
iBroker: An Intelligent Broker for Ontology Based
Publish/Subscribe Systems

Myung-Jae Park 1 and Chin-Wan Chung 2

Div. of Computer Science, Dept. of EECS
Korea Advanced Institute of Science and Technology(KAIST)

373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea, 305-701
1jpark@islab.kaist.ac.kr 2chungcw@islab.kaist.ac.kr

Abstract— In this paper, we present iBroker, an Intelligent
Broker for ontology based publish/subscribe systems which syn-
tactically and semantically match incoming OWL data to multiple
user profiles. iBroker effectively manages user profiles based
on the semantics of query patterns in user profiles formulated
in SPARQL. iBroker uses a semantic matching algorithm to
efficiently process OWL data and generate the complete results
for user profiles, considering the core semantics of OWL. Ex-
perimental results demonstrate that iBroker is more efficient
and scalable compared to an existing broker for ontology based
publish/subscribe systems.

I. INTRODUCTION

With the increase in the amount of data on the Internet, the
amount of information available to users is rapidly increased.
Among large amounts of information, it is a time-consuming
task for users to find appropriate information. Instead, users
may want to be informed of up-to-date and accurate infor-
mation which is relevant to their interests. For example, a
newspaper site publishes thousands of newspaper articles per
day. If a user wants to find certain articles, the user should visit
the site and find out the ones by searching the list of titles of
newspaper articles. Instead, a newspaper alerting service can
provide the list of articles to the user based on the user’s
subscribed interest whenever articles are published in the site.

In order to support such services, publish/subscribe sys-
tems have been developed. In a publish/subscribe system,
subscribers (i.e., users) subscribe their interests to brokers
as profiles, publishers provide their newly generated infor-
mation to brokers in the form of events, and brokers notify
the events to their interested subscribers. Recently proposed
publish/subscribe systems are content based. In a content based
publish/subscribe system, subscribers express their interests
based on the content (i.e., the structure and data values)
of events, and events containing the subscribed contents are
delivered to the corresponding subscribers.

As XML becomes the standard data format for representing
and exchanging data on the Internet, various researches on
XML based publish/subscribe systems have been conducted.
In such systems, XML documents are events and XPath
or XQuery, well-known query languages for XML, is used
to express subscribers’ interests. Those researches mainly
focused on how to efficiently process XML data against
a set of XPath (or XQuery) profiles, only considering the

syntactical (i.e., structure) information of XML data and
user profiles. Without considering the semantics, the path
expression ‘/A/B/automobile’ in an XML document cannot be
matched with the path expression ‘/A/B/car’ in a profile.

To overcome this problem, several researches on ontology
based publish/subscribe systems have been conducted [1], [2],
[3]. In those researches, RDF [4] is used as publications and
some matching techniques to efficiently process RDF graphs
against user profiles are presented. Processing RDF graphs,
instead of RDF data itself, might be impractical when large
sized RDF data are provided from publishers since the com-
plete RDF data must be provided to the broker and translated
into the RDF graph for the matching process. Thus, streaming
based processing of RDF data itself is more appropriate in the
real time environment. Moreover, the semantics supported in
those researches are insufficient.

Recently, OWL(Web Ontology Language) [5] was devel-
oped as a vocabulary extension to RDF and RDFS to increase
the expressive power of ontology data. With such features,
OWL is a recommended semantic markup language for pub-
lishing and sharing ontologies on the World Wide Web, by
W3C(World Wide Web Consortium). Moreover, OWL was
chosen as an ontology description language and SPARQL [6]
as a query language for ontology data by W3C Semantic
Web Activity. As a result, to provide higher selectivity of
ontology data for the dissemination, a research on OWL based
publish/subscribe systems which use SPARQL as their profiles
and process OWL data in the streaming fashion is required.

In this paper, we present iBroker, an Intelligent Broker
for OWL based publish/subscribe systems which syntactically
and semantically match incoming OWL data to multiple user
profiles. iBroker effectively manages user profiles based on
the semantics of query patterns in user profiles formulated
in SPARQL. iBroker uses a streaming based semantic match-
ing algorithm to efficiently process OWL data and generate
the complete results for user profiles, considering the core
semantics of OWL, which are Class, subClassOf, Property,
subPropertyOf, inverseOf, symmetric, and transitive. In our ex-
periment, iBroker demonstrates significantly improved match-
ing performance compared to an existing ontology based pub-
lish/subscribe system which does not support subPropertyOf
and the semantics for individuals either. On the average, the

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.214

1255

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.214

1255

overall processing time of iBroker is about 15.4 times better
than that of the existing system.

II. RELATED WORK

S-ToPSS [1] extends the attribute based publish/subscribe
system with capabilities to process syntactically different, but
semantically-equivalent information by using the ontology.

In contrast to S-ToPSS, where the ontology is only used for
checking synonyms and taxonomy, OPS [3] uses RDF graphs
as its publications and subscriptions. OPS uses a subgraph
isomorphism algorithm to match an RDF graph with RDF
based profile graphs. Basically, OPS creates matching trees
for candidate profiles, and partial matching results found
during the traversal of the RDF graph are maintained in
these matching trees. When the traversal is completed, OPS
performs the verification process of matching trees to check
whether matching trees are potentially the results of profiles.

G-ToPSS [2] is another ontology based system which uses
RDF for its publication and subscription models. G-ToPSS
utilizes a hash table for managing user profiles and uses this
hash table for matching RDF graphs. Thus, as demonstrated
in [2], the performance of G-ToPSS is better than that of
OPS. However, G-ToPSS only considers subClassOf semantics
by using a class taxonomy. This class taxonomy contains
the hierarchical structure of classes and their individuals.
A problem with the class taxonomy is that it requires an
additional overhead to maintain such taxonomy up-to-date.

III. IBROKER

A publish/subscribe system processes a sequence of events
(e.g., OWL documents) to generate profile results for sub-
scribers. Such events should be processed in the streaming
environment since a matching process can be performed before
the parsing of a document is done.

In iBroker, an OWL parser which works like a SAX (Simple
API for XML) parser is used. At the beginning of an OWL
document, the OWL parser generates a start() event. For each
class, the OWL parser generates a class(C, I) event, where C
is a name of the class and I is an individual of the class C.
When a property is encountered, the OWL parser generates a
property(P, D, R) event, where P is a name of the property,
D is a domain individual of the property P, and R is a range
individual of the property P. At the end of an OWL document,
the OWL parser generates an end() event.

A. Data Structure of iBroker

An OWL document can be represented as a directed labelled
graph. Thus, in this paper, we begin with an assumption that
every node (i.e., subject, object) in a graph has a unique name
by their corresponding URIs, and no two edges (i.e., property)
between any two nodes can have the same label either, similar
to [2]. This assumption leads to the development of a hash
table based data structure for the matching process since each
of the triples in the WHERE clause of a SPARQL query can
be separated. Thus, iBroker utilizes a two-level hash table,
named profileHash, for managing user profiles.

At the first level of profileHash, all the triples for classes and
properties expressed in all the user profiles are stored using the
name of a class or a property as the hash key. At the second
level of profileHash, a list of all the user profiles containing
this triple is maintained with some information obtained from
this triple in each user profile.

Example 1: Consider the following three SPARQL queries:
q1 = (?x type Article)
q2 = (?x type Columnist)(?x Writes ?y)
q3 = (?x type Article)(?x articleName ‘ICDE2009 CFP’)
The corresponding profileHash is depicted in Fig. 1.

&1 Article

&2 Columnist

&3 Writes

&4 articleName

ID NextToMatch Value Var

1 - x

3 {&4} x

ID NextToMatch Value Var

2 {&3} x

ID NextToMatch Value Var

2 - x,y

ID NextToMatch Value Var

3 - ‘ICDE
2009
CFP’

x,-

Fig. 1. An Example of profileHash for queries expressed in Example 1

Note that we only show the triples of the WHERE clause
of a SPARQL query, for brevity. Each entry of the second
level of profileHash contains the following four fields. The ID
field indicates the number of a profile as a profile identifier.
The NextToMatch field denotes that there is another triple to
be considered for this profile to be matched. The Value field
contains the value used in the triple of the SPARQL query.
Lastly, the Var field contains variable names used in the triple.

Procedure BuildingProfileHash(P)
begin
1. for each triple Ti in Profile P do {
2. tripleInfo := profileHash.getTriple(Ti.name)
3. if (tripleInfo is null)
4. tripleInfo := profileHash.insertTriple(Ti.name)
5. tripleInfo.insertTripleInfo(P.id, Ti.info)
6. }
end

Fig. 2. The Algorithm for Building profileHash

Fig. 2 shows the algorithm for building profileHash. For
each triple Ti in a profile P, a corresponding entry for Ti is
checked from the first level of profileHash (Line 2). If there
is no entry for triple Ti, the name of Ti is inserted into the
first level of profileHash and the triple information of Ti is
inserted into the second level of profileHash. When an entry
for triple Ti exists in profileHash, the triple information of Ti
is inserted into the second level of profileHash (Line (3)-(5)).

B. Semantic Matching Algorithm

The algorithm of the Semantic Matcher in Fig. 3 matches
an incoming OWL document against user profiles. A boolean
variable matchResult is used to indicate whether an event for
a class is successfully matched to the entries in profileHash.

12561256

Procedure SemanticMatching(e)
begin
1.switch(e.type) {
2. case start :
3. create a match table for each class and property in profileHash
4. case class :
5. match := profileHash.getTriple(e.name)
6. if (match is null)
7. matchResult := false
8. else {
9. CName.Table + = (e.individual)
10. matchResult := true
11. }
12. ancestorList := getClassAncestors(e.name)
13. if (ancestorList is not null) {
14. for each class Ci in ancestorList do {
15. match := profileHash.getTriple(Ci)
16. if (match is not null) {
17. CName.Table + = (e.individual)
18. matchResult := true
19. }
20. }
21. }
22. case property :
23. if (matchResult == true) {
24. match := profileHash.getTriple(e.name)
25. if (match is not null) {
26. PName.Table + = (e.domain, e.range)
27. type := obtainPropertyType();
28. switch(type) {
29. case inverse :
30. inversePName.Table + = (e.range, e.domain)
31. case symmetric :
32. PName.Table + = (e.range, e.domain)
33. case transitive :
34. Compute the transitive closure in PName.Table
35. Add new (domain, range) pairs in PName.Table
36. }
37. }
38. ancestorList := getPropertyAncestors(e.name)
39. if (ancestorList is not null) {
40. for each property Pi in ancestorList do {
41. match := profileHash.getTriple(Pi)
42. if (match is not null)
43. repeat Line (26)-(36)
44. }
45. }
46. }
47. case end :
48. GenerateResult()
49.}
end

Fig. 3. The Algorithm of the Semantic Matcher

For the start event, a table Table(individual) is created for
each class and a table Table(domain, range) is created for each
property in profileHash (Line (2)-(3)).

For each class event, a corresponding entry for class e.name
is searched in the first level of profileHash. If there is no entry
for e.name, the Semantic Matcher sets the boolean variable
matchResult to false. Otherwise, the Semantic Matcher stores
an individual e.individual into the corresponding result table
and sets the boolean variable matchResult to true (Line (5)-
(11)). For the subclass matching, the Semantic Matcher re-
trieves the corresponding ancestor list for class e.name. Then,
the Semantic Matcher searches for an entry in profileHash and
stores the individual e.individual into the result table for all

matched ancestor classes in ancestorList (Line (12)-(21)).
For each property event, the value of the boolean variable

matchResult is considered first (Line (23)). If it is false, the
matching is not performed for property e.name. Otherwise,
a corresponding entry for property e.name is searched in
profileHash. If so, a (domain, range) pair of property e.name
is stored in the corresponding match table (Line (24)-(26)).
The Semantic Matcher obtains the type of this property (Line
(27)) and performs the semantic matching according to the
type of this property (Line (28)-(36)). The Semantic Matcher
performs the subproperty matching in Line (38)-(45) for all
ancestor properties of property e.name.

Lastly, when an event is END, the Semantic Matcher
generates results by invoking GenerateResult() (Line (47)-
(48)). Fig. 4 shows the algorithm for GenerateResult(). For
each profile Qj of class Ci in profileHash, if an entry for the
NextToMatch field is null, the match table becomes the result
for profile Qj (Line (3)-(4)). Otherwise, the result for profile
Qj is obtained by joining all the match tables of NextToMatch
fields while navigating NextToMatch fields (Line (6)-(10)).

Procedure GenerateResult()
begin
1.for each class Ci in profileHash do {
2. for each profile Qj in the entry for Ci do {
3. if (Qj.NextToMatch is null)
4. Qj.result := Ci.Table
5. else {
6. Qj.result := Ci.Table
7. while (Qj.NextToMatch is not null) {
8. Qj.result := Qj.result �� Qj.NextToMatch.Table
9. Qj.NextToMatch++
10. }
11. }
12. }
13.}
end

Fig. 4. The Algorithm for GenerateResult()

IV. EXPERIMENTS

We implemented iBroker using Java. We also implemented
G-ToPSS based on the algorithms provided in [2]. Our exper-
iments were performed on 2.66GHz Pentium 4 with 1.5GB of
main memory, running Windows XP.

Data Set We conducted the experiments using Lehigh
University Benchmark Data (LUBM) (available in
http://swat.cse.lehigh.edu/projects/lubm/index.htm). LUBM
is widely used well-known ontology benchmark data. We
generated various sizes of OWL data: 500KB, 1MB, 5MB,
10MB, 50MB, and 100MB.

Query Set Synthetic SPARQL queries are generated by
a simple generator, implemented for the experiments. By
setting the maximum number of triples as 6, the probability
of containing values as 10%, and the probability of containing
types only as 10%, we generated various sets of 100, 500,
1000, 5000, and 10000 user profiles. For the experiments,
profiles are loaded into the hash tables for iBroker and G-
ToPSS, respectively.

12571257

0

4000

8000

12000

16000

500KB 1MB 5MB 10MB 50MB 100MB

T
im

e
(m

s)

Data Set

G-ToPSS iBroker

Fig. 5. Matching Time for 10000 User Profiles

Fig. 5 shows the matching times of G-ToPSS and iBroker
for various sizes of incoming OWL data with 10000 user
profiles. In G-ToPSS, there are more than one entries to be
considered for matching a (domain individual, range individ-
ual) pair of a property since the hash table is constructed
by using a (domain individual, range individual) pair of a
property. This means that there are at least four entries to
be considered for the matching. Moreover, G-ToPSS has to
perform the matching for each property in incoming OWL
data. In contrast to G-ToPSS, iBroker performs the matching
for the names of classes and those of properties. However,
there is only one entry to be considered for each class and
property if there is no ancestors. Moreover, iBroker does not
have to perform any matching for some properties when the
class used as to define their domain is not matched. This
feature of iBroker can enable the early pruning of unnecessary
OWL data, similar to [7].

0

4000

8000

12000

16000

20000

100 500 1000 5000 10000

T
im

e
(m

s)

Query Set

G-ToPSS iBroker

Fig. 6. Matching Time for 100MB OWL Data

Fig. 6 shows the matching times of G-ToPSS and iBroker
for various sets of user profiles with the 100MB size of
incoming OWL data. Similar to the above case, iBroker
performs better than G-ToPSS.

0

3000

6000

9000

12000

15000

500KB 1MB 5MB 10MB 50MB 100MB

T
im

e
(m

s)

Data Set

G-ToPSS iBroker 27218

Fig. 7. Result Generation Time for 100 User Profiles

Fig. 7 shows the result generation times of G-ToPSS and

iBroker for various sizes of incoming OWL data with 100 user
profiles. When generating a result for a profile, G-ToPSS has to
perform the join for the properties expressed in the profile and
check the class of each joined individual in a class hierarchy
by traversing the class taxonomy tree. Moreover, there would
be numerous unnecessary individuals which are joined as
the result before checking the hierarchical information of the
domain class. In contrast to G-ToPSS, in iBroker, the match
table for a property does not contain any (domain individual,
range individual) pair of the property when the class used
to define its domain is not matched. As a result, the result
generation time of iBroker is significantly reduced compared
to that of G-ToPSS.

Consequently, iBroker performs better than G-ToPSS for all
the cases. On the average, the matching time of iBroker is 2.14
times faster than that of G-ToPSS and the result generation
time of iBroker is 37.3 times faster than that of G-ToPSS.
Lastly, the overall processing time of iBroker is about 15.4
times better than that of G-ToPSS.

V. CONCLUSION

In this paper, we proposed iBroker, an OWL based pub-
lish/subscribe system. iBroker manages user profiles formu-
lated in SPARQL queries in the hash table, profileHash.
iBroker also supports the semantic matching technique which
increases the selectivity for the dissemination since inverse,
symmetric, and transitive semantics can cause the new (do-
main, range) pairs to be matched. Thus, iBroker can match in-
coming OWL data against user profiles with higher selectivity.
The experimental results show that the performance of iBroker
is significantly improved compared to an existing ontology
based publish/subscribe system.

ACKNOWLEDGMENT

This research was supported by the Ministry of Knowledge
Economy, Korea, under the Information Technology Research
Center support program supervised by the Institute of Infor-
mation Technology Advancement. (grant number IITA-2008-
C1090-0801-0031)

REFERENCES

[1] M. Petrovic, I. Burcea, and H.-A. Jacobsen, “S-topss: Semantic toronto
publish/subscribe system,” in Proc. of the International Conference on
Very Large Data Bases (VLDB), Sept. 2003, pp. 1101–1104.

[2] M. Petrovic, H. Liu, and H.-A. Jacobsen, “G-topss: Fast filtering of graph-
based metadata,” in Proc. of the International World Wide Web Conference
(WWW), May 2005, pp. 539–547.

[3] J. Wang, B. Jin, and J. Li, “An ontology-based publish/subscribe system,”
in Proc. of the ACM/IFIP/USENIX International Conference on Middle-
ware, Oct. 2004, pp. 232–253.

[4] F. Manola, E. Miller, and B. McBride. (2004, Feb.) Rdf primer. W3C
Recommendation. [Online]. Available: http://www.w3.org/TR/rdf-primer

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. (2004, Feb.) Owl
web ontology language reference. W3C Recommendation. [Online].
Available: http://www.w3.org/TR/owl-ref

[6] E. Prudhommeaux and A. Seaborne. (2008, Jan.) Sparql query
language for rdf. W3C Recommendation. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query

[7] M. M. Moro, P. Bakalov, and V. J. Tsotras, “Early profile pruning
on xml-aware publish-subscribe systems,” in Proc. of the International
Conference on Very Large Data Bases (VLDB), Aug. 2007, pp. 866–877.

12581258

