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Abstract. This paper presents a novel type of queries in spatial databases,
called the direction-aware bichromatic reverse k nearest neighbor(DBRkNN )
queries, which extend the bichromatic reverse nearest neighbor queries.
Given two disjoint sets, P and S, of spatial objects, and a query object
q in S, the DBRkNN query returns a subset P ′ of P such that k nearest
neighbors of each object in P ′ include q and each object in P ′ has a
direction toward q within a pre-defined distance. We formally define the
DBRkNN query, and then propose an efficient algorithm, called DART,
for processing the DBRkNN query. Our method utilizes a grid-based
index to cluster the spatial objects, and the B+-tree to index the direc-
tion angle. We adopt a filter-refinement framework that is widely used
in many algorithms for reverse nearest neighbor queries. In the filter-
ing step, DART eliminates all the objects that are away from the query
object more than the pre-defined distance, or have an invalid direction
angle. In the refinement step, remaining objects are verified whether the
query object is actually one of the k nearest neighbors of them. From
extensive experiments, we show that DART outperforms an R-tree-based
naive algorithm in both indexing time and query processing time.

Keywords: reverse nearest neighbor, direction-aware, query optimiza-
tion

1 Introduction

Recently, with the rapid dissemination of mobile devices and location-based ser-
vices(LBSs), various applications have started utilizing spatial databases for mo-
bile users. Bichromatic reverse nearest neighbor(BRNN ) queries extended from
reverse nearest neighbor(RNN ) queries are one of the most popular and impor-
tant queries for spatio-temporal information, and widely used in many applica-
tions. For example, in the case of mobile advertising, an advertiser can promote a
product to specifically targeted customers who are close to the advertiser based
on each customer’s location by searching BRNNs of the advertiser. Many re-
searches addressed that one of the future challenges of location-based services is
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Fig. 1. An example of BRNN query with a direction constraint

personalization [5,12,15], which provides more customized services, based on the
user’s implicit behaviour and preferences, and explicitly given details. In order
to achieve personalization in LBSs, considering only location is not sufficient to
retrieve more accurate results in terms of the user’s intention.

In that respect, the direction is another important feature that represents
user’s intention as there exist extensive researches that consider the direction to
predict moving object’s future location [17]. Each mobile user can have a certain
direction with respect to his/her movement or sight, and the direction can be
easily obtained by a mobile device with GPS and a compass sensor [18]. However,
there are only a few researches that considers a direction-aware environment, and
existing studies only focus on user-centric query processing, not objective-centric
query processing.

Considering the above, BRNN queries without the direction constraints can
be ineffective in many applications to find targeted users in the sense that users
looking(or moving) in the opposite direction are less influenced by the query
objects even if they are close to the query object. For example, there are many
customers in a marketplace, and they are moving around and looking for some
products they need. In this situation, a restaurant manager may want to find
potential customers who have an intention to enter the marketplace, and hang
around the restaurant, because the manager wants to reduce the advertisement
budget and does not want to be regarded as a spammer to customers. There are
also other kinds of applications where a direction property needs to be considered
such as providing a battle strategy to a moving military squad during the war. In
these applications, the direction as well as the location are important properties
to obtain more accurate results in terms of the targets’ intention.

Fig. 1 shows an example of the BRNN query with a direction constraint. Con-
sider a set P = {p1, p2, p3, p4, p5, p6} of customers and a set S = {s1, s2, s3, s4} of
advertisers. Given a querying advertiser s4, the usual BRNN query returns p2, p3
and p4 since their closest advertiser is q (i.e., s4). However, the customers whose
directions (represented by arrows) are not toward q do not need to be considered
because they are not effective advertising targets. Thus, although customer p2
has q as its nearest advertiser, p2 should be discarded from the final result in
the direction-aware environment since the direction of p2 is toward s3, not q.
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Furthermore, in order to maximize the effectiveness of advertising, it is better
to consider the distance. If we adjust a maximum distance on p4, it also can be
discarded depending on the maximum distance, even if their nearest advertiser
is q. Therefore, only p3 can be an answer for the BRNN query with the direction
constraint.

There have been extensive algorithms studied for processing RNN queries
[1,10,19,22] and BRNN queries [14,21,25,26], based on various effective pruning
techniques using objects’ locations. However, the straightforward adaptation of
these algorithms are inefficient to solve the problem of finding BRNNs with
the direction constraint. This is because each object has an arbitrary direction,
which does not have any correlation with its location.

In this paper, we present a novel type of queries, called direction-aware bichro-
matic reverse k nearest neighbor queries(DBRkNN ), in spatial databases, which
extends the previous BRNN query by considering the direction as well as the
location. Moreover, we propose an efficient algorithm, called DART, for our
DBRkNN queries to overcome the difficulties of pruning in a direction-aware
environment. DART attempts to minimize pre-processing time by using only a
grid-based index to access the set of spatially clustered objects and the B+-tree
to index objects’ directions. In common with many previous studies, we follow
a filter-refinement framework. In specific, in the filtering step, DART returns
a set of candidates, each of which has q as one of its k nearest neighbors and
a direction toward q within a pre-defined distance, while the refinement step
removes false hits from the set of candidates.

The contributions of this paper are as follows:

– We propose a novel type of query, the direction-aware bichromatic reverse
k nearest neighbor (DBRkNN) query, which is an interesting variant of the
bichromatic reverse nearest neighbor query. The DBRkNN query is useful in
many applications which require to process a large amount of spatial objects
with arbitrary directions.

– We propose an efficient algorithm, namely DART, to process DBRkNN
queries specially focusing on a direction-aware pruning technique. To ef-
fectively prune unnecessary objects, DART uses simple index structures and
yet significantly reduces the pre-processing time.

– We experimentally evaluate the proposed algorithm by using synthetic datasets.
Experimental results show that our proposed algorithm is on the average 6.5
times faster for the indexing time, and 6.4 times faster for the query pro-
cessing time than an R-tree-based naive algorithm.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents the formal definition of the DBRNN query. The proposed
algorithm for the DBRNN query is explained in Section 4. Section 5 experimen-
tally evaluates the proposed algorithm. Finally, Section 6 concludes the paper
with some directions for future work.
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Fig. 2. An example of the false hits/false dismisses of the previous works

2 Related Work

We first examine existing studies [1,2,4,9–11,14,19–24,26] about the RNN query,
which has received considerable attention due to its importance and effectiveness
in many applications. The first algorithm for processing the RNN query was
proposed by Korn, F. et al [10]. However, this algorithm requires to index all
data points, and to pre-compute their nearest neighbors which is inefficient in
dynamic database environments. Stanoi et al. [19] proposed “60-degree-pruning”,
which maintains only an index tree without any pre-processing structure. They
divide the space around the query point into six equal regions having 60◦ at the
query point, and the answers are retrieved by selecting a candidate point from
each region. The TPL algorithm was proposed by Tao et al [22], which utilizes
the perpendicular bisector between the query point and each point to maximize
the pruning area.

The above algorithms for RNN queries, however, are inefficient to process
the DBRkNN query since they do not consider the direction constraint for the
query processing. For example, Fig. 2(a) shows the false hits/false dismisses of
the TPL algorithm for the DBRkNN query. There is a bisector between the query
object q (i.e., s3) and object s1, so p2, p3, and p5 are selected as candidates since
they reside in the half-plane containing q. Although the object p3 and p5 are
the BRNNs of q, these are not the DBRNNs of q because their directions are
not toward q. Moreover, the pruned object p4 that is located in the opposite
half-plane to q can be an answer in the DBRNN query, because its direction is
toward q across the bisector.

The traditional RNN queries have been further branched out into the bichro-
matic RNN (BRNN) query, which is the closest to our DBRNN query. Given
two disjoint sets, P and S, of points, and a query point which is one of the
points in S, the BRNN query retrieves a set of points in P that have q as their
nearest neighbor. There are some researches [9, 14, 20, 25] on the BRNN query,
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and all their solutions are basically focusing on finding the Voronoi polygon that
contains the query point by using a Voronoi diagram.

However, the above methods for the BRNN query are not efficient in our en-
vironment. For example, Fig. 2(b) shows an example of using Voronoi diagram
to solve BRNN query. There are seven Voronoi polygons each of which is gener-
ated by an object in S. In the case of p2 and p6, they are the BRNN of q (i.e.,
s7), but the directions of them are toward the opposite side of q, which makes
them to be false hits/false dismisses. Similarly, although p4 and p1 are not the
BRNN of q, they are the DBRNN of q because their directions are toward q.

For other types of RNN queries, there has been many researches for process-
ing the continuous RNN (CRNN ) [2–4, 6, 9, 21] query and the stream RNN [11]
query. The goal of each type of queries is basically to find the RNN with regard
to the query object in a specific environment. However, the solutions for these
queries are neither applicable nor relevant to the DBRkNN query due to the
properties of the query.

By focusing on the influence of obstacles on the visibility of objects, there
are works on a different type of RNN queries [7, 16, 27]. Gao et al. [7] first
introduced the visible reverse nearest neighbor (VRNN ) search, which considers
the visibility and the obstacle that significantly affect the result of RNN queries.
However, the visibility is defined only for the query object to verify objects
that are not influenced by the presence of obstacles while the direction in the
DBRNN query is defined for each object to represent its movement or sight.
Furthermore, we also adjust the maximum distance to give a flexibility on the
spatial environment.

Recently, Li et al. [13] proposed the direction-aware spatial keyword search,
called DESKS, that finds the k nearest neighbors satisfying both keyword and
direction constraints to the query. They assumed that the direction is given and
addressed that the existing methods on the spatial keyword search are inefficient
to solve the spatial keyword search with a direction constraint. However there is
a big difference between this work and ours in the sense that we focus on RkNN
queries (not kNN), and every object has a direction in our environment while
only the query object has a direction in DESKS.

3 Problem Formulation

In this section, we formally define the DBRNN query along with the DBRkNN
query. Table 1 summarizes the notations frequently used.

3.1 Problem Definition

We consider two disjoint sets, P and S, of spatial objects, and a query object
q in S. Each object in P , called a customer object, includes its location and
a direction which is represented by a counterclockwise angle from the positive
x-axis (i.e., the direction of 3 o’clock is 0◦), and has a fan-shaped region, called a
valid area, based on its direction’s angle. On the other hand, objects in S, called
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Table 1. The notation of the DBRkNN

Symbol Description

P = {p1, ..., pn} the set of customer objects with directions

S = {s1, ..., sm} the set of advertiser objects

p a customer object with a direction in P

s an advertiser object in S

q the query object selected from advertiser objects in S

r the maximum distance

d the direction angle (0◦ ∼ 359◦)

θ the valid angle range

(a) An illustration of the DBRNN query (b) An illustration of the DBRkNN
query (k = 2)

Fig. 3. An illustration of the DBRNN query and the DBRkNN query

advertiser objects, have only locations, and one of the advertiser objects can be
a query object. We first define the notion “valid area” which is an important
concept for selecting candidates and verifying answers as follows:

Definition 1 (Valid Area). Let p denote an object in P . Then the valid area
of p is represented by a fan-shaped region, which has the following properties:

– A valid area consists of angle θ and radius r, both of which are pre-defined
by a system.

– θ is a viewing angle, and r is the maximum distance to discard an object the
distance of which is greater than r.

Now, based on Definition 1, we define the DBRNN query as follows:
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Definition 2 (Direction-aware Bichromatic Reverse Nearest Neighbor
Query). Given two disjoint sets, P and S, the direction-aware bichromatic re-
verse nearest neighbor query retrieves the subset P ′ of P such that each object
in P ′ has q ∈ S as its nearest neighbor, and contains q in its valid area.

Fig. 3(a) illustrates the basic concept of the DBRNN query. The object p1 has
a valid area based on the maximum distance r, the direction’s angle d and the
valid angle range θ. If the query is invoked on s2, p1 is the DBRNN of s2 even
though s1 is closer than s2 since only s2 is located within the valid area of p1.
Similar to Definition 2, the DBRkNN query can be defined as follows:

Definition 3 (Direction-aware Bichromatic Reverse k Nearest Neigh-
bor Query). Given two disjoint sets, P and S, the direction-aware bichromatic
reverse k nearest neighbor query retrieves the subset P ′ of such P that each ob-
ject in P ′ has q ∈ S as one of its k nearest neighbors, and contains q in its valid
area.

Fig. 3(b) shows an illustration of the DBRkNN query. Let us assume that k is 2,
and the query is invoked on s4. If the value of k is 1, there is no answer for the
query. However, in this case, although s5 is the nearest neighbor of p3 as well as
a DBRkNN of q, because q is the second-nearest neighbor of p3.

Problem Statement In this paper, our goal is to find an efficient method that
gives the set of exact answers for the DBRNN query and the DBRkNN query.
Specifically, we focus on minimizing both the indexing time and the query time.

4 The DART Algorithm

In this section, we present our proposed algorithm, called DART, that solves
DBRNN queries. First, we overview our proposed method, and then explain the
details of DART.

4.1 Overview

Essentially, our solution is based on a grid-based index to access the spatially
clustered objects and the B+-tree to index the direction’s angles. We adopt
a filter-refinement framework that is widely used in many algorithms for RNN
queries. In the filtering step, DART eliminates all the objects that are more than
the maximum distance away from the query object or have an invalid direction’s
angle. After that, in the refinement step, the remaining objects are verified to
check whether the query object is actually the nearest neighbor of each object.
The important features of DART are explained as follows:
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(0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

(5, 0) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(a) An example of the grid-based space
partitioning

Valid Angle Direction 
Degree

(b) An example of the Valid Direction
Angle Degree

Fig. 4. The key elements for DART

The grid-based space partitioning The whole space is divided into a grid of
the equal-sized cells that are represented by rectangles of r × r size (recall that
r is the maximum distance). The number of rows and columns depends on the
width and height of the space. Each cell has a unique id number that represents
its location. Fig. 4(a) shows an example of our space partitioning scheme using
grid cells. For each cell, we not only maintain two lists of objects (advertiser
object and customer object) that are located in the area of the cell but also
index the direction’s angle of each customer object by using the B+-tree. Note
that this space partitioning takes just linear time while an R-tree takes at least
O(n log n) time complexity for indexing n spatial objects [8].

Direction Angle Index The directions’ angles are indexed by the B+-tree to
reduce unnecessary checks for the objects that are toward the wrong direction.
In this structure, there are at most 360 keys which represent degrees of the
directions’ angles. For each key, we maintain a list of the objects that have the
same direction angle degree as the key value. Similar to the grid-based space
partitioning, the construction of this B+-tree can be done in linear time, since
each insertion requires only O(log 360) time (i.e., a constant time).

Valid Direction Angle Range Each grid cell has a static valid direction angle
range (hereafter called “valid angle range”) that guarantees, if the direction
angle of an object is not within the valid angle range, the object cannot have
an appropriate direction toward the query object. Fig. 4(b) shows an example
of the valid angle range. When the query is posed, we first figure out which grid
cell contains the query object, and then retrieve neighboring cells around the
grid cell that has the query object. For each neighboring cell, we define the valid
angle range accordingly. As we discussed in Section 3, we use counterclockwise
angles; the 3 o’clock position is 0◦ and the 6 o’clock position is 270◦.
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Let us first consider the valid angle range of cell (i− 1, j − 1). In an extreme
case, an object in P in cell (i−1, j−1) can be located at the bottom right corner
of the cell and the query object can be located at the top right corner or the
bottom left corner of cell (i, j). In this case, the valid angle range of an object
in P should cover the top or left boundary of cell (i, j) to have the query object
within its valid area. Therefore, the valid angle range of cell (i− 1, j− 1) should

be (0◦, θ2
◦
) and (270◦ − θ

2

◦
, 360◦] as depicted in Fig. 4(b). The valid angle range

of other three corner cells (i.e., (i − 1, j + 1), (i + 1, j − 1), and (i + 1, j + 1))
are defined in a similar way. On the other hand, the cells on the cross line (i.e.,
(i−1, j), (i, j−1), (i, j+1), (i+1, j)) are defined in a different manner due to the
positional characteristics. For example, in an extreme case of an object in P in
cell (i− 1, j) can be located at the bottom left or bottom right corner of the cell
and the query object can be located at the opposite side of the object in the cell
(i, j). In this case, the valid angle range of an object in P should cover the top
boundary of cell (i, j) to have the query object within its valid area. Therefore,

the valid angle range of cell (i − 1, j) should be (0◦, θ2
◦
) and (180◦ − θ

2

◦
, 360◦].

Similar to the corner cells, the other cells on the cross line have similar valid
angle ranges. The specific ranges of the valid angle ranges are shown in Table 2.

Table 2. The Valid Angle Range of each cell

Cell No. Valid Angle Degree

(i− 1, j − 1) (0◦, θ
2

◦
) and (270◦ − θ

2

◦
, 360◦]

(i− 1, j) (0◦, θ
2

◦
) and (180◦ − θ

2

◦
, 360◦]

(i− 1, j + 1) (180◦ − θ
2

◦
, 270◦ + θ

2

◦
)

(i, j − 1) (0◦, 90◦ + θ
2

◦
) and (270◦ − θ

2

◦
, 360◦]

(i, j) (0◦, 360◦]

(i, j + 1) (90◦ − θ
2

◦
, 270◦ + θ

2

◦
)

(i+ 1, j − 1) (0◦, 90◦ + θ
2

◦
) and (180◦ − θ

2

◦
, 360◦]

(i+ 1, j) (0◦, 180◦ + θ
2

◦
) and (360◦ − θ

2

◦
, 360◦]

(i+ 1, j + 1) (90◦ − θ
2

◦
, 180◦ + θ

2

◦
)

4.2 DART for DBRNN Query Processing

Based on the above key features, DART follows a two-step framework, where a
set of candidate objects are returned and then false hits are verified to retrieve
the exact solution. Our algorithm does not index the exact locations of the
objects, but use a grid-based structure to access the set of spatially clustered
objects efficiently. Moreover, our method inserts the object’s direction’s angle
degree into the B+-tree to maintain the object’s direction’s angle.
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Algorithm 1: The construction of the basic structure

Input: Sets of objects P and S
Output: A set G of grid cell’s list and the B+-tree

1 G← ∅;
2 foreach obj in P ∪ S do
3 cellId← Assign(obj.x, obj.y) ;
4 list← lists[cellId].;
5 list.add(obj);
6 G.add(list);
7 if obj ∈ P then
8 d← obj.d;
9 Btree← Btrees[cellId];

10 Btree.insert(d, obj);

11 end

12 end
13 return G;

Index Construction Step Algorithm 1 shows the process of constructing the
basic structures. When an object is inserted, the assignment algorithm deter-
mines which grid cell contains the object (Line 3). In addition, the method just
adds the object into the proper list and stores the list for the corresponding cell
(Lines 4-6). For the two types of objects, we maintain two lists of objects sep-
arately. In addition, DART also maintains a B+-tree to index direction’s angle
degree for each cell (Lines 8-10). As mentioned earlier, the entire construction
process can performed in linear time.

Filtering Step In the filtering step, DART eliminates unnecessary objects by
considering the maximum distance and the valid angle range based on the loca-
tion and angle of the object. The overall algorithm flow is shown in Algorithm
2.

First, the method gets the grid cell number that contains the query object by
using assign function. In this function, it is easy to retrieve the neighboring cells
by using the width and height of the space (Lines 2-3). Because the size of each
cell is determined by the maximum distance, we do not have to consider other
cells except for the neighboring cells. By doing this, we can prune numerous
objects whose distances from the query object are larger than the maximum
distance.

Next, for each cell, DART selects the candidate set by processing the range
search on the B+-trees on directions’ angles of objects located in the cell(Lines
5-7). Note that this range search requires only a constant time since there are at
most 360 keys. As we discussed the valid angle range in Section 4.1, we can easily
find the objects whose directions’ angles are within the valid angle ranges of the
corresponding cells (See Table 2). Before we put an object into the candidate
set, we double check the actual distance and the angle degree between the query
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Algorithm 2: The filtering step of DART

Input: The query object q
Output: A set of candidates

1 candidate← ∅;
2 CellId← Assign(query.x, query.y);
3 neighbor[ ] ←getNeighbor(CellId);
4 for i← 0 to size of neighbor[ ] do
5 Btree← neighbor[i].Btree;
6 range← neighbor[i].V alidAngleRange;
7 list[] ← Btree.rangequery(range);
8 for j ← 0 to size of list[ ] do
9 angle← getAngle(q, list[j]);

10 if getDistance(list[j], q) ≤ r AND |(angle− list[j].d)| ≤ θ
2
then

11 candidate.add(list[j]);
12 end

13 end

14 end
15 return candidate

object and the object (Lines 8-13). The reason for doing this step is to guarantee
that the candidate set contains only objects whose valid area cover the query
object. If the distance between the two objects is within the maximum distance
and the difference of the two directions’ angles (angle degree between two objects
and the object’s direction angle degree) is less than θ

2 , then we finally add the
object to the candidate set.

Refinement Step After the termination of the filtering step, we have a candi-
date set that contains all the objects whose valid area contain the query object. In
the refinement step, we verify that the actual nearest neighbor of each candidate
object is the query object. Algorithm 3 shows the flow of the refinement step.
Basically, the method confirms the answer set by checking the nearest neighbor
of each candidate. For candidate object p, if there is an advertiser object si closer
than the query object, it is possible that si is the nearest neighbor of p and is
within the valid area of p. To determine this, for all the advertiser objects in
S that are contained in neighboring cells, the method calculates the distance
between the candidate object and each advertiser object (Line 7). Moreover, if
there is an advertiser object closer than the query object, we check the actual
angle degree (Lines 7-13). Similar to the above procedure, if the difference is
smaller than half of θ, it means that the direction’s angle is also facing the ob-
ject si, and the nearest neighbor of the candidate object is not the query object
(Lines 9-12). Otherwise, the candidate object can be an answer of the DBRNN
query.
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Algorithm 3: The refinement step of DART for the DBRNN query

Input: A candidate set C
Output: a set of answers Answer

1 neighbor[] ← getNeighborGrid();
2 list←getObjectS(neighbor[]);
3 Answer ← C;
4 for i← 0 to size of C do
5 distance← getDistance(q, C[i]);
6 for j ← 0 to size of list[] do
7 if distance > getDistance(C[i], list[j]) then
8 angleS ← getAngle(C[i], list[j]);

9 if |(angleS − C[i].d)| ≤ θ
2
then

10 Answer.remove(C[i]);
11 break;

12 end

13 end

14 end

15 end
16 return Answer

4.3 DART for the DBRkNN Query Processing

In this section, we extend the algorithm for DBRNN queries to process DBRkNN
queries for an arbitrary value of k, which means the query result should be all the
customer objects that have q within k nearest neighbors (k is a positive integer,
typically small). For processing DBRkNN queries, although the arbitrary value
k is added, the overall flow is almost the same. The filtering step does not need
to be changed, because we prune the unnecessary objects only considering the
distance and angle constraints. In the refinement step, DART should be slightly
modified so that k advertiser objects can be checked when finding advertiser
objects closer than the query object (Lines 10-11 in Algorithm 3).

5 Experiments

In this section, we evaluate the performance of our proposed algorithm for the
DBRNN query and the DBRkNN query by using four synthetic datasets. In
particular, we generate synthetic datasets for both spatial object sets, P and
S, under the uniform distribution. We set the size of the dataset for spatial
objects in P to be from 10,000 to 10,000,000 and that in S to be |P |/100 on
the 2-dimensional 1,000 × 1,000 euclidean space. For experimental parameters,
we vary the valid angle range, the maximum distance, and the cardinality of the
dataset. The values of parameters are presented in Table 3.

The experiment investigates the index time and query time for varying val-
ues of parameters such as the valid angle range, the maximum distance, and the
cardinality. For comparison, we also implement a naive method that utilizes an
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Parameter The range of values

Valid angle range 30 - 90 degree

(60 degree by default)

Maximum distance 50 - 200

(100 by default)

Cardinality of P 10,000 - 10,000,000

(1,000,000 by default)

Table 3. The values of parameters

R-tree on the objects’ locations because the existing methods for RNN queries
and BRNN queries cannot guarantee the exact solution for DBRNN queries,
which implies that the methods are not applicable to DBRNN queries and the
DBRkNN queries (See Fig. 2). Similar to the proposed algorithm, the naive
method also prunes the objects outside of the circular range that has a radius
equal to a maximum distance. After that, this method conducts the same proce-
dure as the refinement step to remove false hits. The only difference from DART
is that the direction pruning is not performed in the filtering step. All algorithms
are implemented in Java, and the experiments are conducted on a PC equipped
with Intel Core i7 CPU 3.4GHz and 16GB memory.

5.1 Experimental Results of DBRNN Query

Fig. 5 shows the performance of DART and the naive method when processing
DBRNN queries with varying values of experimental parameters. Fig. 5(a), 5(c),
and 5(e) represent the index time of each experiment, and Fig. 5(b), 5(d), and
5(f) represent the query time. For all results on the index and query processing,
DART shows a superior performance compared to the naive method.

First, we conduct an experiment with varying the valid angle range varying
from 30 degree to 90 degree. According to Fig. 5(a), the grid-based clustering
and the B+-tree indexing on the direction’s angles do not need heavy indexing
time while the R-tree based indexing is time consuming. We can observe that
the grid-based clustering takes less time than the R-tree to maintain the object’s
location. Moreover, the direction angle indexing time is not a big issue in the
whole pre-processing step because we have at most 360 angle degrees so that
there are at most 360 keys as we mentioned earlier. On the other hand, Fig.
5(b) shows an increasing gap between the query time of DART and that of the
naive method. The reason that the naive method shows an increasing curve as
the valid angle range increases is due to the total candidates of answer objects.
For instance, DART filters irrelevant objects with its valid angle range, and then
conducts refinement on a candidate set. However, the naive method just filters
objects which have a longer distance than the maximum distance by conducting
range search on the R-tree, and checks for the direction’s angle for each object.
In this step, the naive method generates more candidates as the valid angle range
gets wider, and hence the number of total candidates increases.
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Fig. 5. Experimental Results of DBRNN Query

According to Fig. 5(c), indexing time is almost similar to the result of the
valid angle range, and Fig. 5(d) indicates that the query processing time shows
a steady gap between DART and the naive method. There is a little increasing
line for DART for the maximum distance from 50 to 100, because the number
of total candidates is quite small for the data3 dataset.

In Fig. 5(e) and Fig. 5(f), we conduct experiments with varying the cardi-
nality by using all the datasets. Both index time and query time show similar
increasing curves as the cardinality becomes bigger, however, the difference of
the performance is upto 10 times between DART and the naive method. In our
observation, DART can handle bigger sized datasets more efficiently than the
naive method, even though the dataset reaches 10 millions of objects.
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5.2 Experimental Results of DBRkNN Query

Fig. 6 shows the performance of DART and the naive method for the DBRkNN
queries. For the arbitrary k value, we start from k = 2 and exponentially increase
k until 16. The experimental results show that the query times for the cases are
almost uniformly distributed. In our observation, this is due to the maximum
distance and the direction constraint. Only a small computation is increased
because the constraints limit the boundary for the DBRkNN search. From this
result, we can claim that our proposed algorithm is also much more efficient for
processing the DBRkNN query than the naive method.

5.3 Summary

In summary, we have shown through extensive experiments that DART outper-
forms the naive method in both indexing time and query processing time. We
conducted several experiments by changing the values of parameters, namely the
valid angle area, the maximum distance, and the cardinality to show the effect
of those parameters on the performances. The results indicate that DART can
handle more than 10 million objects within a minute. Therefore, DART is suit-
able for a snapshot query with at most one minute time interval to secure index
time and query time. In addition, although DART approximately prunes irrel-
evant objects by using a grid-based space partitioning(while the naive method
prunes certain objects whose distance are longer than the maximum distance),
its direction angle pruning technique makes up the time of double checking for
the maximum distance.

6 Conclusion

In this work, we presented a novel type of the RNN query that has a direction
constraint, and proposed an efficient query processing algorithm called DART.
Our algorithm utilizes the grid-based object clustering and the direction angle
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indexing with the B+-tree to improve both index time and query time. We
also experimentally showed that the proposed algorithm outperforms the naive
algorithm that utilizes the R-tree based range query pruning.

An interesting direction for future work is to extend our work to process the
larger size of data more efficiently and to develop an algorithm that efficiently
prunes unnecessary objects in S. Moreover, for the DBRkNN query, we plan to
work on not only query optimization, but also finding more new characteristics
of the direction constraint that can speed up algorithms.
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