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Abstract. We propose a new multi-way spatial join algorithm called
M-way R-tree join which synchronously traverses M R-trees. The M-
way R-tree join can be considered as a generalization of the 2-way R-tree
join. Although a generalization of the 2-way R-tree join has recently been
studied, it did not properly take into account the optimization techniques
of the original algorithm. Here, we extend these optimization techniques
for M-way joins. Since the join ordering was considered to be important in
the M-way join literature (e.g., relational join), we especially consider the
ordering of the search space restriction and the plane sweep. Additionally,
we introduce indirect predicates in the M-way join and propose a further
optimization technique to improve the performance of the M-way R-tree
join. Through experiments using real data, we show that our optimization
techniques significantly improve the performance of the M-way spatial
join.

1 Introduction

The spatial join is a common spatial query type which requires a high processing
cost due to the high complexity and large volume of spatial data. Therefore, the
spatial join is processed in two steps (the filter step and the refinement step)
to reduce the overall processing cost [T4J5]. Many 2-way spatial join methods
have been published in the literature: the join using Z-order elements [14], the
join using R-trees (called R-tree join) [B], the seeded tree join (STJ) [10], the
spatial hash join (SHJ) [IT], the partition based spatial merge join (PBSM) [20],
the size separation spatial join (S3J) [9], the scalable sweeping-based spatial join
(SSSJ) [1] and the slot index spatial join (SISJ) [12]. However, there has been
little research on the multi-way spatial join [I6]. The M-way (M>2) spatial join
combines M spatial relations using M-1 or more spatial predicates@. An example
of a 3-way spatial join is “Find all buildings which are adjacent to roads that
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intersect with boundaries of districts.” An M-way spatial join can be modeled
by a query graph whose nodes represent relations and edges represent spatial
predicates.

One way to process M-way spatial joins is as a sequence of 2-way joins [12].
Another possible way, when all join attributes have spatial indexes and each join
attribute is shared among the associated join predicatesﬂ is to combine the filter
and refinement steps respectively as follows:

(1) Scan the relevant indexes synchronously for all join attributes to obtain a
set of spatial object identifier tuples.

(2) Read objects for object identifier (oid) tuples obtained from Step (1), and
perform an M-way spatial join using geometric computation algorithms.

Step (1) is called combined filtering and Step (2) combined refinement in [17].
Especially when the R-trees are used in Step (1), the combined filtering is called
M-way R-tree join which is the scope of this paper. The M-way R-tree join is
also called synchronous traversal (ST) in [16]. An advantage of the combined
filtering is that it removes unnecessary refinement operations for some object
pairs. For example, let Figure [l be an MBR (Minimum Bounding Rectangle)
combination of spatial objects for the above query. Let a, b and ¢ be instances of
the relations buildings, roads and boundaries, respectively. If it is processed by a
sequence of 2-way joins and the evaluation order is determined to be (a, b, ¢) by
a query optimizer, the refinement operation between a and b will be performed
unnecessarily. However, the combined filtering can avoid this situation.

Fig.1. An MBR combination in a 3-way join

The M-way R-tree join can be considered as a generalization of the 2-way
R-tree join of [3I7] and does not create intermediate results. Although a gener-
alization of the 2-way R-tree join called multi-level forward checking (MFC) has
recently been studied [I5]16], it did not properly take into account the optimiza-
tion techniques of the original 2-way R-tree join.

The main contributions of this paper are as follows: First, we generalize the 2-
way R-tree join to consider the order of search space restrictions and plane sweeps
because the join ordering was considered to be important in the M-way join

2 1In this case, only one spatial predicate per relation participates in the join.
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literature (e.g., relational join) [8]. Second, we introduce indirect predicates in
the M-way spatial join and propose a further optimization technique to improve
the performance of the M-way R-tree join. Through experiments, we show that
our optimization techniques significantly improve the performance of the M-way
spatial join (especially the filter step) against MFC. Additionally, we find that
the M-way R-tree join becomes CPU-bound as M increases.

The remainder of this paper is organized as follows: Section Bl provides some
background by briefly explaining the 2-way R-tree join and the state-of-the-art
M-way spatial joins using R-trees. In Section [B] we propose an algorithm of
the M-way R-tree join, which considers the ordering of search space restrictions
and plane sweeps, as a new generalization of the 2-way R-tree join, and further
improve the performance of the M-way R-tree join using the concept of indi-
rect predicates. In Section ], we present some experiments for the performance
analysis of our algorithms using the TIGER data [22]. Finally in Section [ we
conclude this paper and suggest some future studies.

2 Background

2.1 2-Way Spatial Joins Using R-Trees

Assuming that R-trees [4]2] exist for both join inputs, a join algorithm which
synchronously traverses both R-trees using depth-first search was proposed [3].
The basic idea of the algorithm is as follows: First, it reads the root nodes of
the R-trees and checks if the rectangles of entries of both nodes mutually inter-
sect. Next, only for intersected entry pairs, it traverses the child node pairs by
depth-first search and continuously checks the intersection between the rectan-
gles of entries of both child nodes. In this way, if the algorithm reaches the leaf
nodes, it outputs the intersected entry pairs and backtracks to the parent nodes.
Two optimization techniques, called search space restriction and plane sweep,
are used to reduce the CPU time. The search space restriction heuristic picks
out the entries whose rectangles do not intersect with the rectangle enclosing the
other node, before the intersection is actually checked between the rectangles of
entries of both nodes. The plane sweep first sorts the rectangles of entries of
both nodes for one axis, and then goes forward along the sweep line and checks
the intersection for the other axis. The algorithm using the above techniques
is shown below: (We skip the detailed algorithm for SortedIntersectionTest in
Step (6) due to space limitation. Refer to [3] for details.)

RtreeJoin (Rtree_Node R, S)

(1) FOR all E; € R DO

(2) IF E;.rect N S.rect == () THEN R = R-{E;}; /* space restriction
on R */

(3) FOR all F; € S DO

(4) IF Fj.rect N R.rect == () THEN S = S-{F;}; /* space restriction
on S */

(56) Sort(R); Sort(S);
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(6) SortedIntersectionTest (R, S, Seq); /* plane sweep */
(7) FOR i = 1 TO ||Seq| DO

(8) (ERr,Es) = Seqlil;

(9) IF R is a leaf page THEN /* S is also a leaf page */
(10) output (Eg, Es);

1 ELSE

(12) ReadPage (ER.ref); ReadPage(Es.ref);

(13) RtreeJoin (FEgr.ref, Eg.ref);

END RtreelJoin

Additionally, the algorithm applied the page pinning technique for I/O opti-
mization. The algorithm used only a local optimization policy to fetch the child
node pairs. Later, a global optimization algorithm by breadth-first search was
proposed [[]. In this paper, we call both of the join algorithms 2-way R-tree join
or simply R-tree join. When R-trees exist for both join inputs, it has been shown
that the R-tree join is most efficient [10120/12].

2.2 State-of-the-Art M-Way Spatial Joins Using R-Trees

In a recent study, two methods called multi-level forward checking (MFC) and
window reduction (WR) were proposed to process structural queries for image
similarity retrieval [I5]. Later, they were applied to the multi-way spatial join
[16]. MFC and WR, were motivated by a close correspondence between multi-way
spatial joins and constraint satisfaction problems (CSPs). A multi-way spatial
join can be represented in terms of a binary CSP [16]:

— A set of n variables, v1,vs, ... ,v,, each corresponding to a dataset.

— For each variable v;, a domain D; which consists of the data in tree R.

— For each pair of variables (v;,v;), a binary constraint ();; corresponding to
a spatial predicate.

If Qij(E; », Ej,y) = TRUE, then the assignment {v; = E; ;,v; = E;,} is consis-
tent. A solution is an n-tuple 7 = (E1 4, ... , Eig, ..., Ejy, ..., Ep ;) such that
Vi, j,{vi = Eix,v; = E;,} is consistent. In the sequel, we use the terms vari-
able/dataset /relation and constraint/predicate/join condition interchangeably.

1) Multi-level Forward Checking MFC is a kind of ST algorithms which
synchronously traverses n R-trees as follows: It starts from the root nodes of
n R-trees and checks all predicates for each n-combination (called entry-tuple)
from the entries of the nodes. If an entry-tuple satisfies all the predicates, one of
the following occurrs: If the node-tuple (an n-combination of the R-tree nodes) is
in the intermediate level, the algorithm is recursively called for the child node-
tuple pointed by the entry-tuple. Otherwise, i.e., if the node-tuple consists of
leaf nodes, the algorithm outputs the entry-tuple and processes the next entry-
tuple. If an entry-tuple does not satisfy at least one predicate, the entry-tuple is
pruned. MFC was considered as a generalization of the 2-way R-tree join.
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At each R-tree level, MFC applies forward checking (FC), which is known to
be one of the most effective algorithms for solving CSP, to find the entry-tuples
satisfying the predicates. FC maintains an n * n * C' domain table (n: number
of variables, C: the maximum number of entries of an R-tree node) in main
memory. domain[i][j](0 < i,j < n) is a subset of an R-tree node N;. FC works
as follows [I5]: First, domain[0][j] is initialized to an R-tree node N; for all j.
When a variable vy is assigned a value uy, domain[1][j] is computed for each
remaining v;, by including only values w; € domain[0][j] such that Qo; (ur, w;) =
TRUE. In general, if uj, is the current value of v;, domain[i+1][J] is the subset of
domainli][j] which is valid w.r.t. Q;; and uy. In this way, at each instantiation the
domain of each future variable (un-instantiated variable) continuously shrinks.
FC outputs a solution whenever the last variable is given a value. When the
domain of the current variable is exhausted, the algorithm backtracks to the
previous one.

For ordering of variable instantiations, MFC applies the dynamic variable
ordering (DVO), which is also mainly used in CSPs. DVO dynamically reorders
the future variables after each instantiation so that the variable with the min-
imum domain size becomes the next variable. Additionally, MFC adopts the
search space restriction technique to improve performance. A slightly modified
version of the space restriction algorithm used in [15] is shown below:

BOOLEAN SpaceRestriction_1 (Query_graph Q[][], Rtree_Nodes N[])

(1) FOR i=0 TO n-1 DO

(2) ReadPage (N[il);

(3 FOR all E, € N[i] DO

(4) FOR j=0 TO n-1, i#j DO

(5) IF Q[i]1[j] == TRUE AND Ej.rect N N[j].rect == () THEN
(6) N[i] = N[il-{Ex};

(7 BREAK;

(8) IF N[il==() THEN RETURN FALSE;

(9) RETURN TRUE;

END SpaceRestriction_1

We do not adopt MFC for the following reasons: First, MFC does not apply
the plane sweep technique, which is fairly efficient in the rectangle intersection
problem [21]3], but uses FC-DVO which is just a special form of the nested
loop. Second, during the space restriction, MFC does not consider the space
restriction order among n R-tree nodes, i.e., which node should be checked first.
In Section Bl we propose a new generalization of the 2-way R-tree join which
considers both the space restriction ordering and the plane sweep technique.

2) Window Reduction WR maintains an n * n domain window (instead of
a 3D domain table) that encloses all potential values for each variable. When a
variable is instantiated, a domain window for each future variable is shrunk to
the intersection between the newly computed window according to the current



234 Ho-Hyun Park, Guang-Ho Cha, and Chin-Wan Chung

variable instantiation and existing domain window. For the instantiation of the
current variable, a window query is performed using the current domain window.
In WR, the DVO technique was also applied to reorder the future variables, i.e.,
the future variable with the smallest domain window becomes the next variable
to be examined. WR was considered as a special form of the indexed nested loop
join. However it does not generate intermediate results. WR must essentially
search the whole space in order to instantiate the first variable. To avoid the
blind instantiation for the first variable, a hybrid technique called join window
reduction (JWR) was proposed [I5]. JWR applies the R-tree join for the first
pair of variables and then WR for the rest of the variables.

In [16], a slightly different WR algorithm was proposed for the multi-way
intersection join. In that algorithm, the instantiation order of variables is pre-
determined according to an optimization method. As a query window, for acyclic
queries (tree topology), the rectangle of the variable directly connected to the
current variable among instantiated variables becomes the query window. For
complete queries (clique topology), the common intersected rectangle of all in-
stantiated variables becomes the query window. In our implementation and ex-
periment, regardless of query types, among instantiated variables which are con-
nected to the current variable, one whose value has the smallest rectangle was
selected and the rectangle becomes a query window for the next variable instan-
tiation.

3 New Methods for M-Way Spatial Joins Using R-Trees

3.1 A New Generalization of the 2-Way R-Tree Join

In this section, we propose a new M-way join algorithm which extends both
the search space restriction and the plane sweep optimization techniques of the
2-way R-tree join. We emphasize the ordering of both optimization techniques,
assuming only intersect (not disjoint) as a join predicate.

1) Search Space Restriction Algorithm SpaceRestriction_1 [15] does not
consider ordering among M R-tree nodes. If no entry of an R-tree node passes
over the space restriction, we do not have to check other nodes. Especially in
an incomplete join (no join predicate between some variables), the possibility
that no entry of an R-tree node may pass over the space restriction is high. In
such a case, Algorithm SpaceRestriction_1 may result in unnecessary reading of
other nodes. Therefore, the space restriction order of the R-tree nodes becomes
important. For example, Figure[2 shows an MBR, intersection between interme-
diate nodes of the R-trees for a 4-way spatial join “X intersect Y and Y intersect
Z and Z intersect W.” Since no entry of node B simultaneously intersects with
nodes A and C, the intermediate node-tuple (A, B, C, D) cannot pass over the
space restriction and becomes a false hit. If the space restriction is performed
first on node B, we do not have to check other nodes A, C and D and can save
the I/O and CPU time.
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Fig. 2. Intersection between intermediate nodes of R-trees

We will explain the space restriction ordering (SRO) in the context of the
query graph. For SRO, we use the following two metrics per node N;, 0<:<n-1:

(1) normalized common rectangle area (NCRA): the area of the common in-
tersection of N; and its adjacent nodes divided by the area of the rect-
angle of N;. Formally, for all N; where i = j or Q;; = TRUE, 0<j<n-1,
area([| Nj.rect) /area(N;.rect).

(2) mazimum inter-rectangle distance (MIRD): the sum of squares of the maxi-
mum of distances per axis between the nodes adjacent to N;. Formally, for
all N; and N, where @;; = TRUE and Q;, = TRUE, 0<j,k<n-1, j # k,

( max{x_dist(N;, Nk)}> ’ + ( max{y_dist(N;, Nk)}> 2.

Using the above two metrics, we perform SRO on the basis of the following
criteria:

(1) Choose a node with the minimum NCRA.
(2) If the minimum NCRA is zero for more than one node, choose a node such
that MIRD is maximal.

In Figure B the common intersected rectangles for each node are A.rect N
B.rect, A.rect N B.rect N C.rect, B.rect N C.rect N D.rect and C.rect N D.rect.
Since nodes B and C have zero NCRA, these two nodes are selected by Crite-
ria (1). Then, since MIRD (only between A and C in this case) of node B is longer
than MIRD (between B and D) of node C, we perform the space restriction for
node B first by Criteria (2).

In Metric (1), the reason we use the normalized area instead of the (absolute)
common intersected rectangle area (CRA) is to choose a node which has large
dead space (If CRAs are the same, a larger node is more likely to have more dead
space). The dead space of the MBR of an intermediate node may be influenced
by many factors such as the number of entries, the distribution of the rectangles
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of the entries, the density of the rectangles of the entries, and the MBR size of
the node. If the other conditions are fixed, the smaller the number of entries of
an intermediate node the more dead space the MBR of an intermediate node
may have. Skewed distributions, low density and large MBRs may lead to large
dead space. However, we cannot know the above characteristics except the MBR
size unless we visit the node. Therefore, we choose only the MBR size among the
above characteristics. We expect that NCRA behaves better than CRA especially
in the complete query graph because CRAs of all nodes are always the same.

The time complexity of SRO is as follows: It takes O(M) time to compute
NCRA and MIRD per node. Therefore, it takes O(M?) time for all nodes. For
sorting NCRA and MIRD, it takes O(M logs M) time. Therefore, the overall
time complexity is O(M?). Algorithm SpaceRestriction_2 is identical to Algo-
rithm SpaceRestriction_1 but considers ordering of nodes according to the above
criteria.

2) Plane Sweep In MFC, FC-DVO was used in a node-tuple join because it
was known to be efficient in CSPs. However, the plane sweep algorithm was also
known to be fairly efficient in the rectangle intersection problem [21]. Therefore,
we use the plane sweep as the second optimization technique rather than FC-
DVO. In the 2-way join, the plane sweep algorithm is applied only once. In the
M-way join, however, the plane sweep algorithm must be applied multiple times
because there are M variables and at least M-1 predicates. In this case, the
ordering of plane sweeps among R-tree nodes becomes important.

Our plane sweep ordering (PSO) performs as follows: In PSO, we call the
evaluated nodes inner nodes and the un-evaluated nodes outer nodes. In the
following, the cardinality of a node is the number of entries in the node, and the
degree of a node is the number of edges (i.e., the number of predicates) incident
on the node. Before PSO starts, all R-tree nodes are initialized to outer nodes.

(1) Choose the first two connected nodes whose sum of the cardinalities / the
maximal degree between the two nodes is minimal.

(2) Apply plane sweep between the selected two nodes and make the two nodes
inner nodes.

(3) Choose an outer node which is adjacent to one or more inner nodes such
that cardinality / degree is minimal.

(4) Choose an inner node which is adjacent to the selected outer node and whose
cardinality is minimal.

(5) Apply plane sweep between the selected inner node and the selected outer
node.

(6) Check additional predicates, if any, between the selected outer node and
other inner nodes.

(7) Make the selected outer node an inner node.

(8) Stop if all nodes are inner nodes, otherwise go to Step (3).

In Step (1) and Step (3), the reason we divide the cardinality by the degree
is because the more the number of predicates is, the smaller the intermediate
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result size may be. The time complexity of PSO excluding actual plane sweeps
is as follows: It takes O(M?) time to choose the first two nodes. And, for the
ordering of the rest variables, it also takes O(M?) time. Therefore, the overall
time complexity of PSO is O(M?).

The direct application of PSO generates intermediate results M-2 times [19].
Since the number of solutions in a node-tuple join can be up to CM (C: the
maximum number of entries of an R-tree node) for the worst case, we need a
main memory buffer which can store CM tuples per R-tree level. For example, if
the node size is 2048 bytes and the entry size is 20 bytes, C and C™ are about
100 and 100° respectively in a 5-way join. Although a much smaller buffer will
be sufficient in general, this is a tremendous amount of main memory for the
worst case. In order to solve this main memory problem, we can use pipelining.

For both the plane sweep and pipelining, we use M buffers (Seq|] in Algorithm
MuwayRtreeJoin_1) each of which holds intermediate entry-tuples. The buffer size
is determined according to the main memory size. We apply plane sweep between
the first two nodes selected by PSO. The intermediate entry-tuples produced by
the first plane sweep are accumulated in Seq[1]. If Seq[1] is full or all entries in
the first two nodes are evaluated, we recursively call the plane sweep algorithm
taking Seq[l] and the next selected outer node as parameters. In general, the
plane sweep between Seg[m] and an outer node accumulates the intermediate
result to Seq[m+1]. If plane sweep is called for the last outer node, the algorithm
backtracks to the previous one. In PSO with pipelining, the actual ordering is
determined once per node-tuple join. The M-way R-tree join algorithm using
PSO with pipelining is shown below:

MwayRtreeJoin_1 (Query_graph Q[]1[], Rtree Nodes N[])

(1) IF NOT SpaceRestriction_2(Q[1[1, N[]1) THEN RETURN;

(2) PSO (QLI[1, N[I, outer_order[], inner_order[]);

(3) i = outer_order([0]; j = inner_order[0];

(4) Seql0] = N[j];

(6) FOR k=0 TO n-1, k#j DO Sort (N[k]); /* sort all outer nodes */
(6) PipelinedPlaneSweep (Q[1[1, N[I, Seqll, i, j, 0);

END MwayRtreeJoin_1

PipelinedPlaneSweep (Query_graph Q[][], Rtree Nodes N[], Entry Tuple Buf
Seq[], int i, int j, int m)

(1) Sort (Seq[ml);

(2) SortedIntersectionTest_1 (N[il, Seq[m], j, Seq[m+1]); /* plane sweep +
additional predicate checking until Seq[m+1] is full or all entries
in N[i] and Seq[m] are evaluated */

(3) IF m == n-2 THEN /* the last outer node is evaluated */

(4) FOR all 7) € Seq[m+1] DO

(5) IF all N[1] are leaf nodes, 0<1<n-1 THEN
(6) output T%;

(7 ELSE /* all tree heights are equal */

(8) MwayRtreeJoin_1 (Q[J[], 7x.refl[l); /* go downward */
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(9) ELSE
(10) i = outer_order[m+1]; j = inner_order[m+1];
(11) PipelinedPlaneSweep (Q[J[], N[], Seqll, i, j, m+1);

(12) 1IF all entries in N[i] and Seq[m] are evaluated THEN
(13) RETURN;

(14) ELSE
(15) empty Seq[m+1];
(16) goto Step (2);

END PipelinedPlaneSweep

In Algorithm MwayRtreeJoin_1, SortedIntersectionTest_1 is the same as Sorte-
dIntersectionTest in Algorithm RtreeJoin except for the following: First, one in-
put is a sequence of entry-tuples. Second, additional predicate checks are done
between the selected outer node and the non-selected inner nodes. Third, when
Seqlm + 1] is full, SortedIntersectionTest_1 exits and the status of both loop
counters? in the algorithm is saved for the next call. In our implementation of
PSO, we did not use pipelining because all intermediate results fitted in main
memory.

3.2 Comnsideration of Indirect Predicates

The maximum number of possible predicates in the M-way spatial join is M*(M-
1)/2, i.e., all relation pairs have join conditions. We call such a join complete.
If a join is not complete, i.e., the number of predicates is less than M*(M-1)/2,
the join is incomplete.

As it was pointed out in [15], the M-way R-tree join may generate many false
intersections in intermediate levels. As we can see in Figure[2, especially in an
incomplete join, the possibility of a false intersection is high. In this case, if we
can detect the false intersections before visiting the intermediate node-tuple, we
can further reduce I/O and CPU time. For example, if we know in advance that
no entry of node B can simultaneously intersect nodes A and C in Figure[2, we
can avoid reading node B and checking the intersection between all entries of
node B and other nodes (A and C) during space restriction. In this section, we
propose a technique which detects a false intersection in intermediate levels of
R-trees before visiting the node-tuple.

1) Indirect Predicates In a query “X intersect Y and Y intersect Z and
Z intersect W” like the one in Figure [ it seems that there is no relationship
between X and Z (or between Y and W, or between X and W). However, for a
data tuple (i.e., a tuple of entries from leaf nodes) (a, b, ¢,d) which satisfies the
query, z_dist(a,c) < b, (or z_dist(b,d) < ¢, or z_dist(a,d) < b, + ¢;) must be
satisfied on x-axis (b, represents x-length for a data MBR b). The same condi-
tion holds on y-axis. Consequently, for the data tuple {(a,b, ¢, d), z_dist(a,c) <
max{bj; | b; € dom(Y)} (or z_dist(b,d) < max{cks | cx € dom(Z)}, or

3 Two internal loops exist in SortedIntersectionTest [3].
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x_dist(a,d) < max{b;s}+max{ci,}) must be satisfied on x-axis (dom(Y") repre-
sents the domain (i.e., relation) of data MBRs for variable Y'). The same condi-
tion holds on y-axis. We call the user predicates in the query such as “X intersect
Y” and “Y ntersect Z” the direct predicates, and the derived predicates such as
x-dist(X,Z) < max{b;,} and x_dist(Y,W) < max{cks} the indirect predicates.
In R-trees, the x-length and y-length of MBRs of intermediate nodes may be
longer than the max x-length and max y-length of the data MBRs in the do-
main. In Figure B, if z_dist(A, C) > max{b;;} (or z_dist(B, D) > max{cys}, or
x-dist(A, D) > max{b,,} + max{ck,}), we do not have to visit the node-tuple
(A, B,C, D) because the descendent node-tuples will never satisfy the query.
Therefore, if we take advantage of the indirect predicates in intermediate levels
of the M-way R-tree join, we can achieve more pruning effects. We call such
pruning indirect predicate filtering (IPF). The max x-length and y-length can be
obtained from the statistical information in the database schema.

2) Indirect Predicate Paths and Lengths In Figure Bl we call the
paths ABC, BCD and ABCD for indirect predicate pairs AC, BD and AD the
indirect predicate paths (ipp), and the x-path lengths max{b;, }, max{cys}, and
max{b;, } + max{cis} the indirect predicate z_path lengths (x_ippl). The indirect
predicate y_path lengths (y_ippl) are similarly defined. In Figure [2, since there
is only one indirect predicate path for each indirect predicate pair, it is easy to
compute indirect predicate paths and indirect predicate path lengths. However,
there can be several indirect predicate paths for an indirect predicate pair in a
general M-way join, and the x_path and y_path for the predicate pair can be
different. Therefore, we need a systematic method to compute indirect predicate
paths and their lengths.

We first draw a query graph whose nodes represent relations and edges rep-
resent direct predicates. Then, we assign weights to nodes. The weight of a node
is the maximum x-length (z_maz) and y-length (y-maz) in the relation which
the node represents. Since there can be multiple paths between a node pair, we
compute the ipp and ippl by using the shortest path algorithm [6]. In order to get
the shortest path between a node pair, we need edge weights but we have only
node weights now. Therefore, we obtain the edge weights from node weights. The
weight of an edge is obtained by summing weights of nodes on which the edge is
incident. An example guery graph having both node weights and edge weights
for a 5-way join is shown in Figure Bla). We call this query graph mazimum
weighted query graph.

When there is no direct predicate between two nodes S and D in a maximum
weighted query graph, the ipp and ippl between S and D can be obtained as
follows: First, we calculate the shortest path and shortest path length per axis.
Next, we subtract the weights of both S and D from the shortest path length
and then divide the shortest path length by 2. This is because we want to get the
sum of the weights of intermediated nodes in the shortest path, but the weights
of S and D are included in the edge weights of the shortest path length, and
the weights of the intermediated node are included twice. Therefore, the x_ippl
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between S and D can be calculated by Expression (). The y_ippl is similarly
defined.

x-ippl(S, D) = (xz_shortest_path_length(S, D) — x-max(S) — x_max(D))/2
(1)

The ipp’s and ippl’s for all indirect predicate pairs in Figure Bla) are shown in
Figure B(b). In Figure B, the x_ipp and y_ipp are different for indirect predicate
pairs AD and AE.

10,10

20,30 20,30

100,50 10,20

|pairs|| x_ipp |X_ippl|y_ipp|y_ippl|
AD || ABD | 20 |ACD| 50
BC || BDC | 10 |BDC| 10
BE || BDE | 10 |BDE| 10
AE (|ABDE| 30 |ACE| 50

(b)

Fig. 3. Maximum weighted query graph

The indirect predicates can be simultaneously checked with the additional
predicates in SortedIntersectionTest_1 of Algorithm MwayRtreeJoin_1. We call
the algorithm doing the indirect predicate filtering MwayRtreeJoin_2.

3) Maximum Tagged R-Trees Until now, we have used only one max x-
length and y-length per relation. In this case, if there are several extremely large
objects in a relation although other objects are not so large, the effect of indirect
predicates can be considerably degenerated. One possible solution for this is to
have the max x-length and y-length per R-tree node. A leaf node has the max
x-length and y-length for MBRs of all entries in the node, and an intermediate
node has the maximum value for the max x-lengths and max y-lengths of its
child nodes. In the end, the root node has the max x-length and max y-length
for the relation. The max x-length per R-tree node is recursively defined as in
Expression (2)). The max y-length is similarly defined.
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max{Ni.recty ... Ny.recty } for leaf node
max{z_maz(Ni.ref)...z-mazx(Ny.ref)} for intermediate node

z-maz(N) = { (2)

where n is the number of entries in node N.

We call the max x-length and y-length per relation domain max information
and those per R-tree node node maz information. By using the node max in-
formation instead of the domain max information, we can have more prunning
effects in indirect predicate filtering of the M-way R-tree join. Since only two
max values are attached per R-tree node (one for x-length and the other for
y-length), we can ignore the storage overhead due to the max lengths. And since
the max lengths can be dynamically maintained with the R-tree insertion and
deletion, we can always have exact max lengths per R-tree node. We call this
R-tree mazimum tagged R-tree.

We get only once the ipp’s for each axis using the max information in root
nodes of R-trees because calculating the shortest path for every node-tuple needs
a large CPU time overheadd. However, we get the ippl’s for every node-tuple
based on the ipp’s obtained from the root nodes. We call the algorithm using
maximum tagged R-trees MwayRtreeJoin_3.

4 Experiments

To measure the performance of the M-way R-tree joins, we conducted some ex-
periments using real data sets. The experiments were performed on a Sun Ultra
II 170 MHz platform on which Solaris 2.5.1 was running with 384 MB of main
memory. We implemented the three M-way R-tree join algorithms: MwayRtree-
Join_1 (MRJ1), MwayRtreeJoin_2 (MRJ2) and MwayRtreeJoin-3 (MRJ3). For
performance comparisons, we also implemented the multi-level forward checking
(MFC) algorithm with the dynamic variable ordering (DVO) and the join win-
dow reduction (JWR) algorithm which were proposed in [T5[16]. Additionally, we
implemented another MFC algorithm (MFC1) which uses our space restriction
ordering (SRO) as well as FC-DVO to check the pure effect of SRO.

The real data in our experiments were extracted from the TIGER /Line data
of US Bureau of the Census [22]. We used the road segment data of 10 counties
of the California State in the TIGER data. The characteristics (statistical infor-
mation) of the California TIGER data are summarized in Table [l. The original
TIGER data of all counties were center-matched to join different county regions,
i.e., the x and y coordinates of the original TIGER data were subtracted from
those of the center point of each county. The center-matched data were divided
by 10 for easy handling.

We implemented the insertion algorithm in [2] to build R*-trees for each
county data. The node sizes of the R*-trees considered are 512, 2048 and 4096
bytes. The tree heights for all county data for each node size are 4, 3 and 3,
respectively. The LRU buffers are 256 pages in every node sized.

4 The complexity of computing all pair’s shortest paths is known to be O(M?) [6].
5 We assume that an R*-tree node occupies one page.
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Table 1. Characteristics of the California TIGER data
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| county |# of obj| domain area | max length |avg length|density|
Alameda 49070 | 86222*44995 | 4662*3940 102*80 0.23
Contra Costa | 40363 | 88025*33808 | 4676*5112 100*77 0.21
Fresno 58163 [233238*151898| 7190*4633 | 210*167 | 0.09
Kern 113407 |257781*100758| 8204*6497 | 212*169 | 0.26
Monterey 35417 |175744*%112068| 9085*6194 | 234*192 | 0.20
Orange 91970 | 69999*55588 | 3658*6735 80*66 0.21
Riverside 91751 | 323725%65389 {12113*10062| 158*126 | 0.21
Sacramento | 46516 | 75771*71218 | 6442*4103 111*86 0.24
San Diego 103420 | 151241*%96476 | 8054*6828 | 122*104 | 0.22
Santa Barbara| 64037 | 99301*58696 | 4541*6460 | 100*81 0.22

We selected the following 4 query types as input queries: complete, half, ring
and chain. Example query graphs for each query type in a 5-way join are shown
in Figure @l The spatial predicate used for our experiments is intersect.

i A Q)

(a) complete (b) half (c) ring (d) chain

Fig. 4. Example query graphs in a 5-way join

First, we measured the total response time (CPU time + I/O time) for various
data sets and various query types, and a fixed node size of 2048 bytes. The total
response time was measured by “the elapsed CPU time + the number of I/O *
the unit I/O time.” The unit I/O time was set to 10 ms which is a typical value
for a random I/O [7[I5]. For this experiment, we extracted the following three
data sets from the TIGER data shown in Table [[ An M-way join for each data
set was performed for the first M counties of the data set.

Data set 1: Ora. Sac. S.B. S.D. Ala. Kern Riv.
Data set 2: Ora. Ala. Sac. S.D. S.B. Kern  Mon.
Data set 3: C.C. S.B. Mon. Ora. Sac. Ala. Fre.

The total response time is shown in Table B The relative rates of the total
response time compared to Algorithm MuwayRtreeJoin_1 (MRJ1) are shown in
Figure @ (only for the algorithms using the synchronous traversal (ST) tech-
nique). The numbers of solutions for each data set are also shown in Table Bl
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First, we compared the relative performances among the ST algorithms such
as MFCs and MRJs. In most cases, SRO considerably reduces the query response
time (Compare MFC and MFC1 in Table[2 and Figure[l). FC-DVO has a better
performance in complete and half queries while PSO has a better performance
in the chain query. In the ring query, both have a similar performance or FC-
DVO has a slightly better performance. (Compare MFC1 and MRJ1 in Table 2]
and Figure Bl) The reason FC-DVO has a better performance in the complete
and half queries is because FC-DVO prunes the entries of the future variables
faster with many predicates while PSO does not prune the entries of the outer
variables until they are actually evaluated. Since the chain and ring queries
are more general in real life and more time consuming than other queries, we
think that the optimization for these queries is more important. (According to
Table 2] the differences of the query response time between MFC1 and MRJ1 in
the complete and half queries are within 10 seconds, but the differences in the
chain query reach about 1000 seconds.)

Sometimes, in data set 3, MFC1 does not work as well as MFC. This is due
to the locality of LRU buffers and the CPU overhead of SRO. We observed that,
in these cases, while MFC1 accessed fewer nodes, MFC performed a smaller or
similar number of I/O’s. However, in most cases, MFC1 performed a smaller
number of I/0’s.

Next, we measured the performance of indirect predicate filtering (IPF). In
this measurement, we excluded the complete query type because no indirect
predicates are in the complete query. In the half query, there is nearly no effect
of indirect predicates (Compare MRJ1 and MRJ2 in Table[2 and Figure Hl). We
do not present the effect of the maximum tagged R-tree (MRJ3) in the half query
because it is similar to that of MRJ2 in most cases. IPF has considerable impact
on ring and chain queries. As the number of direct predicates decreases, the effect
of indirect predicates increases. In summary, the three optimization techniques
(SRO, PSO and IPF) improve efficiency. The maximum improvements compared
to MFC are about 40%, 80%, 140% and 300%, respectively, for the complete,
half, ring and chain queries.

A little later than the early version of this paper [19], other optimization
techniques called static variable ordering (SVO) and plane sweep and forward
checking (PSFC) were developed [13]. SVO orders the variables (or nodes) once
according to the degrees before the algorithm starts. This static ordering is used
both for the search space restriction and the forward checking. PSFC works as
follows: The first variable is instantiated by a plane sweep, and a variant of the
forward checking, called sorted forward checking, is used for the instantiations of
remaining variables according to SVO. We believe that SRO is superior to SVO
because it uses more sophisticated criteria. Actually, the experimental results in
Table and Figure Blsupport our opinion. In complete and ring query graphs, the
space restriction using SVO is the same as Algorithm SpaceRestriction_1 used
in MFC because the degrees of all nodes are the same. Since the experimental
results show that MFC1 outperforms MFC in most cases, SRO will be superior
to SVO. On the other hand, when there are many direct predicates, PSFC will
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Table 2. Total response time for various data sets (node size: 2048, unit: sec)

Data set 1 Data set 2 Data set 3
o M 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
@ | MFC 17 19| 10| 13| 13 8 o 11| 1a| 11| 1a| 21| 10| 11| 15
g [ MFC1 14 14 8 11 11 6 7 8| 11 9| 18] 22 9| 10| 14
8 | MRJT 15| 17 8| 11| 12 6 8 9| 12 o 18] 23 9| 10| 14
JWR 36| 57| 24| 25| 24| 16| 22| 24| 25| 17| 41| 72| 39| 41| 43
M 4 5 6 7 4 5 6 7 4 5 6 7
MFC 22 36 22 28 11 21 24 21 34 14 26 41
= [ MFCT 19 20 18 21 10 14 19 16 36 13 18 30
T [ MRJ1 21 20 20 22 11 13 19 17 46 14 17 33
MRJ2 21 20 20 23 11 13 20 17 47 15 17 33
JWR 78 33 56 | 285 74 29 29 72 223 194 58 223
M 4 5 6 7 4 5 6 7 4 5 6 7
MFC 25 26 106 710 12 26 83 295 34 45 122 | 649
o | MFC1 20 21 81 461 10 21 65| 213 36 34 99 500
£ [ MR 22 21 77| 470 11 22 68 196 37 36 119 623
MRJ2 22 20 69 | 364 11 22 63 176 38 35 111 397
MRJ3 21 19 63| 301 11 22 60 152 40 34 101 333
JWR 198 159 | 1048 | 228 41 97| 172 217 172 171 209 183
M 3 4 5 6 7] 3] 4 5 6 7 3 4 5 6 7
MFC 26| 81| 335| 1469|3805 | 11| 32| 166 | 939 | 2105 | 21 | 251 | 191 | 1738 | 7851
c | MFC1 24 | 69| 244 | 969 | 2363 | 9| 26| 114 | 632 | 1428 | 19 | 223 | 162 | 1256 | 5396
S [ MRJ1 23| 62| 181 | 8182026 | 8| 22| 92| 5381198 | 18| 184 | 123 | 896 | 4324
O ['VRJ2 23| 57| 147 | 580 1341 8| 20 76 | 396 | 859 | 18| 196 | 127 | 779 | 3218
MRJ3 23| 55| 131 | 454 | 954 | 8| 20| 67| 342 | 719 | 18 201 | 126 | 666 2815
JWR 40 [ 212 | 4551091 | 1557 | 17 | 44| 106 | 186 | 426 | 58| 277 | 2681 | 841 [ 1276
Type Data set 1 Data set 2 Data set 3
140 140 140
120 /\ 120 ‘\V/‘\\/‘ 120 ——MFC
® / ~— 8 e ||
A | O e b
80 . 50 L 80 P
4 7 3 4 5 6 7
Complete 3 4 5 6 7 3 5 6
200 200 200
/\ ——MFC
150 150 A 150 A~
s 1/ N P |
100 —f—=——%— 100 —F—F——%=——y— 100 | | MR
— — MRJ2
50 : : : 50 50 : : :
4 7
Half 5 6 4 5 6 7 4 5 6 7
160 160 160
140 // 140 // 140 ——MFC
120 |—o— 120 120 2. —m—MFC1
< 100 e I N T e IO N
» ﬁﬁ—ﬁ s P | |+ MAJ
3 X
80 3 © ~— 80 | [P MR
60 60 60 X | —%—MRJ3
40 ‘ ‘ ‘ 40 40 ‘ ‘ ‘
Rlng 4 5 6 7 4 5 6 7 4 5 6 7
200 200 200
oo S A /'\’ ——MFC
5 . 150 o=+ 150 = = ||
50 S 50 50 T MRJ2
—%— MRJ3
0 ‘ R 0 L 0 ‘ R
Chaln 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

Fig. 5. Rates of total response time for various data sets (node size: 2048)
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Table 3. Number of solutions for various data sets

M 3 4 5 B 7
Complete 16,156 3,803 435 192 31

Half 18,897 25,578 881 128

B Ring 11,590 7,098 12,298 4,220
Chain 131,750 | 329,855 | 440,045 | 475,497 81,419

Complete 4,733 1,719 435 192 77

Half 15,327 2,371 825 318

B Fing 5,209 5,916 8,724 19,574
Chain 23,155 61,446 56,295 | 254,505 | 177,627

Complete 23,188 21,880 2,506 725 152

Half 232.068 6.152 4.558 2.074

N Fing 161,611 72,346 51,600 42,038
Chain 102,327 | 2.753,856 | 530,673 | 1,271,835 | 3.441,939

naturally outperform PSO because our experiments show that MFC outperforms
PSO for numerous direct predicates.

Next, we compared the query response time between ST algorithms and
JWR. As the variable instantiation order of JWR, we used the same as in PSO.
According to the result shown in Table [, ST algorithms have better perfor-
mances in all Ms of complete and half queries and in most Ms of other queries.
When M is high (6 or 7), JWR has a better performance than MFC for some
data sets in ring and chain queries, which is similar to the result in [16]. There
are some cases that JWR has a better performance than MFC for some data
sets, but has a worse performance than MRJs. For example, see Table [2 for
M=6,7 and data set 1, M=5 and data set 2, and M=6 and data set 3 in the
chain query. Therefore, unlike the experimental results in [I5/16], we can use our
M-way R-tree join algorithms for a higher range of M.

Sometimes, the costs of JWR are abruptly increased (for example, M=7 in
the half query of data set 1, M=6 in the ring query of data set 1, and M=5
in the chain query of data set 3). We think this is due to the evaluation order
of variables. While real data sets are highly skewed, PSO does not consider the
data distribution. However, the variable ordering worked properly in most other
cases.

Next, we conducted an experiment for various node sizes. Table [ shows the
total response time of all algorithms for various node sizes and a fixed data set
2. Figure[fl illustrates the performance rates of the total response time compared
to MRJ1. According to Figure [l SRO has large effects in most cases. And the
smaller the node size is, the better the performance of FC-DVO is. In other
words, the larger the node size, the better the performance of PSO. (See the
performance rate of MFC1 compared to MRJ1.) In particular, PSO has a better
performance than FC-DVO for node size 4096 of the ring query although both
have a similar performance for node size 2048. As the node size increases, the
effect of IPF slightly decreases in ring and chain query types. When the node
size is 4096, there is nearly no difference between the effect of indirect predicates
using domain max information (MRJ2) and that using node max information
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Table 4. Total response time for various node sizes (data set 2, unit: sec)

512 2048 4096
. M 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
5 | MFC 29| 32| 34| 47| 3 8 o 11| 14| 11 5 6 7 10 9
g [ MFCT 20| 23| 24| 36| 26 6 7 8| 11 9 4 5 6 9 8
S [ MR 20| 24| 28| 40| 28 6 8 9| 12 9 4 5 6 9 8
JWR 39| 49| 47| 50| 34| 16| 22| oa| o5| 17| 14| 20| 22| 23] 16
M 4 5 6 7 4 5 6 7 4 5 6 7
MFC 38 77 77 65 11 21 24 21 8 17 20 21
= [ MFC1 32 50 63 54 10 14 19 16 7 11 15 15
I [ MRJI 34 54 65 56 11 13 19 17 8 11 14 14
MRJ2 33 51 68 59 11 13 20 17 7 11 15 15
JWR 148 57 80| 121 74 29 29 72 69 26 29 71
M 4 5 6 7 4 5 6 7 4 5 6 7
MFC 42 87 | 281 791 12 26 83 | 295 9 21 78 | 323
o | MFC1 32 66 | 236 | 622 10 21 65 | 213 8 17 62 | 222
£ [VRJT 34 73| 243 | 629 11 22 68 | 196 7 14 51 189
MRJ2 34 70 | 222 | 537 11 22 63| 176 7 14 47| 155
MRJ3 34 63 | 186 | 423 11 22 60 | 152 7 14 47 [ 149
JWR 81 172 | 273 [ 8n 41 o7 | 172 | 217 43| 108 | 200 | 246
M 3] a 5 6 7| 3] a 5 6 7| 3] a 5 6 7
MFC 41| 93| 4723521 | 6692 | 11| 32| 166 | 939 | 2105 | 8| 27| 147 | 774 | 1816
c [MFCi 30| 66| 322 | 2383|4702 | 9| 26| 114 | 632 | 1428 | 7| 23| 107 | 528 | 1177
s ['MRJ1 30 | 69| 3032309 | 4647 | 8| 22| 92| 5381198 | 5] 14| 62| 362 | 876
O ['MRJ2 29| 65| 252 | 1687 | 3467 | 8| 20| 76| 396 | 859 | 5| 18| 48| 259 | 600
MRJ3 28| 59| 180 | 1027 | 2064 | 8| 20| 67| 342 | 719| 5| 18| 48| 263 | 592
JWR 40| 85| 168 | 292 | 604 17| 44| 106 | 186 | 426 15| 45| 113 [ 210 446
Type 512 2048 4096
160 160 160
140 AN 140 140
\ AL ——MFC
® 120 ~— o —— 120 e+ |-=MFC1
-
100 =\.\././. 100 By 100 A B A MRJT
80 el 80 L 80 o
3 4 5 6 7 3 4 5 7 3 4 5 6 7
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160 160 160 /.\
140 A 140 \\‘ 140 / ® | |——MFC
—=— MFC1
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° 4 M J / —4—MRJ1
100 b 100 | | 100 | == | | \r)2
| S = ~— V
80 ‘ ‘ ‘ 50 ‘ ‘ ‘ 80 ‘ ‘ ‘
4 7
Half 5 6 4 5 6 7 4 5 6 7
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150 150 o 150 /,/ —=— MFC1
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Fig. 6. Rates of total response time for various node sizes (data set 2)
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(MRJ3). This is because the large node size leads to many entries per node and
increases the node max information. However, still for a large node size (4096),
the effect of IPF is large for the ring and chain queries.

The comparison between ST algorithms and JWR shows that ST algorithms
perform better for large node sizes. This is due to the index probing overhead in
JWR. Since there is no global ordering in multi-dimensional non-point objects,
we should check all entries of a node during an R*-tree search. In addition, while
ST algorithms have the best performance for all query types in node size 4096
compared to other node sizes, JWR has the best performance for the ring and
chain queries in node size 2048.

Finally, we measured the I/O time (see Table[5 and Table ). MRJs consume
more I/O time than MFCs and JWR, in high Ms. From Table ] and Table [6]
however, we found an important fact: the higher the value of M, the lower the
rate of I/O time compared to the total response time. For ring and chain queries,
the rate of I/O time considerably decreases as M increases. Therefore, the 1/0
time becomes less important and the M-way R-tree join becomes CPU-bound.
The I/O rate also decreases along the node size. (According to Table @, when
the node size is 4096 and M is 7, the I/O rates in the ring and chain query types
are less than or equal to 5%.)

Table 5. /0 time for data set 2 (node size: 2048)

# of 1/0 1/0 rate (%)

° M 3 4 5 6 7 3 4 5 6 7
© | MFC 553 629 712 787 | 563 | 72| 69| 64 | 57 | 52
g MFC1 439 | 469 495 612 448 | 70| 66| 61 | 55| 51
8 MRJ1 435 542 537 689 | 476 | 71| 70| 63 | 57 | 52
JWR 575 631 609 657 | 541 | 35| 29| 25| 26 | 31

M 4 5 6 7 4 5] 6 7

MFC 692 799 835 617 61 39 35 30

= MFC1 564 601 765 561 57 43 41 35
I [ MRJ1 604 595 845 694 56 45 44 40
MRJ2 602 595 841 649 57 45 43 38
JWR 1429 602 739 1039 19 21 25 14

M 4 B 6 7 4 3 6 7

MFC 720 858 1076 955 58 33 13 3

= MFC1 567 774 1127 1193 55 37 17 6
é MRJ1 720 1036 1776 1308 64 46 26 7
MRJ2 716 1040 1714 1149 64 47 27 7
MRJ3 716 1029 1671 1090 64 48 28 7
JWR 652 714 777 763 16 7 5 4

M 8 4 5 6 7 3 4 5 6 7

MFC 632 775 956 | 1347 | 1467 | 57 | 24 6 1 1

= | MFC1 520 685 986 | 2014 | 2662 | 56 | 27 9 3 2
E MRJ1 514 845 | 1316 | 3351 | 6367 | 62 | 39 | 14 6 5
O ['MRJ2 514 829 | 1224 | 2800 | 4501 | 63 | 41 | 16 7 5
MRJ3 514 821 | 1212 | 2510 | 4176 | 62 | 41 | 18 7 6
JWR 584 654 704 764 794 | 34| 15 7 4 2

In overall summary, we recommend the following based on the experimental
results: First, always use SRO. Second, if there are many direct predicates as in
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Table 6. I/0 time for various node sizes (data set 2)

# of /0 (512) 1/0 rate (%) # of 1/0 (4096) 1/O rate (%)

® M 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7
o | MFC 2563 | 2679 | 2655 | 3396 | 1796 | 87| 82| 78| 72| 59 298 331 365 420 383 | 59| 56| 50| 41| 40
g MFC1 1658 | 1782 | 1783 | 2872 | 1402 | 84 | 79| 73| 65| 53 240 266 295 356 290 | 55| 53| 49| 41| 37
8 MRJ1 1658 | 1902 | 2091 | 2687 | 1536 | 84| 80| 75| 67| 55 240 268 298 352 292 | 60| 58 | 51| 41| 37
JWR 2382 | 2591 | 2287 | 2449| 1629 | 61| 53| 48| 49| 48 315 350 340 372 329 | 22| 17| 15| 16| 20

M 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

MFC 2931 3414 4216 2661 76 45 55 Ll 339 415 446 388 44 25 23 19

= MFC1 2309 2285 3429 2287 72 46 55 42 301 341 400 376 42 30 27 25
I | MRJ1 2474 2427 3710 2564 73 45 57 46 315 349 420 391 38 33 31 27
MRJ2 2451 2427 3953 2701 74 48 58 46 315 349 515 384 44 33 35 26
JWR 5702 2342 2887 4109 39 Ll 48 34 689 333 413 527 10 13 14 7

M 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

MFC 3106 4767 7918 8860 74 55 28 11 371 439 549 551 43 21 7 2

= MFC1 2326 3528 7318 7644 72 53 31 12 321 410 583 663 Ll 24 9 3
é MRJ1 2496 4332 8256 8258 74 59 34 13 326 411 678 750 49 28 13 4
MRJ2 2498 4032 7954 8039 74 57 36 15 325 402 752 704 50 29 16 5
MRJ3 2489 3773 7283 7229 73 60 39 17 325 402 753 701 49 30 16 5
JWR 2673 2943 3214 3095 33 17 12 8 352 392 421 422 8 4 2 2

M 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

MFC 3031 | 4740 | 7858 | 18627 | 29918 | 73| 51| 17 5 4 345 404 519 874 | 1106 | 42| 15 4 1 1

c | MFC1 2239 | 3249 | 6149 | 16064 | 23149 | 74| 49| 19 7 5 286 328 434 979 | 1338 | 40| 15 4 2 1
g MRJ1 2269 | 3732 | 5855 | 20176 | 34121 | 75| 54| 19 9 7 286 327 519 | 1041 | 1298 | 54 | 24 8 3 1
O [ MRJ2 2255 | 3539 | 5659 | 17228 | 28152 | 77| 55| 22| 10 8 286 327 504 | 1100 | 1172 | 53| 26| 10 4 2
MRJ3 2250 | 3388 | 5384 | 14865 | 21579 | 79| 58| 30| 14| 10 286 327 499 | 1097 | 1160 | 53| 25| 10 4 2
JWR 2378 | 2690 | 2900 | 3184 | 3334 | 59| 32| 17| 11 6 313 351 382 418 433 | 21 8 3 2 1

the complete and half queries, use FC-DVO and no IPF. Third, if the number
of direct predicates is small as in the ring and chain queries, use PSO and IPF.
Fourth, if the node size is small and M is high, use JWR; otherwise, use ST
algorithms.

5 Conclusions

In this paper, we study the generalization of the 2-way R-tree join. We proposed
the following three optimization techniques: space restriction ordering (SRO),
plane sweep ordering (PSO) and indirect predicate filtering (IPF). Through ex-
periments using real data, we showed that our three optimization techniques
have a great impact on improving the performance of synchronous traversal
(ST) algorithms.

After completing the M-way R-tree join, an oid pair may appear several times
in the resulting oid-tuples. If the oid-tuples are read in the combined refinement
step without scheduling, it may access the same page several times and perform
the same refinement operation several times. However, this can be solved by
extending scheduling methods for oid pairs such as [23] to oid-tuples. In future
studies, first, we will develop an efficient combined refinement algorithm for the
M-way spatial join. Second, although we found that the I/O rate of the total
response time decreases as M increases, the I/O rate is still high for a small M.
Therefore, we will develop I/O optimization techniques for the M-way R-tree
join. Last, we will combine the optimization techniques proposed in this paper
with our rule-based optimization technique for spatial and non-spatial mixed
queries called ESFAR (Early Separated Filter And Refinement) [I7/18].
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