
An Efficient and Scalable Management of
Ontology

Myung-Jae Park1, Jihyun Lee1, Chun-Hee Lee1, Jiexi Lin1,
Olivier Serres2, and Chin-Wan Chung1

1 Korea Advanced Institute of Science and Technology, Korea
{jpark,hyunlee,leechun,jesse,chungcw}@islab.kaist.ac.kr

2 University of Technology of Belfort-Montbéliard, France
olivier.serres@utbm.fr

Abstract. OWL is a recommended language for publishing and shar-
ing ontologies on the Semantic Web. To manage the ontologies, several
OWL data management systems have been proposed. However, the ex-
isting systems have limitations of the scalability and the reasoning. In
this paper, we propose an OWL data management system, ONTOMS,
which stores OWL data into class based relations, performs complete in-
verseOf, symmetric, and transitive reasoning for instances, and efficiently
evaluates OWL-QL queries against ontologies in a relational database.

1 Introduction

Web Ontology Language(OWL) [1] is a semantic markup language for publishing
and sharing ontologies on the Web. OWL is developed as a vocabulary extension
of RDF [2] and RDFS [3] to increase the expressive power of ontology data, which
leads OWL as a recommended ontology language for the Semantic Web. OWL
data can be represented by a graph like RDF as shown in Fig. 1.

To support the expressive power of OWL data, several OWL reasoners [4–6]
have been proposed. However, those reasoners confronted the scalability issue,
due to the use of memory. To overcome this problem, RDBMS based OWL data
management systems [7–9] have been proposed. Since RDBMSs do not support
the reasoning ability, those systems cannot obtain complete class and property
hierarchies and perform the instance reasoning. As a result, those systems incor-
porated OWL reasoners to obtain such hierarchies completely. However, due to
the scalability drawback of OWL reasoners, instance reasoning is not supported.

To retrieve instances of classes or properties, OWL Query Language(OWL-
QL) [10] has been proposed. OWL-QL is based on query patterns, in the form
of (property, subject, object). To evaluate query patterns over OWL data stored
in RDBMS, a proper relational schema is required. However, existing systems
do not incorporate efficiency consideration in designing their relational schemas.
Thus, in this paper, we propose ONTOMS, an efficient and scalable ONTOlogy
Management System, to efficiently manage large sized OWL data. ONTOMS
stores OWL data into a class based relational schema to increase query process-
ing performance. On the average, the query performance of ONTOMS is about

2 Myung-Jae Park et al.

Fig. 1. An example of OWL data (a simple university ontology)

90 times better than DLDB [7]. To provide the complete results, ONTOMS sup-
ports instance reasoning for inverseOf, symmetric, and transitive properties. To
our best knowledge, ONTOMS is the first RDBMS based OWL data manage-
ment system which supports the complete instance reasoning.

2 Related Work

There are several OWL reasoners to manage OWL data. FaCT [5] performs class
and property related reasoning only. RACER [4] and Pellet [6] support class and
property hierarchy reasoning, as well as instance reasoning.

SnoBase [9] stores class and property definitions (e.g., subClassOf and sub-
PropertyOf) into Fact relation. SnoBase also stores every triple (i.e., (subject,
property, object)) into Fact relation. To provide reasoning, SnoBase utilizes SQL
triggers. However, the runtime depth level of trigger cascading supported in
RDBMSs is limited. Also, SnoBase does not support instance reasoning.

Instance Store [8] uses Descriptions relation to store class definitions, Prim-
itives relation to store individuals, and other four relations (Type, Equivalents,
Parents and Children) to maintain class hierarchy information. Instance Store
uses FaCT or RACER to only obtain class hierarchies. In addition, Instance
Store only supports classes without any consideration on properties.

DLDB [7] maintains one class relation for each class and one property relation
for each property. For class and property hierarchies, DLDB uses FaCT. However,
DLDB does not support any instance reasoning. Thus, DLDB cannot provide
complete query results for properties which require instance reasoning.

3 OWL Data Storage

The class hierarchy and the property hierarchy are generated from Pellet. To
maintain containment relationship information among nodes of each hierarchy,
a pair of (start, end) values is assigned to each node according to the node’s
position, which was originally proposed for XML data [11]. Fig. 2 shows class
and property hierarchies for the OWL data in Fig. 1.

An Efficient and Scalable Management of Ontology 3

Thing

Person Course University

Professor Student

GraduateStudent

takesCourse teachesCourse hasAlumnusdegreeFrom

doctoralDegreeFrom

[1,14]

[2,9]

[3,4]
[5,8]

[10,11] [12,13]

[6,7]

[1,2] [3,4] [5,8] [9,10]

[6,7]

(a) The class hierarchy (b) The property hierarchy

Fig. 2. Class and Property Hierarchies

ONTOMS generates a class based relational schema, where one relation is
created for each class. Each class relation contains associated properties as at-
tributes. Associated properties are the properties that have the class as domains.

To efficiently utilize the property hierarchy, we only retain properties which
do not have any super properties (called highest properties) among associated
properties. Class relations also have start and end attributes for each highest
property. If the highest property has no subproperties, those are omitted.

degreeFrom_EdegreeFrom_SdegreeFromUID
Person

degreeFrom degreeFrom_EdegreeFrom_StakesCourseUID
Student

GS1
degreeFrom_EdegreeFrom_SdegreeFromUID

GraduateStudent

C3GS1

C2GS1

C1GS1
ValueUID

GraduateStudent

C3Prof1

C2Prof1

C1Prof1
ValueUID

76Univ1Prof1
degreeFrom_EdegreeFrom_SdegreeFromUID

Professor

UID
Course

Univ1
hasAlumnusUID

University

Professor
_teachesCourse_takesCourse

Fig. 3. Relational Tables in ONTOMS

A number of redundant tuples would be generated for a multi-valued prop-
erty. The multi-valued property indicates where one instance of property’s do-
main has more than one values. For example, in Fig. 1, Prof1 has three different
values (i.e., C1, C2, and C3) for teachesCourse property. As a result, ONTOMS
separates multi-valued properties from class relations. A new relation is assigned
to each multi-valued property. Fig. 3 shows the relations3, generated for the OWL
data presented in Fig. 1. Note that ONTOMS stores new tuples generated after
performing instance reasoning. The (Univ1, null) tuple in University relation
should be updated as (Univ1, Prof1) for the inverseOf property, hasAlumnus.

Note that the translation process of OWL-QL queries to SQL queries for the
class based relations can be found in [12].

4 Instance Reasoning

OWL defines five types of properties: inverseOf, symmetric, transitive, functional
and inverseFunctional properties. Only the first three properties may generate a
3 Internally, ONTOMS assigns a unique label identifier (UID) to each instance.

4 Myung-Jae Park et al.

large number of new facts4. Therefore, we focus on reasoning for inverseOf, sym-
metric and transitive properties (which we will refer to as IST properties). Note
that the definitions of the IST properties are given in the OWL Reference [1].

Definition 1. Relation R of a property P is the set of (x,y) in P.

Definition 2. Let property P be inverseOf property P’, R be the relation of P,
and R’ be the relation of P’. The inverseOf reasoning for P or R is the process
of adding (y,x) to R for all (x,y) in R’, if (y,x) is not in R.

Definition 3. Let P be a symmetric property and R be the relation of P. The
symmetric reasoning for P or R is the process of adding (y,x) to R for all (x,y)
in R, if (y,x) is not in R.

Definition 4. Let P be a transitive property and R be the relation of P. The
transitive reasoning for P or R is the process of computing the transitive closure
of R.

A relation R after inverseOf reasoning is written as RI .5 Similarly, a relation
R after symmetric and transitive reasoning is written as RS and RT , respectively.

In this paper, we propose an IST reasoning algorithm which does not require
recursive or iterative processing. The algorithm guarantees that the complete
set of new facts can be obtained by performing reasoning only once for each
type of property in a certain sequence, i.e., first for inverseOf property, then for
symmetric property, and last for transitive property.

Lemma 1. Suppose relation R is inverseOf relation R’. After symmetric rea-
soning for R and R’, RS is inverseOf R’S.

Lemma 2. Suppose relation R is inverseOf relation R’. If R is symmetric, then
R’ is symmetric. If R is transitive, then R’ is transitive.

Theorem 1. Suppose property P is inverseOf property P’, P is symmetric and
transitive. Let R be the relation of P and R’ the relation of P’. By following
the sequence <inverseOf reasoning, symmetric reasoning, transitive reasoning>
for R and R’, the resulting relations of R and R’ are inverseOf of each other,
symmetric and transitive.

The proof for Theorem 1 and the algorithm for IST reasoning, which can be
found in [12], are not included due to the page limitation.

5 Experiments

We implemented ONTOMS using IBM DB2 UDB 8.2. We interfaced DLDB with
IBM DB2 since DLDB uses MS-Access. Experiments were performed on 3GHz
4 Referred to as newly generated instances in Sect. 3.
5 Here,we introduce RI to indicate the change of R as a result of inverseOf reasoning.

An Efficient and Scalable Management of Ontology 5

Pentium 4 with 1024MB of main memory. We used Lehigh University Benchmark
Data(LUBM)6. We generated various sizes of OWL data: 1MB, 5MB, 10MB,
50MB, 100MB, and 500MB. Since LUBM queries (Q1 to Q14) are not sufficient,
we added three queries (Q15 to Q17). Detailed information on the query set,
which can be found in [12], is not included due to the page limitation.

We compared the total query processing time of ONTOMS and that of DLDB
using 17 queries. We show the total query processing time for only 50MB data
in Fig. 4 since the shapes of graphs for different sizes are similar.

(a) Query processing time(<2 sec) (b) Query processing time(>=2 sec)

0

8

16

24

Q2 Q4 Q7 Q8 Q9 Q16 Q17

T
im

e(
se

co
nd

s)

976

0

0.4

0.8

1.2

1.6

Q1 Q3 Q5 Q6 Q10 Q11 Q12 Q13 Q14 Q15

T
im

e(
se

co
nd

s)

ONTOMS DLDB

Fig. 4. Query Processing Time for 50MB OWL Data

The number of joins in ONTOMS is less than or equal to that of DLDB.
Therefore, in Fig. 4, ONTOMS is better than DLDB for most of 17 queries. How-
ever, for Q7 and Q13, ONTOMS is worse than DLDB. Since Q7 and Q13 have
values as their subjects, there are just a few bindings satisfying those queries.

(a) Single-valued property (Q16) (b) Multi-valued property (Q17)

0

10

20

30

40

1MB 5MB 10MB 50MB 100MB 500MB

Ti
m

e(
se

co
nd

s)

ONTOMS DLDB

0

40

80

120

1MB 5MB 10MB 50MB 100MB 500MB

T
im

e(
se

co
nd

s)

Fig. 5. Query Processing Time over Differently Sized OWL Data

In Fig. 5, all properties of Q16 are single-valued properties while those of Q17
contain multi-valued properties. Thus, the performance gap between ONTOMS
and DLDB is much larger in Q16.

Consequently, ONTOMS outperforms DLDB for most queries in spite of its
support of instance reasoning. ONTOMS is 90 times faster than DLDB on the
average, calculated by averaging performance differences for queries over 1MB,
5MB, 10MB, 50MB, 100MB, and 500MB OWL data.

6 Available in http://swat.cse.lehigh.edu/projects/lubm/index.htm

6 Myung-Jae Park et al.

6 Conclusion

In this paper, we proposed ONTOMS, an OWL data management system using
an RDBMS. ONTOMS generates the class based relational schema in which a re-
lation is created for each class and contains associated properties as its attributes.
To avoid data redundancy, ONTOMS creates class-property relations for multi-
valued properties. Thus, this schema is of great advantage to queries having less
multi-valued properties. In addition, ONTOMS supports the reasoning on the
IST properties and the class and property hierarchies. The experimental results
show that ONTOMS outperforms DLDB in the query response time.

Acknowledgments. This research was supported by the Ministry of Infor-
mation and Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-0603-0031.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C
Recommendation, http://www.w3.org/TR/owl-ref (Feb. 2004)

2. Manola, F., Miller, E., McBride, B.: RDF Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer (Feb. 2004)

3. Brickley, D., Guha, R.V., McBride, B.: RDF Vocabulary Description Language
1.0: RDF Schema. http://www.w3.org/TR/rdf-schema (Feb. 2004)

4. Haarsley, V., Moller, R.: RACER System Description. In: Proc. of 1st International
Joint Conference on Automated Reasoning. (June 2001) 701–706

5. Horrocks, I., Sattler, U.: A Tableaux Decision Procedure fore SHOIQ. In: Proc. of
19th International Joint Conference on Artificial Intelligence. (Aug. 2005) 448–453

6. Parsia, B., Sirin, E.: Pellet: An OWL DL Reasoner. In: Proc. of 3rd International
Semantic Web Conference. (Nov. 2004)

7. Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large
OWL Datasets. In: Proc. of 3rd International Semantic Web Conference. (Nov.
2004) 274–288

8. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic
Reasoning with Large Numbers of Individuals. In: Proc. of 2004 International
Workshop on Description Logic. (June 2004) 31–40

9. Lee, J., Goodwin, R.: Ontology Management for Large-Scale Enterprise Systems.
IBM Technical Report, RC23730 (Sep. 2005)

10. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL-A Language for Deductive Query
Answering on the Semantic Web. Journal of Web Semantics 2(1) (Dec. 2004)
19–29

11. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: Proc. of the
2001 ACM SIGMOD Conference. (May 2001) 425–436

12. Park, M.J., Lee, J.H., Lee, C.H., Lin, J., Serres, O., Chung, C.W.: ONTOMS: An
Efficient and Scalable Ontology Management System. In: KAIST CS/TR-2005-
246. (Dec. 2005)

