
An Efficient MapReduce Algorithm for
Counting Triangles in a Very Large Graph

Ha-Myung Park
Division of Web Science and Technology, KAIST

291 Daehak-ro, Yuseoung-gu
Daejeon, Korea

hmpark@islab.kaist.ac.kr

Chin-Wan Chung
Division of Web Science and Technology, KAIST

Department of Computer Science, KAIST
291 Daehak-ro, Yuseoung-gu

Daejeon, Korea
chungcw@kaist.edu

ABSTRACT
Triangle counting problem is one of the fundamental prob-

lem in various domains. The problem can be utilized for
computation of clustering coefficient, transitivity, trianglu-
lar connectivity, trusses, etc. The problem have been exten-
sively studied in internal memory but the algorithms are not
scalable for enormous graphs. In recent years, the MapRe-
duce has emerged as a de facto standard framework for pro-
cessing large data through parallel computing. A MapRe-
duce algorithm was proposed for the problem based on graph
partitioning. However, the algorithm redundantly generates
a large number of intermediate data that cause network over-
load and prolong the processing time. In this paper, we pro-
pose a new algorithm based on graph partitioning with a
novel idea of triangle classification to count the number of
triangles in a graph. The algorithm substantially reduces
the duplication by classifying triangles into three types and
processing each triangle differently according to its type. In
the experiments, we compare the proposed algorithm with
recent existing algorithms using both synthetic datasets and
real-world datasets that are composed of millions of nodes
and billions of edges. The proposed algorithm outperforms
other algorithms in most cases. Especially, for a twitter
dataset, the proposed algorithm is more than twice as fast as
existing MapReduce algorithms. Moreover, the performance
gap increases as the graph becomes larger and denser.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search

process

Keywords
Graph; triangle; MapReduce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505563.

1. INTRODUCTION
With the rapid growth of the Internet technologies and

the social network services, the field of graph analysis is re-
ceiving significant attention from both academia and indus-
try. Graphs are used extensively to model numerous types
of networks, such as social networks, peer-to-peer networks,
and the World Wide Web. In many cases, the graphs for
these networks can be enormous because these networks usu-
ally involve numerous relationships among numerous enti-
ties. For example, in the popular social network Facebook,
there are more than 1.1 billion users and over 69 billion
friendships[1, 24]. Therefore, it is essential to extract only
the useful information from a graph, but it is not trivial
to analyze an enormous graph to determine patterns and
trends within the graph.

Counting the number of triangles in a graph is an impor-
tant function in graph analysis. In the field of graph anal-
ysis, the clustering coefficient[25] and transitivity ratio[20],
which are highly relevant to the number of triangles, are re-
garded as important measures that quantify the degree of
clustering in a graph. These measures have been used for
various applications such as detecting fake accounts in social
networks[27], finding malicious pages on the Web[6], uncov-
ering hidden thematic layers on the Web[13], and detecting
communities[7].

The problem of counting the number of triangles has been
studied extensively over the past few years due to the nu-
merous applications related to the problem. Thus far, the
research has focused primarily on internal memory[15, 17,
21]; however, as a result of the enormity of recent graphs, it
is effectively impossible for the internal memory algorithms
to count the number of triangles in the graphs. One of the
methods to manage such enormous data is to exploit the
parallel computing paradigm. MapReduce[11], and its open
source version Hadoop[26], has emerged as a de facto stan-
dard framework for processing large data through parallel
computing. A number of researchers have employed MapRe-
duce to enable their algorithms to be scalable[16, 23, 9, 19].

Suri and Vassilvitskii[22] proposed a MapReduce algo-
rithm, called Graph Partition(GP) algorithm, and it uses
a graph partitioning technique to count the number of tri-
angles in enormous graphs. The GP algorithm partitions a
graph into overlapping subgraphs in order that every trian-
gle in the graph is present in at least one subgraph. Then, it
counts the number of triangles in each subgraph in parallel.
However, the GP algorithm generates a large number of in-

termediate data that cause network overloads and increase
the processing time.

In this paper, we propose a new MapReduce algorithm
using a graph partitioning technique to count the number
of triangles in an enormous graph. When a graph is parti-
tioned, every triangle can be classified into one of three types
according to the number of subgraphs in which the nodes of
the triangle are placed. In the GP algorithm, if two or three
nodes of a triangle are in the same subgraph, the triangle is
calculated redundantly. In particular, when all nodes in a
triangle are included in the same subgraph, the triangle is
calculated in proportion to the square number of subgraphs.

Our algorithm substantially reduces the number of calcu-
lations by using different processes for each type of triangle
and partitioning a graph in a different manner to that of
the GP algorithm; thus, our algorithm computes far fewer
triangles during the process than the GP algorithm.

Contributions. Our significant contributions are sum-
marized as follows.

• We propose an efficient MapReduce algorithm to count
the number of triangles in an enormous graph that will
not fit in internal memory.

• We also prove the correctness and efficiency of the

proposed algorithm; the algorithm operates in O(m
3
2)

time in which the best-known algorithm operates.

• Our algorithm is experimentally evaluated using both
real-world datasets and synthetic datasets. The exper-
imental results demonstrate that our algorithm out-
performs existing MapReduce algorithms in counting
the number of triangles. In particular, for a Twitter
dataset, our algorithm is more than twice as fast as
the existing algorithms. Moreover, the results demon-
strate that the performance gap increases as the graph
becomes larger and denser.

Paper Organization. In Section 2, previous works rel-
evant to the problem of counting the number of triangles
are reviewed. The problem of counting the number of trian-
gles and a set of frequent notations are formally defined in
Section 3. In Section 4, we describe the proposed algorithm
and proves its efficiency with theoretical bounds. In Section
5, we give the experimental evaluation and conclusions are
made in Section 6.

2. RELATED WORKS
In this section, we first provide an overview of the trian-

gle counting algorithms for internal and external memory.
Then, we outline the flow of the MapReduce because our
algorithm is a MapReduce algorithm. Finally, we introduce
the existing MapReduce algorithms for counting the number
of triangles. The notations that are used are listed in Table
1.

2.1 Internal memory algorithms
The triangle counting problem has been studied exten-

sively for internal memory algorithms. Here, we provide an
overview of the existing internal memory algorithms.

Table 1: The notation used in the paper

Notation Explanation
G = (V,E) Input graph

(u, v) edge between u, v
n The number of nodes in V
m The number of edges in E

∆(u, v, w) Triangle; set of three nodes such
that (u, v), (u,w), (v, w) ∈ E

N(v) Neighbors of a node v
d(v) degree of a node v
ρ The number of partitions of G

Gi = (Vi, Ei) Partition; induced subgraph of G on
Vi

Gij = (Vij , Eij) Induced subgraph of G on Vi ∪ Vj
where i 6= j

Gijk = (Vijk, Eijk) Induced subgraph ofG on Vi∪Vj∪Vk
where i 6= j 6= k

The simplest method of counting the number of triangles
is to investigate all possible triples of nodes whether the
nodes in a triple are fully connected to each other. There
are two foundational algorithms for this: the node-iterator
algorithm and the edge-iterator algorithm. For each node
n in V , the node-iterator algorithm counts every pair that
has an edge between them in N(n). For each edge (n, v)
in E, the edge-iterator algorithm computes the intersection
of N(n) and N(v), and then counts the number of nodes
in the intersection. These two algorithms have the same
upper bound O(d2maxn) where dmax is the maximum degree
of nodes [21]. Moreover, the two fundamental algorithms
output each triangle three times.

The forward algorithm eliminates the output duplication
and improves the edge-iterator algorithm by ordering the
nodes. It returns a triangle ∆(u, v, w) if and only if u ≺
v ≺ w where ≺ is a total order on all of the nodes. Usually,
the nodes are ordered by the degree of nodes. The compact-
forward algorithm is a refined version of the forward algo-
rithm. It reduces the usage of space from Θ(3m + 3n) to
Θ(2m+ 2n) [17].

There is another approach for the triangle counting prob-
lem that utilizes a matrix multiplication. If A is the adja-
cency matrix representation of input graph G, the number
of triangles is computed simply by calculating A3. The AYZ
algorithm [4] uses the matrix multiplication. This algorithm
is known as the fastest algorithm for counting triangles: its
running time is O(m1.41) with the fast matrix multiplication
[10]. However, the AYZ algorithm uses O(n2) space, which
is a prohibitive space cost for computing enormous graphs.

2.2 External memory algorithms
This section briefly introduces the triangle counting algo-

rithms for external memory. Dementiev [12] proposed an ex-
ternal version of the node-iterator algorithm, called the ex-
ternal node-iterator algorithm. The node-iterator algorithm
for internal memory uses an adjacency matrix representation
of a graph in order to test the adjacency of two nodes in a
constant time. In order to avoid the adjacency matrix repre-
sentation, the external node-iterator algorithm uses a sorted
edge list to verify the adjacency of two nodes. Furthermore,
it reduces the number of computations by employing de-
gree ordering. Menegola [18] proposed an external version

of the compact-forward algorithm, called external compact-
forward algorithm. In the compact-forward algorithm for
internal memory, the node processing order should be re-
spected. The external compact-forward algorithm guaran-
tees the processing order using a mapped index containing
the order of each node. Chu and Cheng [8] proposed graph
partitioning algorithms for the external memory. These ex-
ternal graph partitioning algorithms have a common base
framework and vary according to the partitioning methods:
sequential partitioning, dominating set based partitioning,
and randomized partitioning. The external graph partition-
ing algorithm framework partitions the graph and classifies
triangles. The concept of this external graph partitioning
algorithm is similar to our algorithm, but the two algo-
rithms have significant differences. In the external graph
partitioning algorithm, each partition is extended to include
all neighboring nodes in the partition. By doing so, every
triangle is listed without exception. However, if a node has
many neighbors, a partition including the node cannot fit
in the memory. In contrast, our algorithm does not extend
partitions so that every partition remains within the mem-
ory size. Our algorithm guarantees that every triangle is in
at least one partition using a different method; moreover,
our algorithm is a MapReduce algorithm not an external
memory algorithm. Hu et al. [14] proposed a state-of-the-
art algorithm for counting triangles in the external memory.
This algorithm loads certain size edges in the memory and
finds all triangles containing one of these edges by traversing
every node.

External memory algorithms are devised in a different en-
vironment, in which massive parallel and distributed com-
puting is not available, so they are not in the scope of this
paper.

2.3 MapReduce

hi hi map

map reduce map

hi map reduce

〈hi ; 2〉
〈map ; 1〉

〈map ; 2〉
〈reduce ; 1〉

〈hi ; 1〉
〈map ; 1〉
〈reduce ; 1〉

〈hi ; {2, 1}〉

〈map ; {1, 2, 1}〉

〈reduce ; {1, 1}〉

〈hi ; 3〉
〈map ; 4〉
〈reduce ; 2〉

Map Step Suffle Step Reduce Step

-Input file

Figure 1: MapReduce example, word counting

MapReduce is a programming framework for processing
large data using parallel computation. The name and con-
cept of the MapReduce are from the ‘Map’ and ‘Reduce’
operations in functional programming languages. With the
MapReduce framework, programmers can easily utilize dis-
tributed machines in order to process large data in parallel
by writing scripts for the Map and Reduce function. There
are three steps in the MapReduce framework: Map, Shuffle,
and Reduce.

Map Step. A Map function that is scripted by a program-
mer is copied to each machine and each copied Map function
is called a Map instance. In the Map step, each Map instance
receives a line as input from a file and outputs a number of
〈key; value〉 pairs in response to the input. The number of
output pairs may be zero.

1

2

3

4

6

5

7

8 9

10

11

12

Partition 1

Partition 3

Partition 2

Partition 4

Figure 2: the input graph and partitions in our run-
ning example

Shuffle Step. The output pairs from the Map step are
bound by keys in the Shuffle step. That is, pairs that have
the same key are combined as 〈key, {value1, value2, ...}〉.

Reduce Step. A Reduce function that is scripted by a pro-
grammer is copied to each machine and each copied Reduce
function is called a Reduce instance. Each Reduce instance
receives one of the output pairs 〈key, valueSet〉 from the
Shuffle step as input and outputs a number of 〈key; value〉
pairs.

Figure 1 shows a word counting example.

2.4 Existing MapReduce algorithms
Recently, two MapReduce algorithms used to count the

number of triangles were proposed. Cohen[9] proposed the
first MapReduce algorithm, called the Cohen algorithm, to
enumerate triangles. This algorithm is based on the node-
iterator algorithm. As mentioned above, the node-iterator
algorithm outputs triangles redundantly. In order to avoid
the duplication, the algorithm applies an ordering technique;
any ordering factor can be applied, e.g. numerical ordering
of node numbers. The author chose the degree of nodes as
the ordering factor. Using the degree ordering, the process-

ing time of the algorithm is O(m
3
2), which is the optimal

bound for enumerating triangles. However, the algorithm
diminished as the average degree of nodes increases. More-
over, if a node has a very high degree, a Reduce instance
whose input key contains the node cannot accommodate the
values related to the key.

Suri and Vassilvitskii[22] proposed a MapReduce algo-
rithm for the triangle counting problem, which is the current
state-of-the-art MapReduce algorithm. It resolves the mem-
ory capacity problem of the Cohen algorithm through the
use of a graph partitioning technique. Suri and Vassilvit-
skii’s algorithm can modulate the input sizes of the Reduce
instances. However, the algorithm generates numerous du-
plicate edges during the process, which increase the network
overload, and calculates triangles redundantly. We review
the algorithm in detail in Section 4 because the algorithm is
closely related to our algorithm.

1

2

3

4

6

5

7

8 9

(a) G123

1

2

3

4

6

5

10

11

12

(b) G124

1

2

3

7

8 9

10

11

12

(c) G134

4

6

5

7

8 9

10

11

12

(d) G234

Figure 3: 3-partitions of the graph in Figure 2

3. PROBLEM DEFINITION
Let us consider a simple undirected graph G = (V,E)

where V is the set of nodes and E is the set of edges. Let n
and m be the size of nodes |V | and edges |E|, respectively.
An edge between two nodes u and v is represented as (u, v).
Let N(v) be the set of directly adjacent nodes(neighbors) of
a node v in G, and d(v) be the degree of v, i.e. d(v) = |N(v)|.
A triangle, denoted by ∆(u, v, w), is a set of three nodes
{u, v, w} ⊆ V such that (u, v), (u,w), (v, w) ∈ E. Then, the
triangle counting problem is formally defined as follows:

Definition 1. (Triangle counting) Given a graph G, the
triangle counting problem is to count the number of all tri-
angles in G.

We also define the following important terms that are used
to describe our algorithm throughout the paper. Note that
the term partition is used informally as a subgraph instead
of following the standard mathematical definition in order
to be consistent to usual terms for graphs in the MapReduce
area.

Definition 2. (Partition or 1-partition) Given an integer
ρ, a partition (or 1-partition), denoted by Gi = (Vi, Ei) or
Gj = (Vj , Ej), is a subgraph of G such that Vi ∩ Vj = ∅

where 0 < i < j ≤ ρ, and
ρ⋃
i=1

Vi = V where 0 < i ≤ ρ.

Then, ρ is the number of partitions.

Definition 3. (2-partition and 3-partition) Let Gi, Gj and
Gk be three different partitions complying with Definition
2. Then a 2-partition, denoted by Gij = (Vij , Eij), is an
induced subgraph of G on Vi ∪ Vj . Similarly, a 3-partition,
denoted by Gijk = (Vijk, Eijk), is an induced subgraph of G
on Vi ∪ Vj ∪ Vk.

When an input graph is divided into ρ partitions, the
number of all possible 2-partitions and 3-partitions are

(
ρ
2

)
and

(
ρ
3

)
respectively. Figure 2 shows an input graph and

partitions. There are four partitions(G1, G2, G3 and G4),
six 2-partitions(G12, G13, G14, G23, G24 and G34), and
four 3-partitions(G123, G124, G134 and G234). G1 is com-
posed of three nodes 1, 2 and 3, and three edges (1, 2),
(1, 3), and (2, 3), i.e. G1 = ({1, 2, 3}, {(1, 2), (1, 3), (2, 3)}).
Similarly, G2, G3 and G4 are induced subgraphs of
the input graph on {4, 5, 6}, {7, 8, 9} and {10, 11, 12}
respectively. G12 is a 2-partition which is com-
posed of six nodes {1, 2, 3, 4, 5, 6} and eight edges
{(1, 2), (1, 3), (2, 3), (3, 4), (3, 6), (4, 5), (4, 6), (5, 6)}. G123

is a 3-partition which is composed of nine nodes
{1, 2, 3, 4, 5, 6, 7, 8, 9} and twelve edges {(1, 2), (1, 3), (2, 3),
(3, 4), (3, 6), (3, 7), (4, 5), (4, 6), (5, 6), (6, 7), (7, 8), (7, 9)}.

4. MAPREDUCE ALGORITHM FOR
TRIANGLE COUNTING

In this section, we propose a novel MapReduce algorithm
to count the number of triangles in a graph. It is essen-
tially a graph partitioning algorithm that divides a graph
into multiple overlapping subgraphs that together cover all
triangles in the graph. Suri and Vassilvitskii [22] also pro-
posed a partitioning algorithm for counting triangles; how-
ever, their algorithm generates numerous duplicated edges
during the process and performs redundant computations
when counting triangles. First, we introduce the previous
GP algorithm [22]; then, we propose our algorithm and an-
alyze its efficiency.

4.1 Graph Partition Algorithm
Suri and Vassilvitskii [22] proposed a MapReduce algo-

rithm, called graph partition (GP) algorithm, to count the
number of triangles in a graph. The first step of the algo-
rithm is to partition the nodes of a graph into ρ partitions,
Gi = (Vi, Ei) where 0 < i ≤ ρ , so that each partition has
almost the same number of nodes. The algorithm counts the
number of triangles using an internal memory algorithm for
each 3-partitions Gijk where 0 < i < j < k ≤ ρ.

Certain triangles appear multiple times during the pro-
cess, which produces redundant results. Consider a trian-
gle ∆(u, v, w) where u, v, and w are included in the same
partition Gx. The triangle ∆(u, v, w) is present in every 3-
partition Gijk where x = i or x = j or x = k. For example,
in Figure 3, the triangle ∆(1, 2, 3) whose nodes are in the
same partition G1 appears three times in G123, G124 and
G134. Similarly, the triangle ∆(4, 5, 6) also appears three
times in G123, G124 and G234. For two nodes of a trian-
gle in the same partition, e.g. u and v are in Gx and w is
in Gy, the triangle appears in every 3-partition Gijk where
{x, y} ∈ {i, j, k}. For example, in Figure 3, the triangle
∆(3, 4, 6) whose two nodes 4 and 6 are in the same partition
G2 appears twice in G123 and G124. In order to correctly
count such triangles, the algorithm corrects the duplicated
triangles by reporting each triangle as 1/(number of the du-
plicates). For example, in Figure 3, the triangle ∆(1, 2, 3)
is reported as 1/3. Since the triangle ∆(1, 2, 3) is reported
three times, the sum of the reported numbers for the triangle
is 1.

The above procedure is realized in a MapReduce algo-
rithm by implementing a Map function and a Reduce func-
tion. The Map function takes an edge (u, v) ∈ E as an
input and outputs 〈(i, j, k), (u, v)〉 pairs such that u and v
are included in Gijk. The Reduce function counts the tri-
angles using an internal memory algorithm and corrects the
number of triangles.

The primary drawback of the GP algorithm is the redun-
dant computation of triangles. In particular, triangles that
are included wholly in a partition are computed in O(ρ2)
time. Our observation is that the primary cause of the
redundant computation of triangles is the duplicate edges
output from the Map function. The output edge size is also
O(ρ2) for an edge (u, v) if the u and v are in a partition.
These edges lead to network overload and delay the Shuffle
step of MapReduce.

4.2 Triangle Type Partition Algorithm
We propose a new MapReduce algorithm, named the Tri-

angle Type Partition (TTP). The algorithm substantially
rectifies the duplication problem in the GP algorithm.

When a graph is partitioned, a triangle can be classified
into one of three types according to the number of partitions
in which its nodes are positioned.

Definition 4. (Types of Triangle) The three types of tri-
angles are defined as follows:

Type-1. If the three nodes u, v, and w of a triangle ∆(u, v, w)
are placed in the same partition, the triangle type is Type-1.
Type-2. If the two nodes of a triangle belong to one parti-
tion and the remaining node belongs to a different partition,
the triangle type is Type-2.
Type-3. If the three nodes are in different partitions, the
triangle type is Type-3.

For example, in Figure 2, the triangles ∆(1, 2, 3) and ∆(4, 5, 6)
are Type-1 triangles. The triangle ∆(3, 4, 6) is a Type-2 tri-
angle. The triangles ∆(3, 6, 7) and ∆(6, 7, 10) are Type-3
triangles.

Let an edge (u, v) be an inner-edge if the nodes u and v
belong to the same partition, and the edge be an outer-edge
if the nodes u and v are in different partitions. For example,
in Figure 2, the edges (1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6),
(7, 8), (7, 9), (10, 12) and, (11, 12) are inner-edges and the
others are outer-edges. As mentioned above, the GP algo-
rithm redundantly processes Type-1 and Type-2 triangles.
In order to reduce these duplications, the TTP algorithm
utilizes the fact that Type-3 triangles are only composed
of outer-edges, i.e. there are no inner-edges in Type-3 tri-
angle. This suggests that Type-3 triangles can be counted
correctly without inner-edges. Then, our strategy is to dis-
sociate the Type-1 and Type-2 triangles from the Type-3
triangles. A 3’-partition, denoted by G′ijk, is a subgraph
of a 3-partition without inner-edges. In Figure 5, there are
examples of G′ijk for the graph in Figure 2. The TTP al-
gorithm counts Type-1 and Type-2 triangles in 2-partitions
and Type-3 in 3’-partitions. Type-2 triangles are counted in
2-partitions because every Type-2 triangle is present in one
of the 2-partitions; the TTP algorithm also counts Type-1
triangles in the 2-partitions because every Type-1 triangle
also appears in the 2-partitions. In Figure 4, the Type-2 tri-
angle ∆(3, 4, 6) appears only in G12 and The Type-1 triangle
∆(1, 2, 3) also appears in G12, G13, and G14. The algorithm
does not count Type-1 triangles in 1-partitions because there
is no advantage by doing so. That is, the algorithm should
compute triangles in 2-partition even when Type-1 triangles
are already counted; thus, Type-1 and Type-2 triangles are
processed at the same time.

Algorithm 1: Triangle Type Partition algorithm

Map : input 〈φ ; (u, v)〉
1 for a ∈ [0, ρ− 2] do
2 for b ∈ [a+ 1, ρ− 1] do
3 if {P (u), P (v)} ⊆ {a, b} then
4 emit 〈(a, b) ; (u, v)〉;
5 if P (u) 6= P (v) then
6 for a ∈ [0, ρ− 3] do
7 for b ∈ [a+ 1, ρ− 2] do
8 for c ∈ [b+ 1, ρ− 1] do
9 if {P (u), P (v)} ⊆ {a, b, c} then

10 emit 〈(a, b, c) ; (u, v)〉;

Reduce : input 〈(i, j, k) ; Eijk〉 or 〈(i, j) ; Eij〉
11 Et ← Eijk or Eij ;
12 ∆← Find all triangles on Gt;
13 foreach (u, v, w) ∈ ∆ do
14 if P (u) = P (v) = P (w) then
15 emit 〈(u, v, w) ; 1

ρ−1
〉;

16 else
17 emit 〈(u, v, w) ; 1〉;

The pseudo code for the TTP algorithm is shown in Al-
gorithm 1. The algorithm is composed of a pair of Map and
Reduce functions. Each edge of input graph is sent to one
of map instances. The Map instance takes an edge (u, v)
as input. Let P (v) be a hash function that returns an in-
teger within [0, ρ − 1] such that the integer corresponds to
a partition. For example, in Figure 2, P (1) = 1, P (3) = 1,
P (4) = 2, P (7) = 3, P (11) = 4 and so on. If the input
edge is an inner-edge, the Map instance outputs pairs 〈(a, b)
; (u, v)〉 for each a, b ∈ [0, ρ − 1] satisfying {P (u), P (v)} ⊆
{a, b} (Lines 1-4). This means that the algorithm includes
the edge (u, v) in Gab satisfying such a condition. Let us
consider an edge (1, 2) in the running example (Figure 2).
If the edge is the input of a Map instance, the Map instance
will output pairs 〈(1, 2) ; (1, 2)〉, 〈(1, 3) ; (1, 2)〉 and 〈(1, 4) ;
(1, 2)〉. If the input edge is an outer-edge, the Map instance
outputs pairs in common with an inner-edge. In addition, It
also outputs pairs 〈(a, b, c) ; (u, v)〉 for each a, b, c ∈ [0, ρ−1]
satisfying {P (u), P (v)} ⊆ {a, b, c} (Lines 5-10). For exam-
ple, if the outer-edge (3, 4) in Figure 2 is the input of a Map
instance, the Map instance will output pairs 〈(1, 2) ; (3, 4)〉,
〈(1, 2, 3) ; (3, 4)〉, and 〈(1, 2, 4) ; (3, 4)〉. After all Map in-
stances finish their tasks, the MapReduce framework gathers
values that share the same key. Then it assigns the values
with the key to a reduce instance. In this algorithm, each
key corresponds to a 2-partition or a 3’-partition. For exam-
ple, if a pair 〈(2, 3, 4) ; {(6, 7), (6, 10), (7, 10)}〉 is the input
of a Reduce instance, it implies that G′234 contains edges
(6, 7), (6, 10) and (7, 10), and the Reduce instance receives
G′234. In summary, each Reduce instnace takes a 2-partition
or a 3’-partition as input and counts the number of triangles
in the 2-partitions or 3’-partitions. Note that any internal
memory algorithm for counting the number of triangles can
be used in the Reduce function.

1

2

3

4

6

5

(a) G12

1

2

3

7

8 9

(b) G13

1

2

3

10

11

12

(c) G14

4

6

5

7

8 9

(d) G23

4

6

5

10

11

12

(e) G24

7

8 9

10

11

12

(f) G34

Figure 4: 2-partitions of the graph in Figure 2

3

4

6

7

(a) G′123

3

4

6

10

(b) G′124

3

7

10

(c) G′134

6

7

10

(d) G′234

Figure 5: 3-partitions without inner-edges of the graph in Figure 2

4.3 Analysis
In this section, we analyze the network/space usage and

the processing time of the proposed algorithm. We first show
the correctness of the algorithm.

Lemma 1. All triangles in a graph are counted correctly
by the TTP algorithm.

Proof. Each Type-3 triangle ∆(u, v, w) appears only in
a 3’-partition G′ijk where u ∈ Gi, v ∈ Gj and w ∈ Gk;
thus, Type-3 triangles are counted correctly. Without loss
of generality, on behalf of all Type-2 triangles, let us consider
a triangle ∆(u, v, w) where u and v are in the same partition
and w is in another partition. The triangle appears only in
a 2-partition Gij where u, v ∈ Gi and w ∈ Gj and does
not appear in any 3’-partitions because the triangle has an
inner-edge but there are no inner-edges in every 3’-partition;
thus, Type-2 triangles are counted correctly. Each Type-1
triangle ∆(u, v, w) whose u, v and w belong to a partition
Gi appears in 2-partitions Gij where j ∈ [0, ρ−1] and i 6= j.
Then, the number of Gij is ρ− 1; it implies that each Type-
1 triangle appears ρ − 1 times. The algorithm counts each
Type-1 triangle as 1

ρ−1
; thus, Type-1 triangles are counted

correctly.

We analyze the network and space usage of the TTP al-
gorithm.

Lemma 2. The expected size of inner-edges is m
ρ

and the

size of outer-edges is (1−ρ)m
ρ

. Then, the expected size of

output from all Map instances is m(ρ− 1) = O(mρ).

Proof. If an input edge for a Map instance is an inner-
edge in Gi, it is output to Gij for each j ∈ [0, ρ − 1] and
i 6= j. It implies that every inner-edge is output ρ−1 times.
Let us consider an inner-edge (u, v). The probability for two
nodes u and v to belong to the same partition is 1

ρ
and the

number of edges is m; thus, the number of inner-edges is m
ρ

stochastically. Therefore, the size of output inner-edges is
m
ρ
× (ρ− 1).

If an input edge for a Map instance is an outer-edge which
lies between Gi and Gj , it is emitted to Gij and G′ijk where
k ∈ [0, ρ − 1] and i 6= j 6= k, i.e. the outer-edge output
1 + (ρ− 2) = ρ− 1 times. The number of outer-edges is

1−
m

ρ
=
ρ− 1

ρ
m

Then, the size of output from outer-edges is ρ−1
ρ
m×(ρ−1).

Finally, the total size of output is

m

ρ
× (ρ− 1) +

ρ− 1

ρ
m× (ρ− 1) = m(ρ− 1) = O(mρ)

We analyze the memory usage of each reduce instance in
the TTP algorithm.

Lemma 3. Each reduce instance receives input of O(m
ρ2

)

size on average.

Proof. Each Reduce instance receives one of two types
of input: 〈(i, j) ; Eij〉 and 〈(i, j, k) ; E′ijk〉, i.e. edges of
2-partitions and edges of 3’-partitions. In the former case,
a 2-partition Eij contains both inner-edges and outer-edges.
The probability that an edge belong to a specific partition
is 1

ρ2
, because the probability equals to the probability that

both of two nodes of the edge belong to a specific partition.
In a 2-partition, there are two 1-partitions so the expected
size of inner-edges in a 2-partition is 2m

ρ2
. Similarly, the

expected size of outer-edges in a 2-partition is m
ρ2

. Therefore,

when the input of a Reduce instance is edges of a 2-partition,
the expected input size is 3m

ρ2
= O(m

ρ2
). In the latter case,

a 3’-partition E′ijk contains only outer-edges and the size of
outer-edges in a 3’-partition is(3

2

)
×
m

ρ2
=

3m

ρ2
= O(

m

ρ2
)

Therefore, regardless of the input type, the expected size
of the input to an reduce instance is O(m

ρ2
).

Table 2: The summary for the datasets

Dataset Nodes Directed Edges Undirected Edges Triangles File Size

web-BerkStan 6.9× 105 7.6× 106 6.6× 106 6.5× 107 110 MB
as-Skitter 1.7× 106 - 1.1× 107 2.9× 107 149 MB

soc-LiveJournal1 4.8× 106 6.9× 107 4.3× 107 2.8× 108 1.1 GB
Twitter 4.2× 107 1.5× 109 1.2× 109 1.5× 1012 25 GB

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

S
u

ff
le

d
 d

a
ta

 s
iz

e
(G

B
y
te

)

ρ (# of partitions)

TTP
GP

(a) Effect of the partition size ρ on shuffled data size.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

R
u

n
n

in
g

 T
im

e
(m

in
)

ρ (# of partitions)

TTP
GP

(b) Effect of the partition size ρ on the running time.

Figure 6: Effect of the partition size ρ with LiveJournal dataset

Lemma 2 shows that the network and the space usage is
proportional to the partition size ρ. Lemma 3 shows that
the memory usage of each reduce instance decreases as the
partition size increases. The two Lemmas shows that both
the total space/network usage and the memory usage of each
reduce instance depend on the partition size ρ and the algo-
rithm can mediate between them by modulating the ρ.

Theorem 1. The total amount of work performed by all

reduce instances is O(m
2
3) where ρ ≤

√
m.

Proof. The running time on each Map instance depends
on the size of its edges output. Outputting an edge can be
done in O(1). Lemma 2 shows that the total number of

edges output is O(mρ) and it becomes O(m
3
2) when ρ be

less than or equals to
√
m. Lemma 3 shows that the input

size of any reduce instance is O(m
ρ2

) and the partition size is

O(ρ3). In addition, the running time of the best algorithm

for counting triangles is O(m
3
2)(See Section 2). Therefore,

the total processing time of reduce instances is

O

((
m

ρ2

) 3
2
× ρ3

)
= O(m

3
2)

Theorem 2. In the Map step, the GP algorithm outputs
O(mρ) more than the TTP algorithm does.

Proof. First, we consider the case in which the two al-
gorithms use the same number of partitions ρ. For Map
instances of the GP algorithm, if the input edge is an inner-
edge, the edge is emitted

(
ρ−1
2

)
. If the input edge is an

outer-edge, the edge is emitted ρ − 2. By the Lemma 2,
the expected size of inner-edges and outer-edges are m

ρ
and

(ρ−1)m
ρ

respectively. The total outputs size of the map step

is

(ρ− 1

2

)
×
m

ρ
+ (ρ− 2)×

(ρ− 1)m

ρ
=

3(ρ− 1)(ρ− 2)m

2ρ

In addition, the Map step of the TTP algorithm outputs
m(ρ− 1) by the lemma 2. Then, the difference between the
two output sizes is

(ρ− 6)(ρ− 1)m

2ρ
= Ω(mρ)

We now consider a case in which two algorithms use different
ρ to use same memory size in each reduce instance. The
number of input edges of the GP algorithm is

(3

1

)
×
m

ρ2
+
(3

2

)
×
m

ρ2
=

6m

ρ2

In the above expression, the first term represents the num-
ber of inner-edges and the second term represents the num-
ber of outer-edges in a reduce instance. Lemma 3 shows the
number of input edges of the TTP algorithm is 3m

ρ2
. Suppose

that the GP algorithm uses ρ and the TTP algorithm uses
ρ2 then ρ2 =

√
2ρ from 6m

ρ22
= 3m

ρ2
. Then, the difference of

the output sizes of the two algorithm is

3(
√

2ρ− 1)(
√

2ρ− 2)m

2
√

2ρ
−m(ρ− 1) = Ω(mρ)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120 140 160

R
u

n
n

in
g

 T
im

e
(m

in
)

γ (density; # of edges / # of nodes)

TTP
GP

Cohen

Figure 7: Effect of density with synthetic data. The
edge size is fixed.

5. EXPERIMENTS
In this section, we present the results from a comprehen-

sive experimental evaluation to verify the performance of the
proposed algorithm.

5.1 Datasets
We use both real world datasets and synthetic datasets to

evaluate our algorithm. We first generate synthetic datasets
according to the preferential attachment model[5]. Graph
sizes vary from 200 thousand nodes to 2 million nodes with
20 million edges. The web-BerkStan, as-Skitter and Live-
Journal datasets are from SNAP[2] and the twitter dataset
is from [3]. The directed graphs are converted into undi-
rected graphs by deleting duplicate edges. In other words, if
there is even one directed edge between two nodes, we con-
sider that there is a both-way edge between the nodes. The
real-world datasets are listed in Table 2.

5.2 Implementation
We implement our algorithm and the compare algorithms

in hadoop framework that is the de facto standard imple-
mentation of MapReduce. All the experiments are con-
ducted on a cluster server with 47 nodes. Each node has
4 Gbyte of memory size. The compact-forward algorithm
is used in reduce function of our algorithm and the GP al-
gorithm. The hash function P (x) is implemented as the
modular hash function.

5.3 Experimental Results
In this section, we present our experimental results.

5.3.1 Effect of the partition size ρ
Figure 6 shows the experimental results for varying the

partition size ρ. As proved in Lemma 2, the total output size
of map instances, which is the size of shuffled data, is O(mρ).
Moreover, the difference of the shuffled data size between our
algorithm and GP algorithm is also O(mρ). This indicates
that the shuffled data size and the difference are directly
proportional to the partition size ρ when the edge size m is
fixed. Figure 6(a) shows the proportional difference between
two algorithms. For counting the number of triangles in
the Twitter dataset, 2.1 Tbyte data is shuffled on the GP
algorithm(ρ = 45) while 1.3 Tbyte data is shuffled on the

 0

 100

 200

 300

 400

 500

 600

 700

0M 5M 10M 15M 20M 25M 30M 35M 40M 45M

R
u

n
n

in
g

 T
im

e
(m

in
)

of nodes

TTP
GP

Cohen

Figure 8: Effect of the graph size with induced sub-
graphs of twitter data

Table 3: Induced subgraphs of twitter dataset

Nodes Edges Triangles

1.0× 106 6.7× 105 5.8× 106

2.0× 106 1.1× 106 8.2× 106

4.0× 106 1.8× 106 1.3× 107

8.0× 106 5.4× 106 5.3× 107

1.6× 107 5.2× 107 7.6× 108

2.4× 107 2.6× 108 9.7× 109

3.2× 107 4.2× 108 1.6× 1010

TTP algorithm(ρ = 40) over reducing 0.8 Tbyte (Table 5).
Figure 6(b) shows the running time for varying partition
sizes ρ. In every case, the TTP algorithm outperforms the
GP algorithm. Both experiments are conducted with the
LiveJournal dataset. Note that the GP algorithm yields a
memory buffer overflow when the ρ is 5.

5.3.2 Effect of graph properties
Effect of density. For the experiments, synthetic datasets,

which comply with the preferential attachment model[5], are
used. The data model enables the control over the number
of nodes n and the density of the graph, which are repre-
sented as γ. The γ decides the number of edges m when the
number of nodes n is determined. Figure 7 shows the exper-
imental results for varying γ and n while m is fixed. In other
words, the result shows the influence of the density of the
graphs when the input data size is fixed. The experiments
are conducted with graphs which have 20 million edges and
whose data file size is about 250 Mbyte. For the TTP and
GP algorithms, the value of ρ is chosen as 15 and 16 respec-
tively with which the performance of the algorithms is the
best. The GP algorithm takes more time for counting tri-
angles than the TTP algorithm on all occasions regardless
of γ. The Cohen algorithm is better when γ is lower than
aproximately 8 but the performance gradually declines as
the density increases. Note that most graphs have γ greater
than 8 including what we used. The γ of web-BerkStan, as-
Skitter, soc-LiveJournal1, and Twitter are 9.70, 6.47, 8.96,
28.6 respectively. Especially, the γ of Facebook is more than
80. As we mentioned in Section 2, The reason why the run-
ning time of Cohen increases as γ increases is that the out-
put size of the first MapReduce phase is proportional to the

 0

 0.5

 1

 1.5

 2

 2.5

 3

as-skitter BerkStan LiveJournal twitter

R
u

n
n

in
g

 T
im

e
 R

a
ti
o

 (
/

T
T

P
’s

)

TTP
GP

Cohen

Figure 9: the ratio of the running time with real
world datasets

degree of nodes in the algorithm. As γ increases, the num-
ber of nodes decreases so that the degree of nodes increases
because the number of edges is fixed.

Effect of graph size. For the experiments, twitter data
[3] is used. We generated induced subgraphs of the twitter
graph on 1, 2, 4, 8, 16, 24 and 32 millions nodes. The gen-
erated datasets are listed in Table 3. Figure 8 shows the
experimental results for varying graph sizes. The TTP al-
gorithm outperforms other algorithms in most cases. Espe-
cially, the performance gap between the algorithms increases
as the data size increases. For the TTP and GP algorithms,
the value of ρ is chosen as 15 and 16 respectively where the
node size is lower than 25 million, and the value is chosen 31
and 32 respectively in the other cases because of the memory
buffer overflow.

5.3.3 Results of Real Datasets
We conduct experiments on real datasets to check the pro-

posed algorithm is feasible for real world data. Figure 9, Ta-
ble 5 and Table 4 show the results. The running time of each
algorithm is listed in Table 4. In order to show the speed-up
of our algorithm comparing to other algorithms, Figure 9
shows the ratio of the running time. In the figure, the run-
ning time of each algorithm is divided by the running time
of our algorithm. For all datasets, The TTP algorithm out-
performs other algorithms. Especially for twitter dataset,
the TTA algorithm is more than twice as fast as the others.

6. CONCLUSION
Counting the number of triangles is a fundamental prob-

lem in various domains such as social networks, P2P net-
works, world wide web, and road networks. In order to
solve the problem in enormous graphs, prior researchers pre-
sented algorithms that operates on MapReduce framework;
Cohen[9] proposed a MapReduce algorithm, called Cohen
algorithm, based on node-iterator, and Suri and Vassilvit-
skii[22] proposed another MapReduce algorithm, namely GP
algorithm, based on graph partitioning. However, previous
algorithms have weaknesses. The performance of Cohen al-
gorithm is diminished as the average degree of the graph
becomes greater. The GP algorithm generates much inter-
mediate data redundantly that cause network overload and
prolong the total running time. In this paper, we propose a

Table 4: The running time of all algorithms (min)

Dataset TTP GP Cohen
web-BerkStan 1.31 1.68 2.03

as-skitter 1.62 1.78 2.17
soc-LiveJournal1 3.63 5.55 4.70

twitter 213 514 605

Table 5: The shuffled data sizes of all algorithms
(GB)

Dataset TTP GP Cohen
web-BerkStan 2.04 2.60 2.09

as-Skitter 1.10 1.24 2.15
soc-LiveJournal1 21.6 24.4 16.8

Twitter 1300 2140 4340

new MapReduce algorithm based on graph partitioning like
as the GP algorithm for counting the number of triangles
in enormous graphs. The TTP algorithm substantially re-
duces the duplication by classifying the type of triangles and
processing triangles by the type. The experimental evalu-
ation shows that the TTP algorithm outperforms provious
MapReduce algorithms in most cases. Especially, for a twit-
ter dataset, the proposed algorithm is more than twice as
fast as existing algorithms. Moreover, the performance gap
increases as the graph becomes larger and denser.

7. ACKNOWLEDGMENT
This work was supported by the National Research Foun-

dation of Korea grant funded by the Korean government
(MSIP) (No. NRF-2009-0081365).

8. REFERENCES
[1] http://newsroom.fb.com/Key-Facts.

[2] http://snap.stanford.edu/.

[3] http://an.kaist.ac.kr/pub date.html.

[4] N. Alon, R. Yuster, and U. Zwick. Finding and
counting given length cycles. Algorithmica,
17(3):209–223, 1997.

[5] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 16–24. ACM, 2008.

[7] J. W. Berry, B. Hendrickson, R. A. LaViolette, and
C. A. Phillips. Tolerating the community detection
resolution limit with edge weighting. Physical Review
E, 83:056119, 2011.

[8] S. Chu and J. Cheng. Triangle listing in massive
networks and its applications. In Proceedings of the
17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 672–680,
2011.

[9] J. Cohen. Graph twiddling in a mapreduce world.
Computing in Science & Engineering, 11(4):29–41,
2009.

[10] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. Journal of
symbolic computation, 9(3):251–280, 1990.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[12] R. Dementiev. Algorithm engineering for large data
sets. PhD thesis, Doktorarbeit, Universität des
Saarlandes, 2006.

[13] J.-P. Eckmann and E. Moses. Curvature of co-links
uncovers hidden thematic layers in the world wide
web. Proceedings of the national academy of sciences,
99(9):5825–5829, 2002.

[14] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In Proceedings of the 2013 ACM
SIGMOD international conference on Management Of
data, pages 325–336, 2013.

[15] A. Itai and M. Rodeh. Finding a minimum circuit in a
graph. SIAM Journal on Computing, 7(4):413–423,
1978.

[16] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system
implementation and observations. In Ninth IEEE
International Conference on Data Mining, pages
229–238, 2009.

[17] M. Latapy. Main-memory triangle computations for
very large (sparse (power-law)) graphs. Theoretical
Computer Science, 407(1):458–473, 2008.

[18] B. Menegola. An external memory algorithm for
listing triangles. Technical report, Universidade
Federal do Rio Grande do Sul, 2010.

[19] J. Myung and S.-g. Lee. Matrix chain multiplication
via multi-way join algorithms in mapreduce. In
Proceedings of the 6th International Conference on
Ubiquitous Information Management and
Communication, pages 53:1–53:5, 2012.

[20] T. Opsahl and P. Panzarasa. Clustering in weighted
networks. Social networks, 31(2):155–163, 2009.

[21] T. Schank and D. Wagner. Finding, counting and
listing all triangles in large graphs, an experimental
study. In Experimental and Efficient Algorithms, pages
606–609. Springer, 2005.

[22] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In Proceedings of the 20th
international conference on World wide web, pages
607–614, 2011.

[23] C. E. Tsourakakis, U. Kang, G. L. Miller, and
C. Faloutsos. Doulion: counting triangles in massive
graphs with a coin. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 837–846, 2009.

[24] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the facebook social graph. CoRR,
abs/1111.4503, 2011.

[25] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’networks. nature, 393(6684):440–442,
1998.

[26] T. White. Hadoop: The definitive guide. O’Reilly
Media, Inc., 2012.

[27] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao,
and Y. Dai. Uncovering social network sybils in the
wild. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages
259–268, 2011.

