
Efficient Distance Sensitivity Oracles for
Real-World Graph Data (Extended Abstract)

Jong-Ryul Lee∗, Chin-Wan Chung∗†
∗ School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

† Chongqing Liangjiang KAIST International Program, Chongqing University of Technology (CQUT), China

hellcodes.kaist@gmail.com, chungcw@kaist.edu

Abstract—A distance sensitivity oracle is a data structure
answering queries that ask the shortest distance from a node
to another in a network expecting node/edge failures. It has
been mainly studied in theory literature, but all the existing
oracles for a directed graph suffer from prohibitive preprocessing
time and space. Motivated by this, we develop two practical
distance sensitivity oracles for directed graphs as variants of
Transit Node Routing, and effective speed-up techniques with a
slight loss of accuracy. Extensive experiments demonstrate that
our oracles greatly outperform all of competitors in most cases.
To the best of our knowledge, our oracles are the first distance
sensitivity oracles that handle real-world graph data with million-
level nodes.

Index Terms—Graph algorithms, Path and circuit problems,
Graphs and networks, Distance sensitivity oracle, Distance query,
Shortest distance, Shortest path algorithms

I. INTRODUCTION

Given a graph G = (V,E) where V is the set of nodes and E
is the set of edges, the distance sensitivity problem is to answer

queries that ask to compute the distance of the shortest path

from a node to another avoiding the failed part of the network.

A distance sensitivity oracle is a data structure which is de-

signed to answer such queries. The distance sensitivity oracle

is useuful for a network where a small number of recoverable

failures (node or edge) can simultaneously and frequently

occur. This is because a traditional dynamic distance oracle

cannot answer any query while it is being updated for such

failures and even a single failure can cause expensive update

cost. Depite such usefulness, all existing distance sensitivity

oracles for a directed graph with real-valued edge weights are

not applicable to real-world networks, because they suffer from

prohibitive costs for space and for preprocessing time.
In this work, we propose two efficient distance sensitiv-

ity oracles for a variable number of edge failures in di-

rected graphs, which can answer distance queries without

any stalling. This feature of them is so critical, because it

is necessary for stable latency and enables them to handle

multiple queries in parallel, each of which is processed with a

separate thread on the same index structure. We also propose

two effective speed-up techniques and maintenance strategies

for permanent network changes. Finally, we conduct extensive

experiments to show the superiority of our distance oracles.

II. PROBLEM DEFINITION

To represent a general network, we consider a directed graph

G = (V,E), where V is the set of nodes and E is the set of

edges, as the input graph. For any edge (x, y) in a graph G,

(x, y) is associated with a real-valued weight.

Definition II.1 (Distance Sensitivity Problem). Given a di-
rected graph G = (V,E), the distance sensitivity problem is a
query (s, t, F), where s is the start node, t is the destination
node, and F is a set of at most f failed edges, asking
to compute the shortest distance from s to t in the graph
(V,E \ F).

III. SUMMARY OF OUR APPROACH

All the technical details and explanations are included in

the full version of this paper [1].

Our first oracle consists of a novel fault-tolerant index

structure, which is used to construct a solution path and to

detect and localize the impact of network failures, and an

efficient query algorithm for it. Our second oracle is made

by applying the A* heuristics to the first oracle.

Our oracles are variants of Transit Node Routing (TNR) [2].

The generic version of this technique consists of the following

items [3]:

• Transit Node Set: A set of nodes T ⊆ V that are supposed

to participate in many shortest paths.

• Distance Table: A table (or function) dT : T ×T → R
+
0 , in

which R
+
0 is the set of non-negative real numbers, returning

the shortest distance between transit nodes.

• Out-access (in-access) Node Mapping: A mapping Aout

(Ain) from a node v in V to the set of all transit nodes,

called out-access (in-access) nodes, each of which can be

the first (last) transit node on a shortest path from (to) v.

• Locality Filter: A boolean function that returns true for any

two nodes in V if there is no transit node on the shortest

path between them, and otherwise returns false.

In TNR, for any two nodes s and t, if the locality filter

returns false for s and t, the shortest distance from s to t,
denoted as d(s, t), is computed as [3]:

d(s, t) = min
(u,v)∈A(s,t)

d̂(s, u) + dT (u, v) + d̂(v, t), (1)

where A(s, t) denotes Aout(s) × Ain(t) and d̂(x, y) denotes

the distance of the shortest path from x to y which does not

pass through any other transit node except x and y. Otherwise,

an alternative algorithm is used to compute d(s, t).
Adaptation. Let us explain how we adapt TNR. In our

oracles, computing the access node mapping is simply done

by a modified version of the Dijkstra’s algorithm, called the

2028

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00233

bounded Dijkstra’s algorithm. The algorithm is designed to

avoid traversing beyond transit nodes except the source node.

It is easy to see that the set of transit nodes visited by the

bounded Dijkstra’s algorithm from s is a superset of Aout(s),
which is denoted by A∗

out(s). In addition, the reported distance

from s to each node u in the superset is exactly the same as

d̂(s, u). A superset of Ain(s), which is denoted by A∗
in(s), is

similarly computed by the bounded Dijkstra’s algorithm.

The locality filter is also handled by the bounded Dijkstra’s

algorithm. If the locality filter returns true, t must be visited

by the bounded Dijkstra’s algorithm from s and the reported

distance from s to t must be the right query answer. Based

on this fact, without computing the locality filter explicitly, if

the reported distance is smaller than the distance based on (1),

our oracles return the reported distance as the query answer.

(a) An input graph

(b) The distance graph with the transit
node set {2, 4, 5, 7, 9}

(c) The path
tree G2

Fig. 1. Examples of an input graph and a two-level index structure

Meanwhile, the distance table cannot be a |T |×|T | table for

the distance sensitivity problem, because the distances stored

in it may change by failures. Instead, we devise a novel fault-

tolerant index structure, which consists of two levels. The first-

level is a small overlay graph D = (T,ED), called the distance

graph, where ED ⊆ T×T . For any pair (u, v) ∈ T×T , (u, v)
is included in ED, if there exists a path from u to v in G which

does not pass through any other node in T . The weight of the

edge (u, v) is the distance of the shortest path from u to v in

the graph (V,E \F), which does not include any transit node

as an intermediate node. Note that the edge weights in D are

computed in preprocessing with F = ∅ and some of them are

recomputed on demand in query processing. The second-level

consists of trees of small sizes, called bounded shortest path

trees. The bounded shortest path tree is a path tree given by

the bounded Dijkstra’s algorithm. An example of our index

structure is depicted in Figure 1.

Our First Oracle. The query algorithm of our first oracle is a

Dijkstra-like algorithm over D. It first computes A∗
out(s) and

A∗
in(t), and then computes the query answer like the Dijkstra’s

algorithm on D. If it visits a node u whose bounded shortest

path tree contains a failed edge, the weights of the edges from

u in D are recomputed. The second-level of the index structure

is utilized for efficient recomputation.

More Sparse Distance Graph. Since the query algorithm

traverses D like the Dijkstra’s algorithm, the density of D is

an important factor to query efficiency. In order to construct

a good distance graph, we borrow a decent concept called a

k-path cover from [4]. Beyond the work in [4], we propose a

novel way of selecting a better k-path cover so that a resulting

distance graph is more sparse based on the concept of the

independent set from the graph theory.

Our Second Oracle. We devise the second oracle by com-

bining the query algorithm of our first oracle with the A*

heuristics. This combination is achieved by a novel method of

jointly computing a solution path on the distance graph and

recomputing some part of the distance graph. This method

effectively reduces the search space for the recomputation.

Efficient Speed-up Techniques. We propose two speed-up

techniques to make our approach faster for specific classes

of networks. The first speed-up technique is called partial

detouring, which efficiently provides a detour of a sub-path

of the original shortest path. The other technique is distance

graph sparsification, which effectively removes out unneces-

sary edges from the distance graph. The partial detouring

is effective for bounded-degree networks, while the distance

graph sparsification is effective for scale-free networks.

IV. EVALUATION AND RESULTS

We evaluate our oracles with real-world networks and

various competitors. The real-world networks are three road

network datasets and three social network datasets which are

the representatives of bounded-degree networks and scale-free

networks, respectively.

Our distance sensitivity oracles outperform the competitors

in terms of query time in most cases. It is notable that our

first oracle has mostly better query performance than even

the A* search algorithm with better preprocessing time and

space. Our second oracle is the most efficient exact method

for the road networks in terms of query time with comparable

preprocessing time and space. In addition, we can see that

the partial detouring and the distance graph sparsification

effectively make our oracles much faster.

ACKNOWLEDGEMENTS

This work was supported in part by 2019 Seed Money

Project of Chongqing Liangjiang KAIST International Pro-

gram, Chongqing University of Technology, and in part by

Chongqing Research Program of Basic Research and Frontier

Technology (No. cstc2017jcyjAX0089).

REFERENCES

[1] J. Lee and C. Chung, “Efficient distance sensitivity oracles for real-world
graph data,” IEEE Transactions on Knowledge and Data Engineering, to
be published.

[2] H. Bast, S. Funke, P. Sanders, and D. Schultes, “Fast routing in road
networks with transit nodes,” Science, vol. 316, no. 5824, pp. 566–566,
2007.

[3] J. Arz, D. Luxen, and P. Sanders, “Transit node routing reconsidered,” in
Experimental Algorithms, V. Bonifaci, C. Demetrescu, and A. Marchetti-
Spaccamela, Eds., 2013, pp. 55–66.

[4] S. Funke, A. Nusser, and S. Storandt, “On k-path covers and their
applications,” PVLDB, vol. 7, no. 10, pp. 893–902, 2014.

2029

