
Early Separation of Filter and Refinement Steps
in Spatial Query Optimization�

Ho-Hyun Parky Chan-Gun Leey Yong-Ju Leez Chin-Wan ChungyyDepartment of Computer Science, KAIST, Koreafhhpark, cglee, chungcwg@islab.kaist.ac.krzDepartment of Computer Engineering, Sangju National University, Korea
yjlee@computer.sangju.ac.kr

Abstract

The spatial query has been processed in two steps, the fil-
ter step and the refinement step, due to a large volume and
high complexity of the spatial data. However, this approach
has been considered only in the query execution phase af-
ter completing the query optimization phase. This paper
presents query optimization strategies which take the char-
acteristics of spatial databases into account. The first strat-
egy is the separation of filter and refinement steps not in the
query execution phase but in the query optimization phase.
As the second strategy, several refinement operations can be
combined in processing a complex query, and as the third
strategy several filter operations can also be combined. We
call the optimization technique utilizing these strategies the
Early Separated Filter And Refinement (ESFAR). This pa-
per also presents a rule-based optimization technique for
ESFAR.

1. Introduction

For the past several years, the research on spatial
database systems has actively progressed because the ap-
plications using the spatial information such as geographic
information systems (GIS), computer aided design (CAD)
and multimedia systems, have increased. However, most of
the research has dealt with only a part of spatial database
systems such as data models, spatial indexes, spatial join
algorithms, or cost models. There has been a little research
on the spatial query optimization which can integrate them.�This research was supported by the National Geographic Information
Systems Technology Development Project and the Software Technology
Enhancement Program 2000 of the Ministry of Science and Technology of
Korea.

Most of the spatial query optimization techniques published
until now have not properly reflected the characteristics of
the spatial databases.

Spatial databases have the following characteristics
compared with traditional relational databases or object-
oriented databases. First, spatial databases store non-spatial
data as well as spatial data, and a query in the spatial
databases is a mixed query which contains both spatial sub-
queries and non-spatial subqueries. Second, the process-
ing cost of the spatial query is very expensive because spa-
tial data is more complex and larger than non-spatial data.
Therefore, the spatial query has been processed mostly in
two steps, thefilter stepand therefinement step[11]. Third,
most spatial databases have spatial indexes for spatial data
types [5] and the effect of the spatial indexes is bigger than
that of non-spatial indexes. The two-step processing of the
spatial query reduces not only the CPU time but also the
I/O time because the two-step processing makes it possible
to obtain the object identifiers for the candidate objects by
accessing only the spatial index.

Several spatial database systems have addressed the op-
timization problem for the spatial and non-spatial mixed
query in the literature [10, 2, 1]. An excellent survey is pre-
sented in [14]. However, none of the above optimizers pro-
vides the filter and refinement steps for spatial operators as
individual operators. Therefore, the above optimizers can-
not generate the plans which will be proposed in this paper.

This paper presents query optimization strategies which
take the characteristics of spatial databases into account.
The first strategy to be presented is an early separation of
the filter and refinement steps, which means the separation
is actually done in the query optimization phase instead of
the query execution phase. When an input query consists of
a spatial subquery and a non-spatial subquery and there is
a spatial index for the spatial subquery, the processing or-



der of “filter step – non-spatial operation – refinement step”
can be more efficient than that of “non-spatial operation –
spatial operation” or “spatial operation – non-spatial opera-
tion.” As the second strategy, several refinement operations
can be combined in processing a complex query, and as the
third strategy several filter operations can also be combined.
We use the select-merge rule1 of relational algebra opti-
mization rules for combining refinement steps [15], and the
Oid-intersectiontechnique [9] and theOid-join technique
[4, 16, 6] for combining filter steps. We call the optimiza-
tion technique utilizing these strategies theEarly Separated
Filter And Refinement (ESFAR).

This paper also presents a rule-based optimization tech-
nique for ESFAR. The input query of a rule-based optimizer
is in an algebraic form. In this paper, we use theSpatial
Object Algebra (SOA)[12] to represent the input query of
our optimizer. In addition, we need a new object algebra
for ESFAR which separates the operators in SOA into fil-
ter step operators and refinement step operators. We define
the Intermediate Spatial Object Algebra (ISOA)as the new
object algebra. Using ISOA, we derive some optimization
rules for ESFAR. We implemented the ESFAR optimizer.
The Volcano optimizer generator (VOG) was used as a de-
velopment tool of our optimizer. Through experiments, we
compare the ESFAR optimization technique with a tradi-
tional optimization technique which does not separate filter
and refinement steps. The experimental results show that
the ESFAR optimization technique generates more efficient
query execution plans than the traditional one.

The remainder of this paper is organized as follows. In
Section 2, we summarize some previous studies which are
regarded as the background for our work. In Section 3, we
explain the optimization strategies which separate the fil-
ter and refinement steps early. The ISOA and optimization
rules for ESFAR are explained in Section 4. The imple-
mentation and experimental results using VOG are shown
in Section 5. In Section 6, we conclude this paper.

2. Backgrounds2.1. Join Algorithms Using Indexes
There are many join algorithms which use the index of

both join inputs. There are also many types of indexes. In
this paper, however, we consider the join algorithms that use
only the R*-tree and the B+-tree which are fairly efficient
and the most popular.

In the spatial join area, when R*-trees exist for both join
inputs, [5] proposed a join algorithm which synchronously
traverses both R*-trees by the depth-first search. This al-
gorithm uses a local optimization policy to fetch the MBR-
pairs of child nodes. Later, the algorithm was improved

1This is also called the cascade of select rule.

to accomplish the global optimization by the breadth-first
search [8]. In this paper, we call both of the join algorithms
theRtree-join.

In a non-spatial join, if B+-trees exist for both join in-
puts, aBtree-joinsimilar to the Rtree-join is possible. The
Btree-join synchronously traverses only the leaf nodes of
both B+-trees by the merge-join technique. The Btree-join
technique was already used in [4], and was especially effi-
cient when both indexes were clustered.2.2. Oid-Intersection and Oid-Join

When multiple indexes exist in a single class and a con-
junctive query is issued by the user,index intersectiontech-
nique can be applied [9]. The main idea of the index inter-
section technique focuses on theOid-intersectionbetween
the oid lists resulting from each index probing.

When a query consists of the select and join operations
and indexes exist for all join attributes as well as selection
attributes, the query can be evaluated by using indexes and
oids [4, 16, 6]. This can be performed by a sequence of the
natural join between the oid-tuple lists which were obtained
from the Btree-select, the Btree-join [4], the join index [16]
or the path index [6]. We call the join between oid-tuple
lists2 theOid-join.

We extend the Oid-intersection and Oid-join techniques
to the spatial and non-spatial mixed query processing using
B+-trees and R*-trees.

3. New Optimization Strategies for Mixed
Queries

We have the following assumptions in this section:

(1) We consider only SEL(ECT) and JOIN operations
among the SOA operators because only both the op-
erators are able to have spatial or non-spatial predi-
cates. In addition, throughout this paper, we some-
times attach “S” or “N ” prefix to SEL and JOIN to
distinguish spatial operators and non-spatial operators,
which is only for an explanation.

(2) We consider only the R*-tree as a spatial indexing and
the B+-tree as a non-spatial indexing.

(3) The separations of filter and refinement steps are pos-
sible only when the indexes are available for all of the
attributes that the operations reference. Therefore, we
consider only theRtree-select[3] and theRtree-join
[5, 8] as the spatial filter algorithm. These need the
random access using object identifiers at the refine-
ment step. In this paper, this algorithm for the refine-
ment step is called theObj-select.

2A simple oid list and an oid-pair list are also kinds of oid-tuple lists.



3.1. Early Separation of Filter and Re�ne-ment
As we mentioned in Section 1, the spatial query has been

processed in two steps due to a large volume and high com-
plexity of spatial data. However, this approach has been
considered not in the query optimization phase but in the
query execution phase. The state-of-the-art query optimiz-
ers did not separate the filter and refinement steps hidden in
the algebraic operators from the optimization phase. They
converted the filter and refinement steps together to one
physical operator. However, when spatial subqueries and
non-spatial subqueries are mixed and if spatial indexes exist
on a class referenced by spatial subqueries, the separation of
filter and refinement steps starting from the algebraic opera-
tor level can provide opportunities to generate more efficient
execution plans to the optimizer. For example, suppose that
the following mixed query which consists of a spatial pred-
icate and a non-spatial predicate was issued by the user.

OQL 1 select a from a in buildings where

a.shape s inside s rectangle(x1; y1; x2; y2) and

a.comp date < ‘‘80/01/01’’;

Equation (1) is an SOA-expression which is generated from
the OQL parser for the above query.N SEL a:comp date < \80=01=01" (S SEL a:shape s insides rectangle(x1; y1; x2; y2) (buildings : a)) (1)

If the separation of filter and refinement is possible at the
algebraic operator level of the query optimizer, i.e., if an
R*-tree exists for the spatial attribute “shape” of the class
“buildings”, the spatial select operation (SSEL) in Equa-
tion (1) can be separated into the spatial select filter (SSF)
and the spatial select refinement (SSR) operations. Equa-
tion (2) shows the separation.N SEL a:comp date < \80=01=01" �SSR a:shape s insides rectangle(x1; y1; x2; y2) (SSF a:shape s insides rectangle(x1; y1; x2; y2) (buildings : a))� (2)

Obviously, SSR is a SEL operation of the relational alge-
bra because it is generated from a select operation (SSEL).
Therefore, the query in Equation (2) can be transformed to
the query in Equation (3) which is in the order of “filter
step – non-spatial operation – refinement step” by the select
commutative rule of the relational algebra.SSR a:shape s inside s rectangle(x1; y1; x2; y2)�N SEL a:comp date < \80=01=01" (SSF a:shape s insides rectangle(x1; y1; x2; y2) (buildings : a))� (3)

The processing of the original query in the order of Equa-
tion (3) can be more efficient than the order of “spatial op-
eration – non-spatial operation” like Equation (1) or “non-
spatial operation – spatial operation”. If the filter and refine-
ment steps are not separated at the algebraic operator level,

the query in Equation (3) cannot be generated, but only the
execution plan like “spatial operation – non-spatial opera-
tion” or “non-spatial operation – spatial operation” can be
generated.

The spatial join operation can also be separated into
the spatial join filter (SJF) and the spatial join refinement
(SJR). And, SJR, like SSR, is a SEL operation of the rela-
tional algebra because the join operation between two in-
put classes has already been performed by SJF which is
the filter step (Remind the following relational algebra rule:
JOIN�1 ^ �2(R;S) = SEL �1(JOIN�2(R;S)).). The fol-
lowing is an example query involving a spatial join opera-
tion.

OQL 2 select a from a in buildings, b in

roads where a.shape s touch b.route and

a.comp date < ‘‘80/01/01’’;

Equation (4) is an SOA-expression for the above query.N SEL a:comp date < \80=01=01" (S JOINa:shape s touch b:route (roads : b)) (4)

As in the case of Equation (2), if R*-trees exist for both
the input classes “buildings” and “roads”, the spatial join
operation (SJOIN) in Equation (4) can be separated into
SJF and SJR shown in Equation (5).N SEL a:comp date < \80=01=01" �SJR a:shape s touchb:route (SJF a:shape s touch b:route (roads : b))�

(5)

Since SJR is a SEL operation of the relational algebra, we
can apply the select commutative rule of relational algebra
to the above query. Equation (3) is the resulting query.SJR a:shape s touch b:route �N SEL a:comp date <\80=01=01" (SJF a:shape s touch b:route (roads : b))�

(6)

If the spatial join selectivity is low and the non-spatial select
selectivity is middle to high, the query of Equation (3) can
be more efficient than the query which are in the order of
“spatial join – non-spatial select” or vice versa. However,
as in the case of spatial select, if the filter and refinement
steps are not separated at the algebraic operator level, the
execution plan such as Equation (3) cannot be generated.

As we saw in the above two examples, separating a spa-
tial operation into filter and refinement steps at the algebraic
operator level enables the optimizer to generate more effi-
cient execution plans in some cases. Therefore, the first
optimization strategy for mixed queries is as follows:

Strategy 1 Separate spatial operations into filter step oper-
ations and refinement step operations at the algebraic oper-
ator level.



3.2. Combined Re�nement
During the mixed query optimization, the refinement op-

eration can be combined with other non-spatial operations
to be processed in a unit. As we mentioned in the pre-
vious section, all refinement operations correspond to the
SEL operation of the relational algebra. Therefore, due to
the select-merge (cascade of select) rule of the relational al-
gebra [15], the refinement operation can be combined with
other non-spatial select operations to generate another SEL
operation. For example, NSEL and SSR in Equation (2)
and Equation (3) can be combined and converted into a SEL
operation. Likewise, NSEL and SJR in Equation (5) and
Equation (6) can also be combined into a SEL operation
shown in Equation (7).SEL a:comp date < \80=01=01" ^ a:shape s touch b:route(SJF a:shape s touch b:route (buildings : a; roads : b))

(7)

Since all the refinement operations correspond to the SEL
operation of the relational algebra, they can also be com-
bined with other spatial refinement operations in addition
to non-spatial select operations. We call the combining of
non-spatial select operations and spatial refinement opera-
tions thecombined refinement. The second strategy for the
mixed query optimization is the combined refinement.

Strategy 2 (Combined Refinement)Combine the refine-
ment steps of the spatial operations with non-spatial se-
lect operations or other spatial refinement operations by the
select-merge rule.3.3. Combined Filtering

As in the case of the combined refinement, the spatial
filter operation can be combined with other non-spatial fil-
ter operations if the non-spatial operations can be evalu-
ated by the indexes. This can be done by applying the
Oid-intersectiontechnique [9] and theOid-join technique
[4, 16, 6] to spatial and non-spatial mixed query processing.

Btree-select (R) Rtree-select (R) Btree-join (R,S) Rtree-join (R,S)

{ oidR} { oidR} { <oidR,oidS>} { <oidR,oidS>}

Oid-intersect Oid-intersect

candidate { oidR} candidate { <oidR,oidS>}

refinement step refinement step

) S) S) T)

} } }

} }

ep p

(a) (b)

Figure 1. Oid-intersection between spatial
and non-spatial operations

Btree-select (R) Rtree-join (R,S) Btree-join (R,S) Rtree-join (S,T)

{ oidR} { <oidR,oidS>} { <oidR,oidS>} { <oidS,oidT>}

Oid-join Oid-join

candidate { <oidR,oidS>} candidate { <oidR,oidS,oidT>}

refinement step refinement step

(a) (b)

Figure 2. Oid-join between spatial and non-
spatial operations

Figure 1 and Figure 2 show the Oid-intersection tech-
nique and the Oid-join technique, respectively, between the
results of a typical spatial operation and a typical non-
spatial operation. In the above figures,Oid-intersectand
Oid-joinare the INTERSECT operation and the NATURAL
JOIN operation between oid-tuple collections, respectively.
Since the index probing for the spatial operation can obtain
the oid-tuple collection only for candidate objects, we ap-
pend the refinement step to the original Oid-intersection or
Oid-join technique to obtain the actual result.

If the B+-tree index exists for the attribute “compdate”
of the class “buildings” in Equation (3), the NSEL and SSF
operations can be combined by the Oid-intersection tech-
nique. Likewise, the NSEL and SJF operations in Equa-
tion (6) can also be combined to generate the execution plan
of Equation (8) by the Oid-join technique. The interesting
fact in Equation (8) is that the non-spatial operation is sepa-
rated into filter and refinement in order to apply the Oid-join
technique. The separation of non-spatial operations will be
mentioned in Section 4.Obj select a:shape s touch b:route ^ a:comp date <\80=01=01" �Oid join (Rtree join a:shape s touch b:route(buildings : a; roads : b);Btree select a:comp date <\80=01=01" (buildings : a))� (8)

As in the case of the combined refinement, the spatial filter
operations can be combined with other spatial filter opera-
tions in addition to non-spatial filter operations. This com-
bining of non-spatial filter operations and spatial filter op-
erations is called thecombined filtering, which is the third
strategy for the mixed query optimization.

Strategy 3 (Combined Filtering) Combine the spatial fil-
ter operations with non-spatial filter operations or other spa-
tial filter operations using the Oid-intersection or Oid-join
technique.

Since the intersect operation is a special case of the join



operation,3 we will consider only the Oid-join from now
on. Since the Oid-join is an operation between only oid-
tuple collections, its cost may be much cheaper than the join
between object-tuple collections. The combined filtering
uses the spatial indexes and the non-spatial indexes as much
as possible and does not generate the intermediate results
except the oid-tuple collections. Therefore, we expect that
Strategy 3 will have a considerable effect in the spatial and
non-spatial mixed query processing.

We have suggested three optimization strategies for
mixed queries. However, these strategies by themselves
cannot always generate the most efficient plan. Therefore,
we should check each strategy against a cost model for the
input query. In the next section, we present a rule-based
optimization technique for these optimization strategies.

4. Intermediate Spatial Object Algebra and
Optimization Rules4.1. Separation of Non-spatial Operators

In Section 3, we separated some algebraic operators of
the SOA into those of filter and refinement steps. When B+-
trees were already built on the classes which are referenced
in the non-spatial predicates of the query, the processing of
the non-spatial operation can be regarded as the two-step
processing like that of the spatial operation. As the first
step, we can obtain the object identifiers of the query result
by accessing only the B+-trees. At the second step, the ob-
jects in the database are retrieved using the object identifiers
which are acquired at the first step. We also call the first step
thefilter stepand the second step therefinement stepfor the
non-spatial query. Obtaining the object identifiers not for
the candidates but for the exact result is different from the
spatial filter and refinement. There is no extra CPU-time in
the refinement step because the step only retrieves the real
objects for the object identifiers which are acquired in the
filter step. The reason why we separate a non-spatial oper-
ator into the filter and refinement steps is for the uniform
treatment between spatial operators and non-spatial oper-
ators. In this paper,Btree-selectand Btree-join [4] algo-
rithms are used as non-spatial filter algorithms.4.2. Intermediate Spatial Object Algebra(ISOA)

The operators which correspond to the filter step or the
refinement step are actually in the intermediate form be-
tween the algebraic operators and the physical operators be-
cause the operators of the filter and refinement steps can be

3If the types of the two input tuple collections to be joined are the same,
the natural join between the collections becomes the intersect operation.

separated only when indexes, which are physical elements,
exist. We call such an intermediate form of the SOA the
Intermediate Spatial Object Algebra (ISOA). The ISOA has
the following operators in addition to the SOA operators:

(1) filter step operators
SSF, SJF, NSF (Non-spatial Select Filter), NJF (Non-
spatial Join Filter), OJ (Oid-Join)

(2) refinement step operators
SSR, SJR, NSR (Non-spatial Select Refinement), NJR
(Non-spatial Join Refinement)

As in the case of the SOA, the spatial operators and non-
spatial operators are not actually distinguished in the ISOA.
Therefore, SSF and NSF are represented as SF (Select Fil-
ter), SSR and NSR as SR (Select Refinement), SJF and NJF
as JF (Join Filter), and SJR and NJR as JR (Join Refine-
ment). In addition, as we mentioned in Section 3, all the
refinement operations correspond to the SEL operation of
the relational algebra.4.3. Optimization Rules for ISOA

In this section, we present optimization rules for Strategy
1 and Strategy 3 using the ISOA. As we mentioned in Sec-
tion 3, the optimization rule for Strategy 2 is derived by the
select-merge rule of the relational algebra. First, we present
optimization rules for Strategy 1.

In the following rules,�R denote a spatial predicate or
non-spatial predicate for the classR, and�R;S denote a spa-
tial predicate or non-spatial predicate between the classesR
andS. We will omitt the proofs for the following rules be-
cause they are obvious from the definitions of SF, JF, SR
and JR.

Rule 1 (SEL�R (R) ) = (SR�R (SF�R (R) ) )

Rule 2 (JOIN�R;S (R, S) ) = (JR�R;S (JF�R;S (R, S) ) )

If the inputs of an SOA operator are base classes and the
indexes exist on the classes, the separation of the operator
into the filter and refinement steps is obvious by Rule 1 and
Rule 2. If an operator has intermediate results as inputs, the
filter and refinement steps of the operator cannot be directly
separated because the intermediate result does not have an
index. However, in the case that the intermediate results
are collections of oid-tuples resulting from the previous fil-
ter step operators, and the indexes exist on the base classes
which the operator references, the separation of the opera-
tor into the filter and refinement steps is possible with the
Oid-join. In this case, the filter step of the operator is the
index probing on the base classes, and the Oid-join is the
join between the oid-tuple collection resulting from the fil-
ter step of the operator and the oid-tuple collection resulting



from the previous filter step operators. In this way, the com-
bined filtering can be done by applying the separation of an
operator which has oid-tuple collections as inputs and the
Oid-join simultaneously.

The following rules are about the separation of the non-
spatial or spatial operation and the Oid-join technique for
complex mixed queries. In the following rules,ER, ES andER;S denote oid-tuple collections whose tuple elements in-
clude the oid of the classR, the classS and both, respec-
tively.

Rule 3 (SEL�R (ER) ) = (SR�R (OJ (ER, SF�R (R) ) ) )

Rule 4 (SEL�R;S (ER;S) ) = (JR�R;S (OJ (ER;S , JF�R;S
(R, S) ) ) )

Rule 5 (JOIN�R;S (ER, S) ) = (JR�R;S (OJ (ER, JF�R;S
(R, S) ) ) )

Rule 6 (JOIN �R;S (R, ES) ) = (JR�R;S (OJ (JF�R;S (R,S), ES) ) )

Rule 7 (JOIN�R;S (ER, ES) ) = (JR�R;S (OJ (ER, OJ (JF�R;S (R, S), ES) ) ) )

Theorem 1 The above rules are correct.

Proof We will only prove Rule 7 which is most compli-
cate. Other rules can be proved in similar manners. In the
following proof, NJ denotes the NATURAL JOIN operator
of relational algebra.

SinceER is an oid-tuple collection resulting from the
previous filter step operators, the number of the distinct ob-
jects for the classR in ER is less than or equal to that of the
base class. The same case is held between the classS andES . Therefore,

JOIN�R;S (ER; ES)= JOIN�R;S (NJ (ER; R);NJ (S;ES))= NJ (ER;NJ (JOIN�R;S (R;S); ES))
by join associativity= NJ (ER;NJ (JR�R;S (JF�R;S (R;S)); ES))
by Rule 2= JR�R;S (NJ (ER;NJ (JF�R;S (R;S)); ES))
by select join commutativity= JR�R;S (OJ(ER;OJ(JF�R;S (R;S)); ES))
since NJ between oid-tuple collections is OJ2

In Equation (8), we showed the application of Rule 3.
That is, Equation (8) is derived by applying Rule 3 to Equa-
tion (6) and converted to an execution plan. We will give
another example to show the application of other rules to a
complex query. Consider the following OQL query.

OQL 3 select a from a in buildings, b in

roads, c in districts where a.shape s touch
b.route and a.shape s covered by c.boundary

and a.comp date < ‘‘80/01/01’’ and

c.boundary s intersect s rectangle(x1; y1; x2; y2);
Let �1; �2; �3 and �4 be a.shape s touch
b.route, a.shape s covered by c.boundary,

a.comp date < ‘‘80/01/01’’ andc.boundarys intersect s rectangle(x1; y1; x2; y2), respectively.
Equation (9) is an SOA-expression for OQL 3.S JOIN �2 �S JOIN �1 (N SEL �3 (a); b); S SEL �4 (c)�

(9)

By applying Rule 1, the select-join commutative rule and
the select-merge rule of the relational algebra to Equa-
tion (9),SEL �3 ^ �4 �S JOIN �2 �S JOIN �1 (NSF �3 (a); b);SSF �4 (c)�� (10)

By Rule 5, the select-join commutative rule and the select-
merge rule,SEL �3 ^ �4 ^ �1 �S JOIN �2 �OJ (NSF �3 (a);SJF �1 (a; b)); SSF �4 (c)�� (11)

By Rule 7, the select-join commutative rule and the select-
merge rule,SEL �3 ^ �4 ^ �1 ^ �2 �OJ �OJ (NSF �3 (a);SJF �1 (a; b));OJ (SJF �2 (a; c); SSF �4 (c))��

(12)

Since OJ is a natural join between Oid-tuple collections, the
commutative rule and the associative rule can be derived.

Rule 8 (OJ (E1, E2) ) = (OJ (E2, E1) )

Rule 9 (OJ (OJ (E1, E2), E3) ) = (OJ (E1, OJ (E2, E3) ) )

5. Implementation and Experiments

We implemented the ESFAR optimization technique
proposed in Section 3 and Section 4 using the Volcano op-
timizer generator (VOG) [7]. Using the implementation,
we measured the effect of our optimizer for several types
of mixed queries. Three types of queries are used: “non-
spatial select – spatial select” which is an OQL 1 type;
“non-spatial select – spatial join” which is an OQL 2 type;
and “3-way spatial join” as a sequnece of 2-way joins. We
measured the expected response time for the above three
types of queries using three optimization methods: (1) a



traditional method which does not separate filter and re-
finement steps, denoted by TRA; (2) the method using only
Strategy 1, denoted by SEP; and (3) the method including
Strategy 2 and Strategy 3 in addition to Strategy 1, denoted
by CFR. The major assumptions for the experiments are as
follows:

(1) Both spatial and non-spatial data are uniformly dis-
tributed, and there is no buffering and clustering.

(2) We consider only I/O time for non-spatial operations,
I/O time for spatial filter operations, and both CPU and
I/O time for spatial refinement operations. The CPU
time for spatial refinement operations is only for ge-
ometric computation time since other components are
negligible.

The parameters used in the experiments are shown in Ta-
ble 1. We assume that the parameters for two input classes
in 2-way spatial joins (for example,kRk andkSk, sR andsS) are the same. We assume that the average number of
points per spatial object is 20. This assumption will be also
applied in 3-way joins. The physical algorithms and a cost
model applied in our experiments are summarized in [13].

Table 1. Parameters used in experiments
parameters descriptions valueskRk Number of objects in classR� 100,000D2 Area of total space 105 � 105sR Size of non-spatial parts of 200 bytes

an object inR
PageSize Page size 4096 bytes
Point Size Size of a point 8 bytesDA Disk access time 10 msTedge�rect CPU time for edge-rectangle test 40�sTedge�edge CPU time for edge-edge test 20�shitS Hit ratio for spatial selection 90 %hitJ Hit ratio for spatial join 70 %�R contains both non-spatial parts and spatial parts

For the query of “non-spatial select – spatial select” type,
we measured the expected response time with the varying
non-spatial selectivity (S�nsp) and spatial selectivity (S�sp)
such as a high selectivity (1/2), a middle selectivity (1/16)
and a low selectivity (1/128). Table 2 shows the result. In
fact, SEP and CFR always generate more efficient execu-
tion plans than TRA because the set of optimization rules
associated with SEP or CFR is a super set of that with TRA.
Therefore, an important measure in these experiments is the
expected performance rate which is defined as follows:

expected performance rate= expected response time of TRA=expected response time of SEP or CFR

As shown in Table 2, SEP and CFR generate more efficient
execution plans than TRA for the most cases. The perfor-
mance rate of SEP compared with TRA is maximized in the

Table 2. Expected performance rate for the
type of OQL 1S�nsp S�sp TRA/SEP TRA/CFR

1/2 1.21 1.39
1/16 1/4 1.20 2.47
1/128 1.16 1.16

1/2 1.34 1.35
1/4 1/16 1.14 2.53

1/128 1.11 1.13

Table 3. Expected performance rate for the
type of OQL 2S�nsp MBR size TRA/SEP TRA/CFR

1/2 1.18 1.97
1/16 100*200 1.03 1.49
1/128 1.03 1.03

25*25 1.11 1.61
1/4 100*100 1.20 3.38

400*400 1.01 1.01

high selectivity and that of CFR is maximized in the middle
selectivity.

Next, we conducted an experiment for “non-spatial se-
lect – spatial join” with the varying non-spatial selectivity
and spatial selectivity. The selectivity of a spatial join can
be represented by an average MBR size (For details, refer
to [13]). Table 3 shows the result. In case of the varying
non-spatial selectivity, SEP is beneficial only in case of the
high selectivity and CFR is beneficial in cases of the high
selectivity and the middle selectivity. In case of the low
selectivity, we can predict that processing the query in the
order of “non-spatial select – spatial join” is more efficient
than that of “spatial join filter – non-spatial select – spatial
join refinement” or “Btree-select – Rtree-join – Oid-join –
combined refinement.” In case of the varying spatial se-
lectivity, the performance rates of SEP and CFR compared
with TRA are maximized in the middle selectivity.

Last, we measured the expected response time for a 3-
way spatial join (as a sequence of 2-way joins) with a vary-
ing average MBR size (Table 4). In this experiment, Strat-
egy 1 does not contribute to reduce the response time for
itself because both of the joins are spatial joins. There-
fore, the experimental result only for CFR is shown in Ta-
ble 4. TRA generates an execution plan which consists of
an Rtree-join with the refinement, and an indexed nested
loop join (INLJ), or a plan consisting of two indexed nested



Table 4. Expected performance rate for the
type of 3-way spatial join

MBR size TRA/CFR

25*25 1.85
100*100 3.07
400*400 1.00

loop joins. On the other hand, CFR generates an execu-
tion plan which consists of the Oid-join between two Rtree-
joins with the combined refinement in addition to those by
TRA. The performance gains in the small MBR size and the
middle MBR size are high. This is because the combined
filtering in a multi-way join uses all available indexes and
does not generate intermediate results except oid-tuple col-
lections. However, when the average MBR size is large, our
optimization technique is not beneficial. In this case, the
probability of overlapping between MBR’s becomes high,
which results in a large number of MBR pairs in a result
of the Rtree-join, and therefore produces many oid-tuples.
The ESFAR optimization technique in the multi-way spatial
join is beneficial when the number of MBR-pairs resulting
from the Rtree-join is less than the average number of input
MBR’s. This corresponds to the case that an average MBR
size is less than about 150*200. According to some experi-
mental results using real data such as the TIGER file in the
literature [5, 8], the size of a join result is less than the aver-
age size of input data in most cases. Therefore, the ESFAR
optimization technique is considered to be beneficial in a
real environment.

6. Conclusions

In this paper, we proposed a query optimization tech-
nique which took the characteristics of spatial databases
into account. The main idea is to start the two-step process-
ing of a spatial query, which has been applied only in the
query execution phase, from the query optimization phase.
We showed that filter and refinement operations could be
separated at the algebraic operator level of the query opti-
mization, then the separated filter and refinement operators
could be combined with other non-spatial operators or spa-
tial operators at the same level. We called this optimization
technique ESFAR. To implement ESFAR, we defined ISOA
and optimization rules using it.

We implemented the ESFAR optimization technique us-
ing VOG. We showed that our ESFAR optimization tech-
nique generated more efficient execution plans than those
by traditional optimization techniques. In addition, the ES-
FAR optimization technique improved the performance of

the query processing for a reasonable range of selectivities.

References

[1] W. Aref and H. Samet, “Optimization Strategies for Spatial
Query Processing,” Proc. of VLDB, 81-90, 1991.

[2] L. Becker and R. H. Güting, “Rule-based Optimization and
Query Processing in an Extensible Geometric Database Sys-
tem,” ACM Transactions on Database Systems, Vol. 17, No.
2, 247-303, 1992.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger,
“The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles,” Proc. of ACM SIGMOD, 322-331,
1990.

[4] M. Blasgen and K. Eswaran, “Storage and Access in Re-
lational Databases,” IBM Systems Journal, Vol. 16, No. 4,
363-377, 1977.

[5] T. Brinkhoff, H.-P. Kriegel and B. Seeger, “Efficient Process-
ing of Spatial Joins Using R-trees,” Proc. of ACM SIGMOD,
237-246, 1993.

[6] W.-S. Cho, K.-Y. Whang, S.-S. Lee and Y.-I. Yoon, Query
Optimization Techniques Utilizing Path Indexes in Object-
Oriented Database Systems,” Proc. of DASFAA, 21-29,
1997.

[7] G. Graefe and W. J. McKenna, “The Volcano Optimizer Gen-
erator: Extensibility and Efficient Search,” Proc. of IEEE
ICDE, 209-218, 1993.

[8] Y.-W. Huang, N. Jing and E. A. Rundensteiner, “Spatial Joins
Using R-trees: Breadth-First Traversal with Global Opti-
mizations,” Proc. of VLDB, 396-405, 1997.

[9] C. Mohan, D. Haderlr, Y. Wang and J. Cheng, “Single Ta-
ble Access Using Multiple Indexes: Optimization, Execu-
tion, and Concurrency Control Techniques,” Proc. of EDBT,
29-43, 1990.

[10] B. C. Ooi, R. Sacks-Davis and K. J. McDonell, “Extendinga
DBMS for Geographic Applications,” Proc. of IEEE ICDE,
590-597, 1989.

[11] J. A. Orenstein, “Spatial Query Processing in an Object-
Oriented Database System,” Proc. of ACM SIGMOD, 326-
336, 1986.

[12] H.-H. Park, N.-H. Hong, C.-W. Park and C.-W. Chung,
“Spatial Object Algebra and Query Language in OMEGA,”
KAIST, Technical Report, CS/TR-97-118, 1997.

[13] H.-H. Park, C.-G. Lee, Y.-J. Lee and C.-W. Chung, “Sepa-
ration of Filter and Refinement Steps in Spatial Query Opti-
mization,” KAIST, Technical Report, CS/TR-98-122, 1998.
See also: http://islab.kaist.ac.kr/˜hhpark/engtr sfro.ps

[14] H. Samet and W. G. Aref, “Spatial Data Models and Query
Processing,” Modern Database Systems, ACM Press, 338-
360, 1995.

[15] A. Silberschatz, H. F. Korth and S. Sudarshan, DatabaseSys-
tem Concepts, McGrawHill, 3rd edition, 1997.

[16] P. Valduriez, “Join Indices,” ACM Transactions on Database
Systems, Vol. 12, No. 2, 218-246, 1987.


