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Abstract 
A frequently encountered type of  query in geographic information systems and multimedia 

database systems is to find k nearest neighbors to a given point in a multidimensional space. 
Examples would be to find the nearest bus stop to a given location or to find some most similar 
images when an image is given. In this paper, we develop an analytic formula that estimates the 
performance for nearest neighbor queries and characterize the efficiency of  multidimensional 
index structures for nearest neighbor queries. The developed formula can be used directly in the 
query optimizers and the characteristics of efficiency will become the basis for the design of the 
index structure. Experimental results show that our analytic formula is accurate within some 
acceptable error range. It is exhibited that the efficiency of  the index structure depends on the 
storage utilization and the directory coverage of it. 

1. Introduct ion  
A great variety of applications require to find near neighbors in a multidimensional 

space, For example, typical applications are: finding the nearest MRI brain scans to an 
given image in medical image databases, retrieving video shots containing the frame 
similar to a given image in video databases, finding near hotels from a given location 
in geographic information systems, finding similar DNA's from a large genetics data- 
bases, etc. 

Efficient processing of nearest neighbor queries requires an efficient index struc- 
ture which capitalizes on the similarity of  the objects to focus the search on the poten- 
tial neighbors. In recent years, some index structures and algorithms have been devel- 
oped for fast retrieval of near neighbors in a multidimensional space [1, 3, 7]. However, 
no attempt has been made to analyze the performance of the nearest neighbor queries 
on index structures as far as we know. The focus of most analyses [4, 6, 9] has been on 
the performance of  range queries. In this paper, we develop an analytic formula to 
predict the performance of  the nearest neighbor query in multidimensional index struc- 
tures and investigate the factors that influence the performance of  the nearest neighbor 
query. The developed formula can be used directly in the query optimizers and the 
investigated performance factors will be used for the basis of the design of  multidimen- 
sional index structures. 
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2. Background  
2.1 Basic Concepts of Multidimensional Index Structures 

Most o f  multidimensional index structures have a tree structure which consists o f  
internal and leaf nodes. A l e a f  node contains at most C/entries o f  the form 

(old, R) 
where C1 is the capacity o f  a leaf node, oid is a pointer to the object in the database, and 
R is a representative of  the real object, e.g., it is a minimum bounding rectangle for the 
R-tree [5] or an n-dimensional feature vector for image databases [2, 3]. An internal 
node contains at most C,, entries o f  the form 

(ptr, R) 
where C,, is the capacity o f  an internal node, p t r  is a pointer to the child node, and R is 
a bounding device that encloses all objects at lower leveIs, e.g., it is a minimum bound- 
ing rectangle in the R-tree or a minimum bounding interval in the HG-tree [2]. 

2.2 Basic Definitions 
Let n be the dimensionality o f  the data space, ~ : [0,1), 1 _< i < n, and W = W~ × 

W2 × ... × W,, be the n-dimensional unit data space in which all data objects are defined. 
Let us assume that for storing N data objects the index structure consumes m nodes sl, 
&,. . . ,  s~, each corresponds to one disk page. The d i r e c t o ~  region, DR(sj) of  node s~ is a 
minimal n-dimensional bounding rectangle enclosing all objects in SJ- This corresponds 
to the node entry component R described in the above subsection. We assume that 
DR(sj) is represented by [ll, rl] x ... × [l,,, r,,], l,, r, c W,, l, < r, for 1 < i _< n. The direc-  
t o ~  coverage,  Cu(T), of  the index structure T is defined by the union of  the directory 
regions of  all leaf nodes in the index structure [2]: 

k 
Cj(T) = U DR(sO,  where k is the number of  leaf nodes in the index structure. 

i=1 

The storage utilization (U) of  an index structure can be defined as follows [2]: 

1 
U : - -  

m 
where Fi is the number o f  entries in node i, the Pi is the maximum number o f  entries 
that a node i can have, and m is the total number o f  nodes in the index structure. 

Let D be a distance function defined in n-dimensional data space. Given a point (xl, 
x: . . . . .  x,,) and a positive integer k, the k-nearest neighbor query finds the k nearest 
neighbors on (xl, x2 . . . . .  x,,) with respect to the distance function D. The typical way to 
compute the distance between two points is using the Euclidean distance. Let X = (x~, 
x2 . . . . .  Xn) and Y = ¢vl, y2 . . . . .  y,,) be two points in an n-dimensional space. Then the 
Euclidean distance, D2(X,Y) between X and Y is as follows: 

i _lit 2 
D2 ( X ,  Y ) = t xi - y, 

i 1 

3. Analysis  of  Index Structures for Nearest  Ne ighbor  Queries  
In this section we develop an analytic formula to evaluate the average response time 
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for k-nearest neighbor queries. For the performance measure of the query processing, 
we will use the number of  disk accesses necessary to perform k-nearest neighbor query 
because the average query cost is dominated by disk accesses. And we will use the 
Euclidean distance as the (dis)similarity measure. 

Nearest neighbor search algorithms should focus on eliminating unlikely candi- 
dates rather than pin-pointing the targets directly to find the k nearest neighbors, be- 
cause a data object is not the nearest neighbor only when the index subsystem declares 
that it is not [3]. Thus it is not clear how to estimate the performance of nearest neigh- 
bor queries as compared with range queries in which a specific query region is given 
and only the nodes overlapping the regions are necessary to be inspected. Contrary to 
the range queries where the query region is fixed, the query region for the k-nearest 
neighbor query is widely variable depending on the query location and the data distri- 
bution. These problems make the analysis of  the nearest neighbor query performance 
difficult, and may cause the relative errors of  the performance analysis to be fluctuated. 

At first, we provide an example to get an intuition for the analysis of the nearest 
neighbor query performance. 

Example 1. Fig. 1 shows a collection of directory regions numbered 1 to 12 on a 
normalized 2-dimensional unit domain space, organized in a multidimensional index 
structure with fanout = 3. Let us assume that we want to find 5 nearest neighbors from 
the query location denoted by + in Fig. 1. Then the dotted circle will be the minimal 
search area of the 5-nearest neighbor query, i.e., all 5 nearest points are within the dot- 
ted circle. The directory regions numbered by 1, 3, 5, 10, 11 should be inspected. 
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Fig. 1. Data (bullets) organized in the multidimensional index structure with fanout = 3. 

Considering this observation, we can catch an insight that the smallest area needed 
to process the k-nearest neighbor query is the n-dimensional sphere containing the k 
nearest objects from the query location. Therefore, in the index structure, we can esti- 
mate the cost necessary to process the k-nearest neighbor query by computing the 
number of nodes that intersect the n-dimensional sphere. Then the expected number 
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DA of disk accesses needed to perform k-nearest neighbor query Q is given by 
m 

Z Probability (R(k) [-] DR ( s, )) (1) 
i=l 

where R(k) is the expected query region covered by Q and m is the total number of  
nodes in the index structure. Formula (1) says that every node s, whose directory region 
DR(si) is overlapping the query region R(k) must be inspected. The R(k) becomes the 
volume S,,(r) of the n-dimensional sphere containing k nearest objects. We will call it 
hyper-volume. We can get the size of  each directory region DR(si) from the index struc- 
ture or can compute from the characteristics of  the data set [9]. Table 1 gives the sum- 
mary of symbols and their definitions that will be used in the paper. 

Symbols Definitions 
number"'Of dimensions n 

N 
m 

s i  

DR(s,) 
k 

R(k) 

8(n) 
F 

S,,(r) 
DA 

number of  data points in the index structure 
number of nodes in the index structure 
i-th node in the index structure 
directory region of node si 
number of  neighbors to find 
area covered by k objects 
value to correct the area covered by k objects 
n-dimensional sphere 
radius of the n-dimensional sphere 
hyper-volume of the n-dimensional sphere with radius r 
number of disk accesses for a k-nearest neighbor query 

Table 1. Summary of symbols and Definitions 

Contrary to the range query where the query region is given directly, in the nearest 
neighbor query, determining the area R(k) covered by k objects is an important prob- 
lem because the area R(k) is widely variable depending on the query location and the 
data distribution. Since the shape of the area covered by the k-nearest neighbor query is 
determined by n-dimensional sphere, i.e., R(k) = S,,(r), we must compute R(k) and S,,(r). 

Assumed that N uniformly distributed points are stored in a multidimensional index 
structure and the domain space is n-dimensional unit data space [0,1)", the area R(k) 
covered by k points out of  a total N points will be kiN, However, this value of  R(k) 
would sometimes lead to inaccurate estimations because R(k) is widely variable de- 
pending on the query location and data distributions. Let us consider Examples 2 and 3. 

Example 2. Fig. 2 shows two 3-nearest neighbor queries Q~ and Q2 in which their 
query locations are at + and x, respectively. All data points are clustered within the 
area denoted by A. The query locations of  QI and Q2 lie outside and inside A, respec- 
tively. Two areas covered by Q~ and Q2 to include 3 nearest neighbors show significant 
difference. 

The R(k) is also dependent on the data distribution. For example, in uniform distri- 
bution, the size of  area R(k) may be independent of  the query location. On the other 
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Fig. 2 
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Two 3-nearest neighbor queries with query points located in + and x 

hand, the influence of the query location on the size of R(k) may be severe in skewed 
distribution. In particular, when the area covered by the whole data set is smaller, the 
effect of  the query location to the size of  R(k) is severer. We give the next example to 
illustrate the effect how the area covered by the data set influences the size of  R(k). 

Example 3. Fig. 3 illustrates two sample data distributions on a 1-dimensional space. 
The bullets on line segments represent data points. We assume that the whole data 
space is 8 units. Assuming that the search direction is restricted to only one direction, 
the number beneath each line segment represents the area (= the number of  units) that 
must be searched to find 1-nearest neighbor when the query location lies in that seg- 
ment. Summing up the results of  1-nearest neighbor query at each line segment, the 
sums of areas that must to be searched are 12 (= 1+2+1+2+1+2+1+2) units and 18 (= 
5+4+3+2+1+1+1+1) units in (a) and (b), respectively. 

- - o - ~ -  . . . . . . .  + + ~  ~, . . . . .  i I . . . . . . . . . . . . . . . .  
1 2 1 2 1 2 1 

~- . . . . .  T ...... I I + -~++ ® 
2 5 4 3 2 1 1 1 1 

(a) uniform distribution (b) skewed distribution 

Fig. 3 Two sample data distributions on a 1-dimensional line 

From the above example, we can get the knowledge that the area that must be 
searched to find k nearest neighbors tends to increase as the area covered by the data 
set becomes smaller when the query location is uniformly distributed. Based on the 
above observation, we correct the area R(k) as follows: 

k 
R ( k )  = (2) 

Na 
where ~ is a heuristic value in (0,1] to correct R(k). When the data set has a uniform- 
like random distribution, ~ becomes 1. As the area covered by the data set is smaller, 
we make the a smaller. Smaller area covered by the data set makes it lower that the 
probability of  laying the query location inside the area covered by the directory regions, 
and thus it tends to increase the size of  R(k). 
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Now, let us find the hyper-volume S,,(r) and radius r o f  the n-dimensional sphere 
B(n). Starting from 2-dimensional data space, we will generalize them to n-dimension. 
In the case o f  2-dimension, we have the area Sffr) = nr  2 o f  the circle B(2) and can get 
the radius r from nr  2 = R(k): 

Generalizing the problem to n-dimension, we can compute recursively the hyper- 
volume S,, o f  the n-dimensional sphere B(n) as follows: 

f S, (r )  = S , -  , ( f ( x ) ) d x ,  n>_2 (3) 
r 

Sl(r) = 2t; 

& )  = . , r F  - x 2 

For n=2 and n=3, $2 = ~r z and $3 = (4/3)~r 3, respectively. We can compute the radius r 
o f  an n-dimensional sphere from Eq. 2 = Eq. 3. The hyper-volume o f  this n- 
dimensional sphere B(n) with radius r is the estimator o f  the area covered by the k 
nearest neighbors from the query location. 

Our goal is to estimate the expected number o f  disk accesses by finding the prob- 
ability that the n-dimensional sphere B(n) with radius r intersects a directory region 
DR(si). To simplify the situation, we start from 2-dimensional space and then general- 
ize it to n-dimension. As an example, see Fig. 4. W = [0,1) 2 is a 2-dimensional unit data 
space. A square DR is a directory region. Circle C with radius r represents the search 
area R(k) including the k nearest neighbors, whose center is a query location. The prob- 
ability that the directory region DR intersects the query circle C becomes the probabil- 
ity that the directory node may be accessed in the nearest neighbor query. We get 

Probability(C A DR) = area(P) = area(DR) + perimeter(DR).r + area(C) 

Summing it up to the index structure with m nodes, we obtain the expected number 
DA(2) of  disk accesses on a 2-dimensional space using Eq. 1: 

m 

DA(2) = ~ Probability ( C A DR ( s, )) 
l=l 

= £ area ( DR ( si )) + r £ perimeter ( DR ( s, )) + area(C).m 
i=1 i=t 

Generalizing it to n-dimension we derive the following formula for DA: 

DA(n) T M  hypervotume,, ( DR ( s, ) + r Z hypervolume, - l ( DR ( si ) ) 
~=1 i=l 

+ ~" ( ervolume,-j ( DR ( s, )). Sl ( r )) (4) 
~=1 j=2  

This the estimator to evaluate the number o f  disk accesses necessary to perform the 
k-nearest neighbor query on n-dimensional data space. By the function hypervolu- 
me,,(x) we refer to the hyper-volume of  an n-dimensional solid x. For example, n=3, 
n=2, n=l,  and n=0, hypervolume3(x) = volume of  x, hypervotume2(x) = area o f  x, hy- 
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pervolume~(x) = perimeter of x, and hypervolumeo(x) = number of vertices of x, respec- 
tively. Sj(r) is the hyper-volume of the j-dimensional sphere with radius r. 

A 
1 

W 

1 

I 
I 

Fig. 4 Probability P that the directory region DR intersects the query circle C 

We can make several comments related to the above formula. The performance of 
the nearest neighbor query relies on three factors: the total number of nodes in the 
index structure, the hyper-volumes of  the directory regions, and the area covered by k 
nearest objects, which are represented by m, hypervolumej(DR(si)), and S~(r), respec- 
tively, in Eq. 4. The size of m is mainly affected by the storage utilization of the index 
structure. Higher storage utilization reduces the total number of nodes, m, in the index 
structure. The hypervolume,,(DR(si)) is defined by the directory coverage of the index 
structure. Smaller directory coverage decreases the size of  the hypervolume,,(DR(si)). In 
addition, all of  the j-th hyper-volume hypervolumej(DR(si)) are also important factors. 
The search area Sj(r) is a j-dimensional sphere defined by the required number of ob- 
jects out of a total number of objects. 

4. Exper imenta l  Results and Analys is  
In order to evaluate our analysis we carried out several experiments on various data 

distributions. We employed the HG-tree [2] and the buddy-tree [8] as underlying mul- 
tidimensional index structures for our experiments, but other structures such as R-tree 
can be used. The nearest neighbor search is based on the algorithm given by Rous- 
sopoulos et al. [7]. During each experiment, the 100,000 4-dimensional points from the 
data space [0,1) 4 has been inserted into the initially empty HG-tree and buddy-tree. In 
order to achieve statistically significant results the node size was set to 512 bytes which 
is at the lower end of realistic node sizes [8]. For our tests we used four groups of data 
sets as in [8]: uniform distribution, clustered distribution, bit distribution, and diagonal 
distribution. 

We based our tests on the number of nodes (= pages) retrieved by k-nearest neigh- 
bor query. In Figs. 5 to 8 we see the average of 1,000 queries for each of several differ- 
ent number of nearest neighbors. In each experiment, we used the following heuristic 
value of<x: 
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c~ = (the area covered by the data set) 1/,, 
where n is the dimensionality of  the data space. In practice, we approximated the area 
covered by the data set by the directory coverage of  the index structure. 

In the experiments, we used two groups of  nearest neighbor queries. In one group 
of  queries, query locations are distributed uniformly. Query locations of  the other 
group follow the distributions similar to the data set. The experimental result of  the 
former group is represented by Experimentall and that of  the latter group is repre- 
sented by Experimental2 in Figs. 6 to 8. In the data set with uniform distribution, only 
the uniformly distributed queries were tested because the query locations of  these que- 
ries follow the distributions of  the data set. 

The observation of the results in uniform distribution is that the analytical estimate 
is close to the actual result: the relative error is below 9%. In clustered distribution, on 
the other hand, the errors in the queries with small number of  neighbors are relatively 
large compared with those of the uniform distribution. However, the average errors are 
within an acceptable range (less than 14%). In the bit distribution, all relative errors are 
below 16%. The errors in the diagonal distribution are large. However, when tile distri- 
bution of the query locations is similar to the distribution of the data set, the average 
error is acceptable (less than 19%). 

In the case that the ratio of  the area covered by the data set to the whole data space 
is very small, which is the case of  our diagonal distribution, the relative errors tend to 
be large. In this case, assuming that query locations are uniformly distributed, the 
probability that the query locations lie close to the desired data points or directory re- 
gions is very low. Therefore, the area R(k) is very large, and thus it may cause the dif- 
ference between the estimated area R(k) and the actual area covered by k points to be 
high. Compared to the analysis of the range query performance [4, 9], the reason that 
the error rates in the analysis of the nearest neighbor query performance are somewhat 
high is because the fluctuation of the area R(k) is relatively high depending on the 
query location and the data distribution. However, since we may make an optimistic 
assumption that the query locations given by users are not so far away from desired 
data objects, we may expect that the actual error rates are lower than those in the ex- 
perimental results. For example, in content-based image databases, users may provide 
an query image similar to what they want to retrieve. 

Experimental . ~ t - -  Analytical 
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Fig. 5 Experimental vs. analytical results in uniform data distributions 
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Fig. 6 Experimental vs. analytical results in clustered distributions 
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Fig. 7 Experimental vs. analytical results in bit distributions 
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Fig. 8 Experimental vs. analytical results in diagonal distributions 
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5. Conclusions 
There are two contributions in this work. First, we derived an analytic formula that 

can be used as a good estimate for the cost of nearest neighbor query performance. 
Using it we estimated the performance of  the nearest neighbor query on various data 
distributions and showed that the analysis is applicable for prediction of the nearest 
neighbor query" performance. Experimental results show that the estimation errors are 
within an acceptable range in most case, the average error is usually around 5%-20%. 
Even in the case that the area covered by the data set is extremely small, the average 
error is below 19% if the query distribution is similar to the data distribution. 

Second, we showed that the storage utilization, the directory coverage, the hyper- 
volume of  the directory region, and the area covered by the required k data objects are 
the major factors that influence the performance of  the nearest neighbor query. These 
factors will become the basis for the design of multidimensional index structures. Up to 
now, it has not yet been well known what are the critical factors that influence the 
nearest neighbor query performance. 

Future work could focus on more accurate estimation of  the area R(k)covered by k 
objects out of a total of  N data objects. Here we need a technique for adjusting the 
heuristic value c~ depending on the data distribution or the directory coverage of the 
index structure. 
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