
An Efficient Encoding and Labeling
for Dynamic XML Data

Jun-Ki Min1, Jihyun Lee2, and Chin-Wan Chung2

1 Korea University of Education and Technology, Korea
jkmin@kut.ac.kr

2 Korea Advanced Institute of Science and Technoloy, Korea
{hyunlee,chungcw}@islab.kaist.ac.kr

Abstract. In order to efficiently determine structural relationships
among XML elements and to avoid re-labeling for updates, much re-
search about labeling schemes has been conducted, recently. However,
a harmonic support of efficient query processing and updating has not
been achieved. In this paper, we propose an efficient XML encoding and
labeling scheme, called EXEL, which is a variant of the region num-
bering scheme using bit strings. In order to generate the ordinal and
insert-friendly bit strings in EXEL, a novel binary encoding method is
devised. Also, we devise a labeling scheme for a newly inserted node
which incurs no re-labeling of pre-existing labels. These encoding and
inserting methods are the bases of efficient query processing and the com-
plete avoidance of re-labeling for updates. Moreover, EXEL supports all
structural relationships in XPath and the relationships can be checked
by SQL statements supported by an RDBMS. Finally, the experimen-
tal results show that EXEL provides fairly reasonable query processing
performance while completely avoiding re-labeling for updates.

Keywords: Dynamic XML, Labeling and Update.

1 Introduction

Due to its flexibility and a self-describing nature, XML [2] is considered as the
de facto standard for data representation and exchange in the Internet. In order
to search the irregularly structured XML data, path expressions are commonly
used in XML query languages, such as XPath [4] and XQuery [14].

Basically, XML data comprises hierarchically nested collections of elements,
where each element is bounded by a start tag and an end tag that describe
the semantics of the element. Generally, an XML data is represented as a tree
such as DOM [12]. The tree of XML data is implicitly ordered according to the
visiting sequence of the depth first traversal of the element nodes. This order is
called the document order.

Given a tree of XML data, the path information and the structural relation-
ships of nodes should be efficiently evaluated. Diverse approaches such as path
index approaches [7,3] and the reverse arithmetic encoding [10] provide help for
obtaining the list of nodes which are reached by a certain path.

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 715–726, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

716 J.-K. Min, J. Lee, and C.-W. Chung

In order to facilitate the determination of structural relationships of nodes
(e.g., the ancestor-descendent relationship), various labeling methods such as
region numbering scheme [17,9] and prefix based scheme [15] have been proposed.
In addition, structural modifications to the XML data can occur. For example,
insertions of nodes change the structure of a tree of XML data, and the assigned
labels may need to be changed. Thus, many researches [1,5,16,11,8] have been
conducted in order to provide an efficient way to handle labels for updating XML
data. However, they still cannot entirely remove re-labeling for insertions.

Our Contribution. In this paper, we devise a novel XML encoding and labeling
scheme, called EXEL (Efficient XML Encoding and Labeling). EXEL is effective
to compute the structural relationships as well as to support the incremental
update. The contributions of the paper are as follows:

– Devise a novel binary encoding: we devise a novel binary encoding
method to generate bit strings which are ordinal and insert-friendly. We
extend the region numbering scheme using the bit strings instead of decimal
values. The efficient query processing and complete avoidance of re-labeling
are based on our binary encoding method.

– Completely remove re-labeling for updates: we devise a labeling
scheme for a newly inserted node. In our scheme, re-labeling of pre-existing
labels for insertion can be completely avoided.

– Support full axes: EXEL supports all structural relationships in XPath
and the relationships 1 can be checked by SQL statements supported by an
RDBMS.

The remainder of the paper is organized as follows. In Section 2, we review
various XML labeling schemes. We describe the details of EXEL in Section 3
and present an update method of EXEL in Section 4. Section 5 contains the
results of our experiments. Finally, in Section 6, we summarize our work.

2 Related Work

In the region numbering scheme [17,9], each node in a tree of XML data is
assigned a region consisting of a pair of start and end values which are determined
by the positions of the start tag and the end tag of the node, respectively.
Even though all structural relationships represented in XPath can be determined
efficiently using <start, end, level>, an insertion of a node incurs re-labeling of its
following and ancestor nodes. [9,1] have tried to solve the re-labeling problem by
extending a region and using float-point values. However, the re-labeling problem
can not be avoided for frequent insertions after all.

In the prefix labeling scheme [15,5,11], each node in a tree of the XML data
has a string label which is the concatenation of the parent’s label and its own
identifier. The structural relationships among nodes can be determined by a
1 In XPath, there are 13 axes. In this paper, we do not consider namespace, and

attribute axes since they are not structural relationships.

An Efficient Encoding and Labeling for Dynamic XML Data 717

string function to extract a prefix of a string and string comparison operations.
These function and operators degrades a query performance. Dewey labeling
scheme [15] and Binary labeling scheme [5] do not require re-labeling for ap-
pending leaf nodes. However, they cannot avoid the re-labeling for insertions
between two sibling nodes and an insertion of a node between parent and child
nodes. Recently proposed ORDPATH [11] is tolerant for insertions. ORDPATH
follows a labeling principle similar to the Dewey labeling scheme. In order to
avoid re-labeling, it uses only odd numbers for initial labels. When an insertion
occurs, it uses an even number between two odd numbers and concatenates an
odd number. Although ORDPATH is more bearable for insertions than other
approaches, they cannot also avoid re-labeling for an insertion between parent
and child nodes.

The prime number labeling scheme [16] uses an inherent feature of the prime
number which has only one and itself as its common divisors. The label of a
node is a product of its parent node’s label and its self-label (i.e., a unique
prime number). For the order sensitive query, the prime number labeling scheme
uses the simultaneous congruence (SC) values. Even though re-labeling for nodes
can be avoided for insertions, the SC values should be re-calculated, and the re-
calculation consumes much time. Also, an insertion between parent and child
nodes incurs the re-labeling.

In addition, a dynamic quaternary encoding, QED [8], that can be applied to
different labeling schemes, has been proposed. In QED, the label size increases
by two bits for inserting a node. In contrast, the label size increases by one bit
for the insertion in our scheme.

3 Efficient XML Encoding and Labeling (EXEL)

In this section, we present a novel binary encoding method for labeling XML
data and an enhanced encoding method to reduce label length. We use the bit
strings in the region numbering scheme instead of decimal values for the efficient
query processing and the complete elimination of re-labeling for updates.

3.1 Binary Encoding in EXEL

The original region numbering scheme uses decimal values for labels which are
sensitive of updates. Therefore, we propose a novel efficient XML encoding and
labeling method, called EXEL. It uses bit strings which are ordinal as well as
insert-friendly. The bit strings for labeling are generated by the following binary
encoding method:

(1) The first bit string b(1) = 1.
(2) Given the ith bit string b(i), if b(i) contains 0 bit then b(i+1) = b(i)+10.

Otherwise, b(i + 1) = b(i)0k1, where k is the length of b(i).

718 J.-K. Min, J. Lee, and C.-W. Chung

Definition 1. Lexicographical order (<)
(i) 0 is lexicographically smaller than 1 (0 < 1).
(ii) if two bit strings a and b are the same(=), a is lexicographically equal to b.
(iii) Given bit strings a, b, a′ and b′, ab < a′b′, if only if a < a′ or a = a′ and
b < b′ or a = a′ and b is null, where length(a) = length(a′).

Bit strings generated by the above binary encoding method have the lexico-
graphical orders presented in Definition 1. For example, 1<101<111<1110001.
Also, according to the above generating rule, the bit string always ends with 1.
Thus, our encoding scheme satisfies the following property.

Property 1. Given bit strings s11 and s21 generated by the above binary encod-
ing method, if s11 < s21, then s1 < s2 in the lexicographical order.

Theorem 1 presents the space requirement of our binary encoding scheme.

Theorem 1. In order to encode N ordinal values, the binary encoding of EXEL
needs 2�log2log2N+1� − 1 bits, which is about 2log2N − 1 bits.

Proof. (i) 1-bit string (i.e., 1) can represent only 1 value. (ii) 3-bit string
(i.e., 101, 111) can represent 2 values. (iii) 7-bit string (i.e., 1110001,...,1111111)
can represent 23 values. (iv) consequently, by the mathematical induction on k,
(2k − 1)-bit string can represent 22k−1−1 values.

Let N = 20 + 21 + ... + 22k−1−1 =
∑k

i=1 22i−1−1.
By the mathematical induction, N =

�k
i=1 22i−1−1 < 2 ∗ 22k−1−1 = 22k−1

.
Therefore k=�log2log2N+1�. Consequently, 2k−1=2�log2log2N+1� − 1 ≈ 2log2N − 1.

3.2 Enhancement of Binary Encoding

In the binary encoding method of EXEL, k-bit string has superfluous (k −
1)/2 bits consisting of only 1 in order to guarantee the lexicographical order
among variable length bit strings. For example, the 7-bit strings from 1110001
to 1111111 can represent only 23 = 8 ordinal values since the first three bits
are 111 and the last bit is 1. In order to remove the superfluous part, we de-
vise another binary encoding method with a predefined length of a bit string.
The predefined length is obtained from the total number of ordinal values which
would be encoded. For labeling a tree of XML data, it is determined by the total
number of nodes. The bit string with a predefined length is generated by the
following rule:

Let N be the total number of values.
(1) The first bit string b(1) = 0log2N1.
(2) Given ith bit string b(i), b(i + 1) = b(i) + 10.

According to the above rule, a bit string ends with 1 like the original binary
encoding method, and it satisfies Property 1.

An Efficient Encoding and Labeling for Dynamic XML Data 719

r

d e f g

m n v

s t u

{000001,101011}

{000011,
000101}

{000111,
001001}

{001011,
100101}

{100111,
101001}

{001101,
001111} {010001,

010011}

{010111,
011001}

{011011,
011101}

{011111,
100001}

{010101,100011}

a b

c

Fig. 1. An example of a tree labeled by EXEL

3.3 Region Labeling in EXEL

In EXEL, we extend the region numbering scheme using ordinal bit strings rather
than decimal values. The start and end values are ordinal bit strings generated
by the binary encoding of EXEL. Fig 1 shows an example of a tree labeled by
EXEL using the binary encoding with a predefined length.

EXEL uses the parent information to determine the parent and child relation-
ships in order to support efficient updates although the original region numbering
scheme uses the level information. The use of the parent information also results
in an improvement of the query performance. For the simplicity, the parent in-
formation (i.e., the start value of the parent’s label) is not presented in Fig 1.

The following theorem presents the space requirement of EXEL using the
binary encoding with a predefined length.

Theorem 2. Given the total number of nodes N , the binary encoding using
a predefined length in EXEL needs log22N + 1 bits for each bit string. Also,
the region labeling in EXEL requires 3(log22N + 1) for start, end, and parent
information.

3.4 Query Processing

EXEL supports all XPath axes (i.e., ancestor, descendent, parent, child, follow-
ing, preceding, following-sibling, and preceding-sibling) as the same way in the
region numbering scheme because EXEL is based on the original region num-
bering scheme. For example, in Fig 1, f is an ancestor of t since sf (= 001011) <
st(= 011011) and et(= 011101) < ef (= 100101), where (sx,ex) is the region of a
node x.

For many years, intensive research on storing and managing XML data as
the relational data have been conducted. By using an RDBMS, we can utilize
the stable repository as well as the efficient query optimizer and the executor.
Therefore, we store XML data into relational tables. For a node x in a tree of
XML data, the relational table stores its region (sx, ex) and its parent’s infor-
mation psx. All above conditions for the corresponding axes in the XPath can
be expressed by simple SQL statements supported by an RDBMS. For example,
the SQL statement to find all descendents of a node f in Fig 1 is SELECT *
FROM NODE WHERE 001011 < start AND end < 100101.

720 J.-K. Min, J. Lee, and C.-W. Chung

4 Update

In this section, we present the update behaviors of EXEL. Since the deletion does
not incur the re-labeling of nodes, we present the algorithm for the insertion.

4.1 Labeling for Update

The algorithm MakeNewBitString makes a new bit string between two pre-
existing bit strings. This algorithm can be applied to the original binary encoding
and the binary encoding with a predefined length.

⊕
denotes the concatenation

of two bit strings.

Algorithm MakeNewBitString(leftB, rightB)
begin
1. if length(leftB) > length(rightB) then newB := leftB

�
1;

2. else newB := (rightB with the last bit changed to 0)
�

1;
3. newB := newB

�
1;

4. return newB;
end

For example, when we insert two bit strings successively between 101 and 111,
the first one is 1101 (101<1101<111) and second one is 11011 (1101<11011<111).
For bit strings generated by our binary encoding method, the lexicographical
order has a property as follows.

Property 2. Given bit strings s11 and s21 generated by the binary encoding
method of EXEL, if s11 < s21, then s11 < s201 and s111 < s21.

For example, let s11 = 000011 and s21 = 000101, then 000011 < 0001001 and
0000111 < 000101. Through the above property, we can explain that a new bit
string generated by the algorithm MakeNewBitString preserves the lexicograph-
ical order among pre-existing bit strings.

Theorem 3. The bit string generated by the algorithm MakeNewBitString pre-
serves the lexicographical order.

Proof. If length(leftB) > length(rightB), then leftB < newB(=leftB
�

1) (by De-
finition 1) and newB < rightB (by Property2). Otherwise, given leftB = s11 and
rightB = s21, newB(=s20

�
1) < rightB(=s21) (by Definition 1), and leftB(=s11)

< newB(=s201) (by Property 2)

4.2 Update Processing

There are three kinds of insertions in XML data according to the positions in
which nodes are inserted; inserting a child of a leaf node, inserting a sibling and
inserting a parent.

An Efficient Encoding and Labeling for Dynamic XML Data 721

Algorithm InsertChildOf(cur)
begin
1. snew := MakeNewBitString(scur, ecur);
2. enew := MakeNewBitString(snew, ecur);
3. psnew := scur;
4. Insert new node with snew, enew, and psnew;
end

The algorithm InsertChildOf inserts a node as a child of a leaf node cur. In
EXEL, a region of a child node is contained in that of its parent node. Thus, a
region of a inserted node new, (snew, enew) should satisfy scur < snew < enew <
ecur. The algorithm MakeNewBitString is used to make the start and end values
of a node new. Additionally, the parent information of new, psnew will be the
start value of cur (i.e., scur). For example, in Fig 1, a node a is inserted into a
child of a leaf node m. The region of a, (sa, ea) should satisfy sm < sa < ea < em.
Thus, sa=0011101, ea=00111011, and psa=001101. Algorithms of inserting a
sibling and a parent (e.g., in Fig 1, inserting b and c, respectively) are similar to
that of inserting a child. We omit them for want of space.

The insertion of a parent incurs the increase of levels of its all descendants
in the original region numbering. However, EXEL keeps the parent information
instead of the level. Even if a node is inserted as an ancestor, the parents of
the descendent are still unchanged except the child of the inserted node. Con-
sequently, EXEL guarantees the complete avoidance of re-labeling for insertions
in any positions even between parent and child nodes.

Even in case of a subtree insertion, the labeling can be efficiently handled. We
first apply our labeling method to the subtree. Second, we generate a new bit-string
x according to the inserting point (p, q) using the algorithm MakeNewBitString,
then truncate the last bit (i.e., ‘1’) of x. Let the truncated bit-string be x′. We
complete labeling for the subtree by attaching x′ as a prefix into the labels of the
subtree’s nodes. Since the prefixes of subtree’s nodes are equal, lexicographical or-
ders among labels of subtree’s nodes are preserved. Note that, in the lexicograph-
ical order, p � x′ < q. Thus, by Definition 1-(iii), labels of subtree’s nodes (whose
prefixes are x′) are greater than p and smaller than q. Therefore, the generated
labels still keep the lexicographical order among the pre-existing labels.

5 Experiments

We empirically compared the performance of EXEL with the those of region
numbering scheme, the prefix labeling schemes (i.e., ORDPATH and QED-
PREFIX), and the prime numbering scheme using synthetic data as well as
real-life XML data sets.

5.1 Experimental Environment

The experiments were performed on an Intel Pentium 3GHz with 1GB mem-
ory, running Window XP. The XML data sets were stored on an RDBMS,

722 J.-K. Min, J. Lee, and C.-W. Chung

Table 1. XML Data Set

Data Name Size(MB) # of nodes
XM1 1 33152

XMark XM50 50 1390697
XM115 115 3231322

Shakespeare S7 7.7 328778

Table 2. Database size

Labeling Scheme DB Size(MB)
EXEL2 (EXEL1) 147(163)
Region Numbering 119

QRDPATH 140
QED-PREFIX 161

Prime 146

Table 3. Query Set

Name Query Definition Name Query Definition
XQ1 //bidder/ancestor::open auction SQ1 //SPEAKER/ancestor::ACT
XQ2 //parent//city SQ2 //ACT//LINE
XQ3 //name/parent::person SQ3 //SCENE/parent::ACT
XQ4 //person/name SQ4 //ACT/TITLE
XQ5 //category/following::person SQ5 //ACT[3]/following::SPEECH
XQ6 //buyer/preceding::category SQ6 //TITLE/preceding::ACT
XQ7 //person[2]/following-sibling::person SQ7 //ACT[6]/following-sibling::ACT
XQ8 //item[46]/preceding-sibling::item SQ8 //SPEECH[40]/preceding-sibling::SPEECH

PostgreSQL 8.1. We have implemented two versions of EXEL; EXEL1 and
EXEL2 using the original binary encoding and the binary encoding with a pre-
defined length, respectively. The storage spaces according to the encoding meth-
ods have been observed. In order to show the efficiency of EXEL for the query
processing and the update processing, we compared EXEL with other representa-
tive labeling methods; the region numbering scheme, ORDPATH, QED-PREFIX
and the prime numbering scheme. In our experiments, QED was applied to pre-
fix labeling scheme, and we call it QED-PREFIX. In database, we store each
element name, its label, and its parent’s label according to the labeling schemes.
We evaluated EXEL using XMark data [13] and Shakespeare data [6]. The char-
acteristics of the data sets are summarized in Table 1.

The queries used in our experiments are described in Table 3. The first char-
acter in a query name indicates the data set on which the query is executed:
‘X’ denotes XMark, and ‘S’ is for Shakespeare. We evaluated the query perfor-
mance for all axes in XPath. The number in a query name denotes the type
of a query according to the axis contained in the query (i.e., 1 for ancestor, 2
for descendent, 3 for parent, 4 for child, 5 for following, 6 for preceding, 7 for
following-sibling, and 8 for preceding-sibling). All experiments were repeated 10
times and we used the average of the processing times except the minimum and
maximum values.

5.2 Experimental Results

Query Performance. In our experiments, a given XPath query was trans-
formed to the corresponding SQL statement according to labeling schemes, and
the SQL statements were executed on a database. A query parsing time and a
query translation time are similar and very small for all labeling schemes. There-
fore, in this paper, we present only SQL execution time. The query execution
time over various sized data sets are shown in Fig 2. The notation NT means
NOT MEASURED due to excessive processing time.

An Efficient Encoding and Labeling for Dynamic XML Data 723

(a) XM1 (b) XM50

(c) XM115 (d) S7

Fig. 2. Query execution time

First of all, ORDPATH and QED-PREFIX should additionally use a string
function to extract prefix of a string to compute structural relationships. The use
of the string function degrades their performance. In Fig 2(b), the performance of
EXEL is about 1.5 times better than that of ORDPATH and 2 times than QED-
PREFIX for the query XQ1. As the data size increases, differences of processing
time increases.

For queries with ancestor (i.e.,XQ1), descendent (i.e.,XQ2), following(i.e.,X5)
and preceding (i.e.,XQ6) relationships, the region numbering scheme is better
than EXEL since the label size of the region numbering scheme is smaller than
that of EXEL. However, the performance of EXEL is close to that of the region
numbering scheme compared with other labeling schemes.

Additionally, for finding a parent (i.e., XQ3), children (i.e., XQ4) and siblings
(i.e., XQ7 and XQ8), the difference of the query performance among the labeling
schemes is not considerable due to the use of the parent information. However,
EXEL is still better than ORDPATH and QED-PREFIX.

The prime numbering scheme shows bad performance for ancestor and de-
scendent relationships since it uses the mod operation which is more expensive

724 J.-K. Min, J. Lee, and C.-W. Chung

Table 4. The performance of inserting

Inserting a child
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 31 0 16 0
ORDPATH XM1 31 0 XM50 32 0

QED-PREFIX 31 0 5 0
Region numbering 156 11205 15203 468736

EXEL 15 0 15 0
ORDPATH XM11 5 0 XM115 15 0

QED-PREFIX 16 0 16 0
Region numbering 3485 109368 27203 1089457

Inserting a sibling
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 47 0 688 0
ORDPATH XM1 47 0 XM50 922 0

QED-PREFIX 63 0 906 0
Region numbering 235 17039 21890 717133

EXEL 187 0 1469 0
ORDPATH XM11 282 0 XM115 3359 0

QED-PREFIX 234 0 4922 0
Region numbering 5484 167772 38750 1666222

Inserting a parent
Labeling Scheme Data Time(ms) Re-labeling Data Time(ms) Re-labeling

EXEL 31 1 1656 1
ORDPATH XM1 63 3344 XM50 5734 141572

QED-PREFIX 63 3344 6350 141572
Region numbering 125 11429 19141 469031

EXEL 453 1 3703 1
ORDPATH XM11 609 32667 XM115 10266 330135

QED-PREFIX 834 32667 13016 330135
Region numbering 3938 109612 31187 1089687

than the comparison operations for integers and bit strings. For order sensitive
queries (i.e., query type 5, 6, 7 and 8), the performance is poorer than those of
other labeling schemes since SC-values should be used to compute the document
order of a node. Moreover, it takes very long time to compute SC values by an
algorithm in [16] even for small data. Thus, we could not measure the query time
for the order sensitive queries for over 1MB data.

Consequently, EXEL is superior to the prefix labeling scheme and the prime
numbering scheme over all cases. Also, EXEL is comparable with the region
numbering scheme than others. This is achieved by the binary encoding scheme
generating the ordinal bit strings which can be effectively adopted to the region
numbering scheme.

Upate Performance. We evaluated the performance of three kinds of inser-
tions; inserting a child node of a leaf node, inserting a next sibling node of a
node, and inserting a parent node. In our experiments, we excluded the prime
numbering scheme since it requires very expensive re-calculations of SC values
even for small data. The influence of inserting a subtree on pre-existing labels
is the same as that of inserting a node. Therefore, we omitted the experiment
of inserting a subtree. In order to evaluate update performance, we randomly
selected a node (a leaf node for inserting a child) for each kind of insertion and
inserted a node as its child, next sibling, or parent. For fair comparisons, we

An Efficient Encoding and Labeling for Dynamic XML Data 725

used the same node for all labeling schemes. Table 4 shows the performance of
inserting a node.

In the region numbering scheme, the re-labeling was inevitable for all kinds
of insertions. For inserting a child to a leaf node, other labeling schemes did
not require re-labeling after the insertion. For inserting a next sibling node, in
EXEL and ORDPATH, re-labeling of nodes is not incurred. However, in order
to generate a label for a newly inserted node, they need to know the label of
the next sibling. The performance of EXEL to find the following-sibling of a
node is better than those of other labeling schemes, so the time spent to insert
a sibling node in EXEL is smaller than those in others. For inserting a node
between parent and child nodes, ORDPATH should re-assign labels for the child
and its all descendents. EXEL keeps the parent information which is invariant
for insertions of ancestors except a parent. Therefore, in EXEL, only one update
was incurred. EXEL needs the labels of the previous and next sibling nodes to
generate a new label for an inserted node. However, the time to find labels of
siblings is much smaller than the time for re-labeling.

In summary, EXEL achieves the complete removal of re-labeling for insertions.
Therefore, EXEL can save much time for updates. Since the time measure smaller
than 100ms is unstable and less significant, the comparison of execution time over
100ms shows that the update performance of EXEL is 2.3 times on the average
and up to 3.8 times better than those of ORDPATH, with the performance gap
increasing as the size of XML data gets larger.

Storage Space. Table 2 shows the size of the databases where XM50 is stored
using each labeling scheme. EXEL2 reduces the space requirement effectively.
EXEL2 requires an additional scan of data to count the number of nodes before
labeling. However, the time for the preprocessing is much smaller than the total
storing time. Although EXEL2 uses three binary coding values (i.e., start, end,
and parent’s start), the space requirement is only slightly larger than ORDPATH
and Prime numbering scheme. However, the query performance of EXEL is bet-
ter than them as shown through the experiment results. Moreover, the database
size of QED-PREFIX is bigger than EXEL2. EXEL needs a larger space than
the region numbering scheme due to the use of the insert-friendly bit string.
However, the significant improvement of the update performance according to
the use of the bit strings compensates for the space overhead.

6 Conclusion

We propose EXEL, an efficient XML encoding and labeling method which sup-
ports efficient query processing and updates. A novel binary encoding method
used in EXEL generates ordinal and insert-friendly bit strings. EXEL is a variant
of the region numbering scheme using bit strings generated by the novel binary
encoding method. EXEL supports all axes in XPath, and the conditions to com-
pute the structural relationships can be simply expressed by SQL statements
of an RDBMS. Furthermore, we proposed a labeling method for a newly
inserted node, so EXEL removes the re-labeling overhead entirely unlike other

726 J.-K. Min, J. Lee, and C.-W. Chung

existing labeling schemes. The experimental results show that EXEL provides
fairly reasonable query performance. Also, the update performance of EXEL is
better than those of existing labeling schemes, with performance gap increasing
as the size of XML data gets larger.

Acknowledgements. This research was supported by the Ministry of Infor-
mation and Communication, Korea, under the College Information Technology
Research Center Support Program, grant number IITA-2006-C1090-0603-0031.

References

1. T. Amagasa and M. Yoshikawa. QRS: A Robust Numbering Scheme for XML
documents. In Proc. of ICDE 2003, pages 705–707, 2003.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Third Edition). W3C Recommendation,
http://www.w3.org/TR/REC-xml, 2004.

3. C.-W. Chung, J.-K. Min, and K.-S. Shim. APEX: An Adaptive Path Index for
XML Data. In Proc. of ACM SIGMOD 2002, pages 121–132, 2002.

4. J. Clark and S. DeRose. XML Path Language(XPath) Version 1.0. W3C Recom-
mendation, http://www.w3.org/TR/xpath, 1999.

5. E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. of
PODS 2002, pages 271–281, 2002.

6. R. Cover. The XML Cover Pages. http://www.oasis-open.org/cover/xml.html,
2001.

7. R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proc. of VLDB 1997, pages 436–445, 1997.

8. C. Li and T. W. Ling. QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In Proc. of ACM CIKM 2005, pages 501–508, 2005.

9. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Expressions.
In Proc. of VLDB 2001, pages 367–370, 2001.

10. J.-K. Min, M.-J. Park, and C.-W. Chung. XPRESS: A Queriable Compression for
XML Data. In Proc. of ACM SIGMOD 2003, pages 122–133, 2003.

11. P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In Proc. of ACM SIGMOD 2004, pages 903–
4908, 2004.

12. R. W. Philippe Le Hegaret and L. Wood. XML Path Language(XPath) Version
1.0. http://www.w3.org/DOM, 2005.

13. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:
A Benchmark for XML Data Management. In Proc. of VLDB, pages 974–985, 2002.

14. D. C. Scott Boag, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C Recommendation,
http://www.w3.org/TR/xquery/, 2005.

15. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and Querying Ordered XML Using a Relational Database Sys-
tem. In Proc. of ACM SIGMOD 2002, pages 204–215, 2002.

16. X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In Proc. of ICDE 2004, pages 66–78, 2004.

17. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proc. of
ACM SIGMOD 2001, pages 425–436, 2001.

	Introduction
	Related Work
	Efficient XML Encoding and Labeling (EXEL)
	Binary Encoding in EXEL
	Enhancement of Binary Encoding
	Region Labeling in EXEL
	Query Processing

	Update
	Labeling for Update
	Update Processing

	Experiments
	Experimental Environment
	Experimental Results

	Conclusion

