
Controlled Decomposition Strategy
for Complex Spatial Objects*

Yong-Ju Lee
Information & Computer Center

Korea Environmental Technology Research Institute
9-2 Samsung-dong, Kangnam-ku, Seoul, 135-090, South Korea

yjlee@keins.ketri.re.kr

Dong-Man Lee, Soo-Jung Ryu, and Chin-Wan Chung
Department of Information and Communication Engineering

Korea Advanced Institute of Science and Technology
207-43, Cheongryangni, Dongdaemun, Seoul 130-012, South Korea

{dmlee, sjryu, chungcw}@romeo.kaist.ac.kr

Abstract
 The efficient query processing for complex spatial objects is one of most challenging

requirements in many non-traditional applications such as geographic information systems,

computer-aided design and multimedia databases. The performance of spatial query processing

can be improved by decomposing a complex object into a small number of simple components.

This paper investigates a natural trade-off between the number and the complexity of

decomposed components. In particular, we propose a new object decomposition method which

can control the number of components using a parameter. The proposed method is able to fine-

tune the trade-off by controlling the parameter. An optimal value of the parameter is explored

through experimental measurements. The decomposition method with this optimal value

outperforms traditional decomposition methods. The gain by applying the optimal value is

more clear as the complexity of spatial objects increases.

1 Introduction

Queries in spatial databases are usually concerned with massive volumes of data and
complex spatial objects. Spatial objects are characterized by extremely irregular
geometric components which do not conform to any fixed shapes, and by multi-
dimensional data which consist of a large number of coordinates describing the outline
of spatial objects. If there are a large number of such complex objects, searching a
particular spatial object would be expensive, since a number of geometric
computations are expected to be required for exact calculations with respect to
locating the spatial object. In order to locate a spatial object efficiently, the spatial ob-

* This work was supported by the National Geographic Information Systems Technology

 Development of the Ministry of Science and Technology of Korea.

ject, in general, has to be approximated before any geometric computations are
applied.
 There are two approaches to approximate spatial objects. The first approach is that
a smallest aligned rectangle enclosing an object, a minimum bounding
rectangle(MBR), is used to approximate the irregularly shaped spatial object. The
MBRs allow appropriate proximity query processing by preserving the spatial
identification and eliminating many potential intersection tests quickly. For instance,
two objects will not intersect if their MBRs do not intersect. Most of approximation
methods[1-3] based on traditional spatial access methods are fallen to this approach.
The second approach is that a more accurate approximation than the MBR, such as a
convex container, can be used to approximate a spatial object. This approach is
expected to improve the performance of query processing by increasing the quality of
the approximation for original objects. Convex approximations[4] and object
decomposition techniques[5] are fallen to the second approach.
 Two well known approximation methods, the filtering-refinement[6] and the
object transformation[7-8], may be considered in the first approach. In the filtering-
refinement method, the filter step reduces the entire set of objects to a subset of
candidates using their MBRs, and then the refinement step inspects the exact
representation of each object of the candidates. Although MBRs provide a fast
approximation by existing spatial access methods designed for MBR containers, they
are considered as a rather inaccurate approximation since a simple rectangle cannot
exactly represent an arbitrary spatial object. By the coarse approximation of this
method, the candidates may contain a number of 'false hits' not fulfilli ng the query
condition. Furthermore, the whole candidates have to be transmitted into the
refinement step even if they would result in 'false hits.' In the object transformation
method, k-dimensional spatial objects are transformed to 1-dimensional bitstrings, or
k-dimensional intervals are transformed to points in 2k-dimensional space.
Nevertheless, this method also has a rough approximation since its mapping was done
under the assumption that spatial objects are MBRs.
 Convex approximations and object decomposition techniques in the second
approach have been attempted to improve the quality of the approximation. However,
convex approximations using more complex containers require more complex spatial
access methods, since complex containers need more parameters than MBRs.
Moreover, the use of one container on an original complex object representation
cannot decrease the complexity of the spatial object. This means that time-consuming
geometric computations have to be applied for deciding the complex objects satisfying
the query condition. In contrast, object decomposition techniques, which decompose a
complex spatial object into a number of simple spatial components such as trapezoids,
lead to both a better quality of the approximation and simpler spatial objects. However,
the number of decomposed components could result in a query processing overhead,
since refinement steps should be tested redundantly by components with the same
object identifier. This is ill ustrated in Example 1.

Example 1 (redundant refinements of decomposed objects):
In Figure 1(a), spatial objects are approximated by MBRs. A typical spatial query may
ask for all objects intersecting a user-specified rectangular window Q. In this case, all
rectangles that intersect the search region Q are determined in the filter step. Here,
objects A, B, C and D belong to the candidate set. In the refinement step, we have to
check whether the exact representation of the objects A, B, C and D really intersect
the search region Q. At this point, the objects A and B are identified as correct
answers of the query, whereas the objects C and D are not. In order to improve the
quality of the approximation, object decomposition techniques have given up using
one single MBR for every complex spatial object. That is, the original complex
objects are decomposed into a set of simple components such as trapezoids. Similar to
an existing MBR approach, all decomposed components can be approximated by
means of MBRs. Contrary to the existing MBR approach, a good approximation is
provided by divided MBRs. As a result of this method, objects A and B belong to the
candidate set. Figure 1(b) shows the result of this approximation. However, there may
be a number of different components labeled with the same identifier, and there are
needs for a number of redundant refinements on decomposed components. For
instance, the objects A and B have to deal with three times redundant refinements,
respectively.
 C C

 A A

 Q Q
 B D B D

 (a) existing MBR approach (b) object decomposition approach

 Figure 1. Different approximation approaches

End of Example 1.

 As described in Example 1, object decomposition techniques have a problem on
decomposed components. Even worse, the more complex spatial objects are, the more
spatial components are produced from the complex objects. Due to a large amount of
redundant refinements of such complex objects, the efficiency of spatial queries is
decreased. Therefore, the development of a new object decomposition method to
overcome this problem is essential.
 To solve the problem described above, we propose a new object decomposition
method which divides a polygon into two sub-polygons recursively by splitting its

MBR until a given constraint is satisfied. This method enables a natural trade-off
between the number and the complexity of decomposed components, since the number
of components can be controlled by a given constraint. Experimental results show the
superiority of our new decomposition method compared to traditional decomposition
methods.
 This paper is organized as follows. In Section 2, we classify object decomposition
techniques by properties of the decomposition. Section 3 describes an algorithm for
our decomposition method. Section 4 presents a performance comparison with varying
values of parameters through experimental measurements. Finally, conclusions appear
in Section 5.

2 Object decomposition strategies

The main goal of the following sections is to propose a new object decomposition
method for improving the performance of spatial query processing. Primarily, criteria
for evaluating the suitability of decomposition techniques are examined which provide
essential requirements for an efficient object decomposition method. Then, a
classification of different decomposition techniques is given by properties of the
decomposition.

2.1 Evaluation criteria
In order to achieve the best decomposition strategy for spatial query processing, it is
necessary to take into account a number of requirements concerning object
representations. The following properties are important requirements for developing a
new efficient object decomposition method.

• Minimizing the number of components
High redundancy induced by a large number of components results in a storage and
query processing overhead. Due to the high amount of redundancy incurred by
traditional object decomposition techniques, the storage overhead is unacceptable and
the performance of spatial queries is inefficient. Therefore, an important goal of
developing a new object decomposition method is to minimize the number of
generated components.
• Simplification of complex objects
In the case of complex spatial objects, a major factor determining query performance
is the performance of the refinement step. This is due to the fact that the more complex
spatial objects are, the more time-consuming geometric algorithms are required for
inspecting exact representations. The performance of the refinement step can be
improved by decomposing complex spatial objects into a set of simpler components.
In this respect, the simplification of complex objects is an essential requirement in the
query processing of complex spatial objects.

• Good container approximation
It is of crucial importance to minimize the 'dead space' between a spatial object and its
container. Our one premise for the development of a new decomposition method is to
use MBRs as containers for the components. So the proposed object decomposition
method must supply components that can be well approximated by MBRs.
• Good run-time performance
Whenever a new object is inserted into the database, a decomposition of that object
must be performed. An algorithm, producing an optimal number of components but
requiring exponential order run-time, is unacceptable. Thus, decomposition algorithms
with run-time of low order complexity have to be provided.
• Small amount of storage
Until now, we only focused on the eff icient processing of spatial queries. Nevertheless,
it is an important issue to limit the amount of additional storage required for the
redundant components.

 Most of decomposition techniques proposed up to now are considered to be
incapable of fulfilli ng above criteria completely. Most decomposition techniques [9]
known from the field of computational geometry had been developed under
requirements different from those arising in spatial query processing. These techniques
try to address an optimization with respect to one of the above criteria, e.g.,
minimizing the number of components, but ignoring other aspects such as the run-time
performance. Decomposition techniques in spatial query processing reveal an extreme
unbalance between the number and the complexity of their components. While the
MBR approximation represents no redundancy with a complex spatial object, object
decomposition techniques generate a large number of very simple components such as
trapezoids.
 In order to fulfill the above criteria totally, the goal of an object decomposition
method has to be newly defined. This consideration leads to the development of a new
object decomposition method that tunes a trade-off between opposing criteria such as
the number and the complexity of decomposed components. In practice, traditional
object decomposition methods generate too many components. The problem is that
these methods introduce redundancy in an uncontrolled way. Thus, the redundancy of
components should be controlled in the object decomposition method. If the
redundancy can be controlled, it is possible to fine-tune the trade-off between the
retrieval time required for the filter step and the refinement step. The optimal value
can be selected according to a cost model.

2.2 Classification of decomposition techniques
There are many object decomposition techniques in use for representing spatial
objects. The basic principle of these techniques is a recursive decomposition such as
'divide and conquer' methods. We classify the object decomposition techniques
according to the following three properties of the recursive decomposition: condition

of decomposition, number of partitions, and containers of components. This
classification yields five strategies as in Table 1. We discuss a brief description with
respect to five decomposition strategies and attempt to capture their particular
properties concerning evaluation criteria outlined in Section 2.1.

 Table 1. Classification of decomposition techniques

Strategy Properties of Decomposition Indexing Structures
Condition Number Containers

No no redundancy 1 MBR R-tree[10]
 R + -tree[11]
 R* -tree[12]

Reqular regular grid 2d a set of
fixed grids

 quad-tree[13]
 B+ -tree with z-value[7]

Variable
Grid

grid and
object shape

variable variable
cells

 edge-quadtree[14]
 PM quadtree[14]

Structural object structure n MBRs Cell-tree[15]
 TR* -tree[16]

Controlled controllable
parameters

variable
(controllable)

decomposed
MBRs

 will be discussed

 d: the number of decompositions which split a region into two equal-sized sub-regions

 recursively

 n: the number of decomposed components

(1) No decomposition (MBR)
Each spatial object is placed in a container, i.e., an MBR. This approach avoids
redundant object representations. For preserving the spatial locality and exploiting the
spatial clustering, MBRs of spatial objects can be efficiently managed by spatial
access methods such as R-tree, R + -tree and R* -tree. Since an MBR causes a
coarse approximation, however, a whole complex object has to be transmitted to the
refinement step even though its result is a false hit. In order to evaluate this complex
object, the refinement step requires time-consuming computational geometry
algorithms. Figure 2(a) shows an MBR that enclosed a complex spatial object.
 We can summarize properties of this approach with respect to the evaluation
criteria described in the previous section: it has no redundancy and reveals a strong
disadvantage caused by the coarse approximation, and requires expensive
computational geometry algorithms.

(2) Regular decomposition
The data space is divided into cells by a regular grid. The container of a spatial object
is represented by a set of cells that it intersects. The set of cells over regular grids can
be represented by bitstrings, i.e., z-value, representing the recursive grid partitioning
of the data space. These bitstrings can be efficiently stored by using an one-

dimensional access method such as the B-tree. However, this approach includes a
large number of fixed cells, and provides no flexibilit y for the decomposition of the
original object. This is due to the strict condition of the partitioning process given by a
predefined grid resolution. In this approach, the performance of the filter step is
improved by forming a set of fixed cells, but the performance of the refinement step is
not improved since the complexity of the object is not generally decreased using this
approach. Figure 2(b) shows the grid representation as an example of the regular
decomposition.
 Summarizing, main properties on evaluation criteria are: it provides a good
container approximation, but cannot decrease the complexity of the object.
Furthermore, it has a number of components, and requires a large amount of storage.

 (a) MBR (b) grid representation

 Figure 2. No and Regular decomposition

(3) Variable Grid decomposition
A further approach is taken by grid based methods which are not restricted to a
predefined grid resolution, but taking into account of the object location and shape.
Similar to the edge-quadtree, a region is sub-divided into four squares repeatedly until
a square is obtained that contains a single curve that can be approximated by a single
straight line (see Figure 3(a)). This means that no overall minimum cell resolution can
be guaranteed. The resolution depends on the shape of the object. Thus, the
decomposition process over complex spatial objects can typically produce a large
amount of cells of a very small area. However, the refinement step, contrary to
Regular decomposition using a fixed grid resolution, is tuned by the occurrence of
very simple objects represented by each grid cell .
 The properties of this approach can be summarized as follows: the refinement step
can be tuned by simple components. However, the amount of redundancy essentially
depends on the shape of the object, and can arbitrarily grow.

(4) Structural decomposition
The term 'structural' expresses that the decomposition is oriented on the boundary of a
polygonal object. The structural decomposition provides a high degree of choices for
component types and decomposition algorithms. Typical types of decomposed

components are convex polygons, trapezoids and triangles. These components, similar
to the MBR approach, are managed by a spatial access method by placing them into
containers, e.g., MBRs. Choosing a proper decomposition algorithm improves the
performance of both the filter step and the refinement step. The main drawback is
given by a large number of components. Figure 3(b) shows the trapezoids
representation as an example of the structural decomposition.
 As a consequence, the important properties of this approach are that it leads to a
good container approximation as well as simpler spatial objects. Due to a large
number of components, however, the storage overhead and the efficiency of spatial
queries are unacceptable.

 (a) edge-quadtree representation (b) trapezoids representation

 Figure 3. Variable Grid and Structural decomposition

(5) Controlled decomposition
We propose a new object decomposition method called decomposed minimum
bounding rectangles(DMBRs). The basic idea is that a polygon is divided into two
sub-polygons corresponding to the left and the right half regions of its MBR space,
then a new MBR, called here DMBR, for each of those sub-polygons is generated.
This operation is performed recursively until every DMBR fulfills a given constraint.
The constraint is expressed by the accuracy of the decomposition(AOD). This means
that a split is permitted if the size of the resulting DMBR is above a threshold. The
threshold is controlled by a parameter g: AOD(g) requires a split of the DMBR that
covers more than 2 -g of the MBR space. There are some relationships among
decomposition strategies in this section. Both No and Regular decomposition are the
limiting cases of Controlled decomposition. The No decomposition is equivalent to
AOD(0). Considering an MBR with resolution 2d (i.e., the conceptual grid has 2d

pixels), the Regular decomposition is equivalent to AOD(d). Example 2 illustrates the
process of Controlled decomposition.

Example 2 (controlled decomposition strategy):
Consider a polygon shown in Figure 4(a). This figure shows an MBR enclosing a
spatial object. Assume that the threshold size is 25% of the MBR space, i.e., AOD(2).
We sub-divide the polygon until the given constraint is satisfied, using the vertical and

horizontal boundaries in a strictly alternating sequence.
 By the vertical boundary, at first, the decomposition result of Figure 4(a) is
depicted in Figure 4(b). Since an DMBR of the right sub-polygon is bigger than 2 -2

of the MBR space, the right sub-polygon is sub-divided into two polygons against the
horizontal boundary (see Figure 4(c)). Then the recursive decomposition terminates
since every DMBR covers less than 2 -2 of the MBR space.

 (a) (b) (c)

 Figure 4. The process of AOD(2)

End of Example 2.

 The DMBRs strategy has a parameter that controls the amount of redundancy for
each object. It is shown that redundancy could be controlled by the parameter. At a
low value of the parameter, the number of components can be minimized, but this
decomposition provides a rather poor approximation of the object. On the other hand,
the accuracy of the approximation can be better at a higher value, but the linear
increase in the number of components can be observed. From this observation, we can
conclude that there is a balanced ratio between the number of components and the
accuracy of the approximation. In Section 4, an optimal value of the parameter for
DMBRs will be explored through experiments.
 To summarize, this approach makes that it is possible to fine-tune among the
number of components, the complexity of components, the container approximation
and the amount of storage by controlling the parameter in object representations. The
run-time performance is also suitable for most complex objects.

3 Controlled decomposition algorithm

An algorithm which divides a polygon must deal with many different cases, such as
those shown in Figure 5. Sometimes several sub-polygons result from dividing a
polygon. In this respect, we need an organized way to deal with all these cases. Our
algorithm travels around the polygon vertices v1 , v2 , …, vn , at each step examining
whether a line connecting two successive vertices intersects against the middle
splitting boundary. By this intersection test, two intersection points will be selected.
However, some intersections might occur right at the vertices of the polygon such as
Figure 5(b), or coincide with edges of the polygon such as Figure 5(c). One way to

solve these cases is to simply ignore points that fall on the splitti ng boundary. In the
particular case of Figure 5(d), the splitti ng boundary is made by a line connecting two
smallest values of y (or x) axis among intersection points. A solid line in the figure
shows this splitti ng boundary.

 (a) (b) (c) (d)

 Figure 5. Examples of dividing a polygon

 The following decomposition algorithm uses a 'divide and conquer' technique by
splitti ng an MBR recursively until every DMBR fulfill s a given AOD(g) constraint.
After accepting an array p as an input polygon, the algorithm creates two other arrays
p1 and p2 as two divided polygons. As soon as two arrays are created, this algorithm
calls itself for each of the divided polygons, and the next dividing is performed against
the next splitti ng boundary recursively. To increase the eff iciency of our
decomposition algorithm, the DMBRs of divided polygons are inserted into a two-
dimensional(2D) binary tree that is similar to the LSD tree[17]. Since a polygon
generates exactly two divided polygons in our algorithm, the binary tree is appropriate
for this kind of representation. In this binary tree, DMBRs and their component
identifiers are stored at leaf nodes, and rectangles enclosing sub-polygons are stored at
non-leaf nodes.

Algorithm: Decomposition (p, d)
 Input: A series of polygon vertices p=(v1 , v2 , …, vn), where polygon edges are
 from vi to vi + 1 for i=1,2,...,n-1 and from vn to v1 . A boolean variable d,
 where d is toggled on the way that divides the region to effect the alternating
 tests on the vertical and horizontal boundaries.
 Output: A new 2D binary tree.
 Method:
 D1. [Find MBR or DMBR coordinates]
 Find minimizing and maximizing values of x and y coordinates from the array
 p of polygon vertices. In case of MBR, initialize 2D binary tree.
 D2. [Check termination condition]
 If DMBR space is bigger than 2-g of the MBR space, then do step D3
 through D5 for the array p, otherwise terminate the recursive program.
 D3. [Divide a polygon into two sub-polygons]
 Make a splitti ng boundary in the center of an input polygon. If polygon edges
 are less than the splitti ng boundary then add in the array p1, otherwise add in

 the array p2. In case that polygon edges intersect with the splitting boundary,
 find the intersection point and add to both array p1 and array p2.
 D4. [Build 2D binary tree]
 Keep track of the current pointer of the tree. An DMBR related p1 is inserted
 into the left node of the current node, and an DMBR related p2 is inserted into
 the right node of the current node.
 D5. [Call Decomposition algorithm recursively]
 Call Decomposition algorithm for each of array p1 and array p2.
End of Algorithm

The following example illustrates our decomposition algorithm.

Example 3 (processing steps of algorithm):
Consider the decomposition strategy illustrated in Example 2. The processing steps of
our decomposition algorithm are shown in the following.

D1. Find an MBR from the polygon shown in Figure 4(a), then initialize a root node
 in 2D binary tree
D2. The MBR space is bigger than 2 -2 of the MBR space
D3. Dividing the polygon into two sub-polygons by a vertical splitting boundary
D4. In 2D binary tree, two DMBRs for sub-polygons are inserted into the left and
 right nodes of the root node
D5. Call Decomposition algorithm for the left sub-polygon
 D1. Find an DMBR from the left sub-polygon
 D2. The DMBR is less than 2 -2 of the MBR space
D5. Call Decomposition algorithm for the right sub-polygon
 D1. Find an DMBR from the right sub-polygon
 D2. The DMBR is bigger than 2 -2 of the MBR space
 D3. Divide the sub-polygon into two sub-polygons by a horizontal splitting
 boundary
 D4. In 2D binary tree, two DMBRs for new sub-polygons are inserted into the
 left and the right nodes of the current node
 D5. Call Decomposition algorithm for the above sub-polygon in the right half
 D1. Find an DMBR from the above sub-polygon
 D2. The DMBR is less than 2 -2 of the MBR space
 D5. Call Decomposition algorithm for the below sub-polygon in the right half
 D1. Find an DMBR from the below sub-polygon
 D2. The DMBR is less than 2 -2 of the MBR space

The set of DMBRs and its corresponding binary tree are shown in Figure 6(a) and 6(b),
respectively.

 a h i b abcd

 efcg hbgd

 l j m k

 e f ibjk lmgn

 c g n d

 (a) a set of DMBRs (b) 2D binary tree

 Figure 6. DMBRs and corresponding 2D binary tree

End of Example 3.

4 Experimental results

Experimental analyses are conducted for the following reasons:
(1) to determine an optimal value of parameter g, Gopt ,
(2) to simulate effects of evaluation criteria with varying g values.
Both the determination of an optimal g value and the experimental measurement of
evaluation criteria are studied in this chapter. For this experimental study, we
implemented the point query, the region query and the spatial join query. The
implementation is made in C language on a Sun SPARCstation 20 running on SunOS
Release 5.4.

4.1 Measurement of evaluation criteria
We used three different spatial objects to get expressive and realistic results on the
performance of the object decomposition. To be as general as possible, these spatial
objects were chosen from real digitized data used in existing geographic information
systems. Figure 7 depicts the analyzed spatial objects and Table 2 lists their
characteristics. For describing characteristics of the spatial objects, we provide the
number of vertices, the area of a spatial object and its MBR, and its cover
characterizing the accuracy of the MBR approximation. The cover is presented by the
area of the spatial object normalized to the area of the corresponding MBR.

 (a) Park (b) Lake (c) Korea

 Figure 7. Analyzed spatial objects

 Table 2. Characteristics of analyzed spatial objects

Spatial Object Num. of Area Cover
Vertices Object MBR (%)

Park 83 700 1634 43
Lake 206 472 3105 15
Korea 229 1431 3456 41

 To simulate the effect of the object decomposition, we examined the number of
components, the quality of the container approximation, the complexity and the
relative storage requirement for various values of parameter g. Table 3 contains test
results for spatial objects presented in Figure 7.

 Table 3. Decomposition results for various g values

 g
Name

0 1 2 3 4 5 6 7

Number of Components
Park 1 2 5 9 15 28 53 94
Lake 1 6 10 14 18 23 37 60
Korea 1 3 4 9 17 27 51 99

Quality of Approximation
Park 2.33. 1.89 1.79 1.54 1.41 1.31 1.20 1.17
Lake 6.58 5.53 4.60 3.31 2.74 2.47 2.10 1.78
Korea 2.42 2.17 1.86 1.65 1.39 1.34 1.25 1.20

Complexity (Average Number of Vertices)
Park 83 43 19 12 9 6 5 4
Lake 206 37 23 17 14 12 9 7
Korea 229 79 60 29 17 12 8 6

Relative Storage Requirement
Park 1.00 1.10 1.42 1.85 2.52 3.96 6.71 11.24
Lake 2.43 2.98 3.36 3.77 4.19 4.74 6.26 8.78
Korea 2.70 2.92 3.03 3.59 4.46 5.57 8.21 13.51

 Results show that the number of generated components increases exponentially as
the g value increases. This occurs because a large number of smaller components are
needed to represent the spatial object with the required accuracy. The quality of the
container approximation and the complexity improve as the g value increases.
Specifically, the improvement in low g values is more rapidly than high g values. The
storage requirement for the object decomposition is incurred by the number of
components. Although the reason for the introduction of an object decomposition is to
speed up spatial query processing, the object decomposition in a high g value leads to
a high amount of storage.
 From our test, we learned that a best g value cannot be obtained by increasing the

g value due to the penalty of the more storage requirement. Although the
approximation quality and the complexity become more effective by higher g values, a
storage overhead is caused by the large number of components. On the other hand,
while the number of components and the storage requirement are more efficiently
handled by lower g values, bad approximations and high complexities are measured.
So, it is desirable to find a g value taking into account a balanced ratio between the
low and the high values.

4.2 Determination of an optimal g value
Our goal is to evaluate which value of a parameter g leads to an optimal performance
in spatial query processing. For this purpose, the 2D binary tree introduced in Section
3 is used. The performance of the 2D binary tree is determined by the time spent for
comparisons within the directory of the tree and computational geometry algorithms
for decomposed components. As this performance strongly depends on the value of
parameter g, we explicitly measured the processing time for various g values using the
implementation of different spatial queries.
 Queries that we performed are classified into point queries, window queries and
spatial join queries. Table 4 presents the average time required for the evaluation of
one single query. The time values are given in seconds. For a clear evaluation, they are
divided into the query time for 25, 50, 75 and 100 spatial objects. Due to the space
limitation, the full set of results obtained is not presented in this table. In the table, we
have shadowed the best performing values for each type of queries.

 Table 4. Average time per a query (in second)

Point Query Region Query Spatial Join Query
g #
#

25 50 75 100 25 50 75 100 25 50 75 100
Park

0 0.06 0.11 0.16 0.22 0.01 0.03 0.05 0.06 0.10 0.21 0.31 0.41
2 0.01 0.02 0.03 0.04 0.01 0.02 0.02 0.03 0.04 0.08 0.12 0.16
3 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.02 0.02 0.05 0.08 0.11
4 0.01 0.02 0.02 0.03 0.01 0.02 0.03 0.03 0.03 0.06 0.09 0.12
6 0.00 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.03 0.06 0.08 0.11

Lake
0 0.12 0.24 0.35 0.47 0.04 0.07 0.10 0.13 0.45 0.91 1.37 1.82
2 0.04 0.08 0.12 0.16 0.02 0.03 0.04 0.05 0.12 0.24 0.36 0.48
3 0.02 0.04 0.07 0.09 0.02 0.04 0.05 0.07 0.07 0.15 0.23 0.30
4 0.03 0.06 0.09 0.12 0.03 0.06 0.08 0.11 0.06 0.12 0.17 0.23
6 0.05 0.10 0.14 0.19 0.06 0.10 0.14 0.18 0.08 0.15 0.22 0.29

Korea
0 0.14 0.28 0.41 0.55 0.03 0.06 0.09 0.13 0.36 0.71 1.06 1.40
2 0.03 0.06 0.09 0.10 0.02 0.04 0.05 0.07 0.05 0.10 0.14 0.18
3 0.01 0.03 0.04 0.07 0.01 0.03 0.03 0.04 0.04 0.08 0.11 0.14
4 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.03 0.07 0.10 0.14
6 0.01 0.03 0.04 0.06 0.01 0.03 0.05 0.06 0.05 0.09 0.14 0.18

 Results in Table 4 suggest that the reasoning of the existence of Gopt is valid. The
query performance of the no decomposition (i.e., g=0) and the high decomposition
(i.e., g=6) is considerably worse than the middle decomposition (i.e., from g=2 to
g=4). When g is 0, the performance is particularly time-consuming due to the high
complexity of objects which are not decomposed. The performance degeneration
corresponding to the high g value is strongly caused by a large number of components.
 To be more precise, the query results are presented in figures for spatial objects
introduced in the last section (see Figure 8 and 9). The figures depict the following
information: the horizontal axis presents g values from 0 to 7, and the vertical axis
gives the time for performing queries. The time is given in seconds. Since all figures
for the query results cannot be presented due to the space limitation, the number of
spatial objects used is fixed to 50 for point queries, 100 for region queries and 75 for
spatial join queries. The results presented are typical, and the trends discussed below
were observed in all experiments.

0.20 point query

 region query

0.15

0.10

0.05

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 (a) Park (b) Lake (c) Korea

 Figure 8. Query processing time for point queries and region queries

 0.80 park

 korea

 0.60 lake

 0.40

 0.20

 0 1 2 3 4 5 6 7

 Figure 9. Query processing time for spatial join queries

 The shape of graphs reveals that the existence of Gopt is apparent. As expected,
the Gopt from performance curves corresponds to g values in the range of [3,4]. The
query performance with these g values almost always beats the performance with the
other g values. The more complex the objects are, the more clear the gain of these g
values appears. For instance, complex spatial objects such as `Lake' and `Korea' show
a significant gain by applying the g values.
 Recall that No decomposition is equivalent to g=0, and Regular, Variable Grid and
Structural decomposition are related with the large number of components, i.e., the
high g value. As discussed earlier, only Controlled decomposition can control the
parameter g. Caused by the reduced amount of components and still low complexity of
components, Controlled decomposition is superior to other strategies.

5 Conclusions

We have proposed a new object decomposition method, called DMBRs, which can
control the number of decomposed components using a parameter. The proposed
method is expected to outperform traditional decomposition methods due to its abilit y
to tune the trade-off among evaluation criteria. An optimal value has been investigated
by experimental analyses. For most queries and arbitrary types of objects, the optimal
value of the parameter g can be obtained around 3. The gain by applying the optimal
value is more clear as the complexity of spatial objects increases.
 More work is needed to see what happens in situations not explored by these
experiments. In particular, it is desirable to analyze the effect of digitized maps used
daily in real-world applications. For our experiments, the selected queries are point
queries, region queries and spatial join queries. More general types of spatial queries
have to be examined in the future.

References

 [1] O. Guenther, A. Buchmann, "Research Issues in Spatial Databases," ACM SIG-
 SIGMOD RECORD, Vol. 19, No. 4, 1990, pp. 61-68.
 [2] B. C. Ooi, Eff icient Query Processing in Geographic Information Systems, Lec-
 ture Notes in Computer Science 471, Springer-Verlag, 1990.
 [3] R. H. Gueting, "An Introduction to Spatial Database Systems," VLDB Journal,
 Vol. 3, No. 4, 1994, pp. 357-399.
 [4] T. Brinkhoff , H. P. Kriegel, and R. Schneider, "Comparison of Approximations
 of Complex Objects Used for Approximation-based Query Processing in Spatial
 Database Systems," in Proc. 9th Int. Conf. on Data Engineering, Vienna, Austria,
 1993, pp. 40-49.

 [5] H. P. Kriegel, H. Horn, and M. Schiwietz, "The Performance of Object Decomp-
 osition Techniques for Spatial Query Processing," Proc. of 2nd Symp. on Large
 Spatial Databases, Lecture Notes in Computer Science 525, Springer-Verlag,
 1991, pp. 257-276.
 [6] J. A. Orenstein, "Redundancy in Spatial Databases," Proc. of ACM SIGMOD,
 1989, pp. 294-305.
 [7] J. A. Orestein, "Spatial Query Processing in An Object-oriented Database System,
 " Proc. of ACM SIGMOD, 1986, pp. 326-336.
 [8] C. Faloutsos, W. Rego, "Tri-Cell: A Data Structure for Spatial Objects," Inform-
 ation Systems, Vol. 14, No. 2, 1989, pp. 131-139.
 [9] F. Preparata, M. Shamos, Computational Geometry: An Introduction, Springer-
 Verlag, New York, 1985.
[10] A. Guttman, "R-trees: A Dynamic Index Structure for Spatial Searching,” Proc.
 ACM SIGMOD, 1984, pp. 47-57.
[11] T. Selli s, N. Roussopoulos, and C. Faloutsos, "The R+-tree: A Dynamic Index
 for Multi -dimensional Objects," Proc. 13th Very Large Data Bases, Conf. Sep.
 1987, pp. 507-518.
[12] N. Beckmann, H. P, Kriegel, R. Schneider, and B. Seeger, "The R*-tree: An
 Eff icient and Robust Access Method for Points and Rectangles," in Proc. ACM
 SIGMOD International Conference on Management of Data, Atlantic City, USA,
 1990, pp. 322-331.
[13] H. Samet, The design and Analysis of Spatial Data Structures, Addison-Wesley
 Pub., 1990.
[14] H. Samet, "Hierarchical Spatial Data Structures," Proc. of 1st Symp. on Large
 Spatial Databases, Lecture Notes in Computer Science 409, Springer-Verlag,
 1989, pp. 193-212.
[15] O. Gunther, "The Design of the Cell tree: An Object-oriented Index Structure for
 Geometric Databases," Proc. Data Engineering Conference, 1989, pp. 598-605.
[16] R. Schneider, H.P. Kriegel, "The TR*-tree: A New Representation of Polygon-
 al Objects Supporting Spatial Queries and Operations," Proc. 7th Workshop on
 Computational Geometry, Bern, Switzerland, Lecture Notes in Computer Scien-
 ce 553, Springer-Verlag, 1991, pp. 249-264.
[17] A. Henrich, H. W. Six, and P. Widmayer, "The LSD Tree: Spatial Access to Mu-
 ltidimensional Point and Non-point Objects," Proc. 15th Very Large Date Bases
 Conf., Amsterdam, Aug. 1989, pp. 45-53.

