, geographic information systems and digital 
libraries. One of the key issues of these areas is content- 
based retrieval which helps users to retrieve relevant 
images based on their contents. In these applications, 
typical queries are the range queries and the: nearest 
neighbor queries. Similarity queries correspond to range 
queries or nearest neighbor queries. The exact-miatch and 
partial-match queries fall within the range queries. 

It is assumed that image objects lie in an n-dimensional 
feature space and each dimension corresponds to it specific 
feature. A domain of a feature is a set of values from 
which a value for the feature can be drawn. Thi: feature 
space or domain space is defined as a Cartesian product of 
the domains of all organizing features. We call any subset 
of the domain space a region. We can map each image 
object into a point in an n-dimensional feature space by 
using n feature-extraction functions. Thus we formulate 
the content-based indexing problem as a multidiniensional 
point indexing problem. We distinguish between point 
access methods (PAMs) and spatial access methods 
(SAMs) which are designed to handle multidimensional 
point and spatial data, respectively. 

The basic principle of multidimensional PAM is to 
partition the n-dimensional feature space intal several 
regions, each containing not more than a fixed number of 
entries. Each region corresponds to one disk page and, 
upon becoming full, is split into two. Our index tree, the 
HG-tree, improves the performance by allowing the 

regions to have more general shape and by representing 
them compactly, contrary to previously suggested PAMs. 

The paper is organized as follows. Section 2 presents the 
ideas and properties of the HG-tree and its associated 
algorithms. Section 3 gives the experimental results and 
analysis which demonstrate the superiority of the HG-tree 
to the buddy-tree. Section 4 contains the conclusions. 

2. HG-tree 
The major aims of the HG-tree are to increase the 

storage utilization and to decrease the directory coverage. 
The high storage utilization both in the directory and data 
nodes results in a small number of nodes and in turn a 
small number of disk accesses. The small directory 
coverage reduces the area covered by the directory regions. 

Definition 1. The storage utilization U of a tree Tis: 
1 ” Ft U =  - 
n z x ,  

where F, is the number of entries in node i, PI is the 
maximum number of entries that a node i can have, and n 
is the number of nodes in the tree. 

Definition 2. The node coverage C, of node i and the 
directory coverage Cd of tree Tare: 

C,(i) = the area spanned by all the entries enclosed 
in the node i, 

where k is the number of nodes in the tree T. 

To achieve above design goals, we use a space filling 
curve, and specifically, the Hilbert curve to apply a linear 
ordering on the data objects and the directory regions. A 
space-filling curve is a mapping that maps the unit interval 
onto the n-dimensional unit hypercube continuously. The 
path of space-filling curves provides a linear ordering on 
the grid points. The Peano curve (also known as the Z- 
curve) [IO], the Hilbert curve [5], and the Gray-code curve 
[2] are examples of space filling curves. In [6] arid [3], it 
was shown that the Hilbert curve achieves the better 
clustering than the others. The basic Hilbert curve on a 
2x2 grid, denoted by HI, and the Hilbert curve of order 2, 
denoted by H2, are shown in Fig. 1 .  The Hilbert curve can 
be generalized for higher dimensionalities. 

The zkdb tree [9], G-tree [8], and the MB+-tree 1131 also 
use linear orders such as z order and column-wise order. 
However, they have a shortcoming in common with 
respect to tlhe spatial locality (see Fig. 2). The MB+-tree 
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HI  H1 

Fig. 1 Hilbert curves of order 1 and 2 

HI 

H2 H3 

(a) MB+-tree (b) zkdb tree (c) HG-tree 
Fig. 2. The points in a 2-dimensional space are arranged in 
(a) column-wise scan order (b) Z order (c) Hilbert order. 
The dashed lines show the ordering path and the heavy 
lines show the partitioning boundaries. The squares 
represent data points. 

divides the data space into three regions M 1, M2 and M3 
in this example. This may distribute objects such that the 
distant objects are clustered in the same region instead of 
nearby objects. The zkdb tree and G-tree have the same 
problem as shown in Fig. 2(b). On the other hand, the 
directory regions, HI, H2 and H3 of the HG-tree are 
compact and the near objects are clustered in the same 
region. 

The Hilbert R-tree [7] also uses a Hilbert ordering 
scheme, however it is one for spatial data, not point data 
and its directory regions are rectangular and overlapping 
unlike the HG-tree. The HG-tree improves performance 
through more general shape of directory region. Moreover, 
since its directory regions are disjoint, the insertion, 
deletion, and exact match search is restricted to exactly 
only one path. 

2.1 Basic Ideas and Properties 
The main idea of the HG-tree is to create an indexing 

scheme that it can support the following: 
0 when an overflow occurs in a node, try to absorb it and 
when splitting is necessary, convert two nodes to three 
nodes. As a result of this the index tree has higher storage 
utilization; 
e maintain the directory region in a minimal way to reduce 
the directory coverage; 
0 control the correlation between the storage utilization 
and the directory coverage to compromise the trade-off 
between them; 
e maintain the node occupancy not to be fallen below a 
certain minimum to have predictable and controllable 
worst-case characteristics. 

To absorb splitting we need the ordered list of the 
objects. We transform Cartesian coordinates in an n- 
dimensional feature space into locations on the Hilbert 
curve. Thus, objects are represented by points on the 

Hilbert curve and we can store them in a sorted order. 
Through this ordering every node has a well-defined set of 
siblings and the HG-tree absorbs splitting by redistributing 
the objects of the oveflowing node into adjacent sibling 
and adjusting the directory regions. When splitting is 
necessary, convert the two nodes, the overflowing node 
and one of the two adjacent siblings, to thee.  Thus this 
splitting is called 2-to-3 splitting. When we select one of 
the two adjacent siblings, we select one that makes the 
directory coverage minimal. Resulting from this, the HG- 
tree yields average storage utilization more than 80% and 
guarantees the worst-cast storage utilization is more than 
66.7% (2/3) of full capacity. This concept is similar to that 
used with the B*-tree [I]. However, the B*-tree operates 
on a I-dimensional space and the HG-tree can be viewed 
as a generalization of it. 

To reduce the directory coverage we introduce the 
concept of minimum bounding interval (MBI) that covers 
all regions of the lower nodes. This plays a similar role as 
a minimum bounding rectangle(MBR) used in the SAM 
such as R-tree[4]. But it does not allow overlap and is not 
rectangular. For every internal node of the HG-tree, its 
MBI is stored. Specifically, an internal node in the HG- 
tree contains at most C,, entries of the form 

where C,, is the capacity of an internal node, I is the MBI 
that encloses all the children of that entry and that i s  
represented by two Hilbert values at either end of the 
interval, and ptr is a pointer to the child node. We 
maintain these entries in a Hilbert order. Another 
advantage of using a linear order is that binary search can 
be used in searching the entries within a node. When a 
node is large, the difference between a binary search 
method, with a log(n) cost and linear search, with an 
average cost of n/2 is significant, where n is the number of 
entries in a node. 

Although it is known that the trees with best storage 
utilization may produce nearly best query performance, it 
is not always the case. Depending on the data distribution, 
the minimal directory coverage may play more important 
role than the maximal storage utilization in query 
performance. From the extensive performance tests we 
have got the experience that there is a trade-off between 
them. When we increase the storage utilization by 
absorbing splitting, there is also a tendency to increase the 
directory coverage. On the other hand, the storage 
utilization is reduced if we only intend to reduce the 
directory coverage. With this insight we can relax the 213 
minimum node occupancy resulting from 2-to-3 splitting 
to some extent to reduce the directory coverage. In HG- 
tree, we can get a good search performance in a wide 
range of data distribution by controlling these two 
parameters, the storage utilization and the directory 
coverage, adaptively depending on data distribution. 

2.2 Insertion 
To insert an object on the HG-tree, we first calculate the 

Hilbert value h of the object and traverse the tree using it 
as a key. In each level we choose the branch with 
minimum Hilbert distance from h among the entries in the 
node. Once we reach the leaf level, we insert the object in 
its correct order. 

( 4 PtT ) 
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Algorithm Insert(node N ,  object U) 
I* Insert object o into tree rooted at N.  

h is the Hilbert value of o *I 

11. Use ChooseLeaf(u, h) to choose a leaf node L 
in which to place 0. 

12. Insert o into L in the appropriate place according 
to the Hilbert order. 
If L overflows, invoke HandleOverflow(L, (0). 

13. Form a set S that contains L, its adjacent sibling, and 
the new leaf (if split occurred). Use Adjustlree(S) 
to update the MBIs that have been changed. 

14. If node split propagation caused the root to split, 
create a new root. 

{ 

1 
2.3. Deletion 

A deletion is straightforward, unless it causes an 
underflow. In such a case, an underflowing node resulting 
from a deletion can borrow keys from or merge with its 
adjacent siblings. 

2.4. Range Searching 
The search algorithm starts with the root and examines 

each branch that intersects the query region recursively 
following these branches. At the leaf level it reports all 
entries that intersect the query region as qualified objects. 

Algorithm RangeSearch(node N, QueryRegion r) 
I* Perform a query with range r on the tree rooted at N.  

N,.child is a child node of node NI *I 

RI. [Search nonleaf node] 
{ 

For every entry NI in N 

lies outside r. 

Invoke Overlap(MBR(Ni), r) to determine 
whether it is contained in, overlaps, or 

If it is contained in r ,  output all objects 
belonging to N,. 

Else if it overlaps, 
invoke RangeSearch(Nbchild, r). 

R2. [Search leaf node] 
Output all the objects that intersect r.  

1 
2.5 Nearest-Neighbor Searching 

Nearest-neighbor queries can be handled with a branch- 
and-bound algorithm [ 1 1 1  on the HG-tree. Two lower and 
upper distance value bounds &,, and &gh are introduced 
to order and prune the paths of the search space in the HG- 
tree: 

S,,, gives the minimum distance between a given point 
and an MBI. However, due to empty space inside the 
MBIs, the actual nearest neighbor might be much farther 
than &,,; 

0 &gh gives the distance between a given poinl and an 
MBI, which guarantees the finding of an object in MBI 
at a Euclidean distance less than or equal to this distance. 

Given a query point, the algorithm examines the top- 
level branches, computes &,,, and && for the (distance, 
and traverses the most promising branch with the depth 
first order. At each stage of traversal, the order of search is 
determined by the nondecreasing order of S,,,,. The objects 

with the distance to a given query point greater than high 
of the farthest MBI and the MBIs with greater than the 
distance between the query point and the farthest object 
are discarded in each traversal stage. 

Algorithm NNSearch(Node N, Point P, Neighbor Near) 
/* Return the k nearest neighbors. N is a current node, P 
is a search point, Near is a list holding the k current 
nearest neighbors in nondecreasing distance order. BrList 
is a list holding branches of nonleaf nodes. E,.child is a 
child of node E, */ 
{ 

N1. [Search leaf node] 
For every entry N I  in N 

Determine the distance, dist,, between P and NI. 
If dist, is less than Near[k].dist 

Assign NI to the Near[k]. 
Rearrange Near in correct order. 

N2. [Search Nonleaf Node] 
For every entry NI in N 

Compute Go,,, &gh and store them with NI 
into a BrList. 

Sort 1 he BrList based on &. 
Remove the unnecessary branches in BrList as 

For arranged entries E, in BrList 

(compared with Near. 

compared with Near 

Invoke NNSearch(Ebchild, P, Near) 
Remove the unnecessary branches in BrList as 

I 
3. Experimental Results 

To assess the performance of the HG-tree, we 
implemented it and ran experiments on a four dimensional 
space. We compared our tree against the buddytree. In 
[12], it is reported that the buddy-tree is the best one 
among PAlMs with respect to the average range query 
performancle. For all operations, we have measured the 
number of disk accesses per operation. 

3.1 Experimental Setup 
To experiment we generated 5 groups of 4 dimensional 

data files that contained different distributions of data: 
uniform, diagonal, bit, x-parallel, and clustered. E:ach file 
contains 100,000 objects. To test the range queries we 
generated six groups of range queries. The regions of the 
six groups are squares varying in size which are 0.01%, 
0.1%, 1%, IO%, 20%, and 40% of the data space and their 
centers are uniformly distributed in the data space. To test 
the nearest neighbor queries, the numbers of neighbors we 
used are 20,, 40,60, 80 100, and 120. For each experiment, 
1,000 randomly generated queries were asked and the 
results were averaged. 

We experimented two types of the HG-tree with 
minimum storage utilization of 66.7% (213) and 25% (1/4), 
which are aibbreviated by HG* and HG+, respectively, in 
the results. 'The buddy-tree is abbreviated by BUDDY. 

3.2 Results and Analysis 
Tables 1 ,  2, and 3 show the range query, nearest 

neighbor query, and insertion costs for each distribution as 
averages over all six types of queries, respectively. For the 
sake of an easier comparability, we have normalized the 
average number of disk accesses for the range and nearest 

451 



neighbor queries and the average index file size in 
BUDDY to 100% in each table. In Table 4 we computed 
the unweighted average over all five distributions. 

3.2.1 Search Costs 
The HG-tree outperforms the buddy-tree in all range 

query performance as shown in Table 1. For the nearest- 
neighbor queries, the HG-tree outperforms the buddy-tree 
with the exception of the x-parallel distribution. In the x- 
parallel distribution, the directory coverage of the HG-tree 
was even larger than that of the buddy-tree relative to 
other distributions. So the area of the HG-tree to be 
inspected becomes larger than that of the buddy-tree. 
Considering Table 4, the HG-tree offers itself to be the 
winner of our comparison. 

3.2.2 Insertion Cost 
Since the HG-tree tries to absorb splitting and employs 

the 2-to-3 splitting, the number of nodes need to be 
inspected at overflow increases. However, Table 3 shows 
that there is no clear winner. 

3.2.3 Storage Requirements 
The HG-tree requires fewer number of nodes (and thus 

less storage) than the buddy-tree. The savings are around 
30%. 

Table 2.  average over 6 types of nearest neighbor queries 

I I I I I 

HGt I 4.67 I 4.75 I 4.09 I 4.59 I 4.72 

Table 3. average over 6 types of inserts 

Table 4. average over 5 distributions 

4. Conclusions 
In this paper, we proposed the HG-tree as an access 

method for content-based retrieval in multimedia 
databases. Contrary to previously suggested PAMs, the 
HG-tree tries to absorb splitting and employs the 2-to-3 
splitting by using the Hilbert ordering. Using these two 
properties, the HG-tree achieved the average storage 
utilization more than 80%. Also, it reduces the directory 
coverage by maintaining the directory regions as minimal 
as possible. Moreover, by controlling the trade-off 
between the maximal storage utilization and the minimal 
directory coverage, it can cope with a wide range of data 
distributions 

Based on these ideas, we implemented the HG-tree and 
carried out performance experiments, comparing our 
method to the buddy-tree. Summarizing the outcome of 
our comparisons, we can state that the HG-tree exhibits on 
the average 18% better range query performance than the 
buddy-tree, and results in a reduction in the size of a tree, 
and hence its storage cost. The good performance of the 
HG-tree comes from the overall control over the storage 
utilization and the directory coverage. 
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