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ABSTRACT 
In this paper, we propose an effective defect classification system 
for FDP (flat display panel) film images which are acquired in real 
production lines. A film image is segmented into a binary image 
with two non-overlapping regions: defect and non-defect regions. 
From the defect regions, various features are extracted such as 
brightness distribution, linearity, and morphologic characteristics. 
The film defects are classified through the analysis of those 
features extracted. Empirical study shows our system classifies 
five types of film defects effectively.  

Keywords 
Defect classification, Flat display panel, Image analysis, Shape 
descriptor. 

1. INTRODUCTION 
A flat display panel is used in various display devices such as 
LCD (liquid crystal display), PDP (plasma display panel), and 
LED (light emitting diode), and is becoming popular since it is 
widely used in a variety of electronic devices, like digital watches, 
measuring instruments, and mobile devices. There has been 
excessive competition in the FDP industry, and companies are 
making great efforts to increase their market share.  

It is important to produce high-quality products and enhance 
productivity in the panel display production in order to strengthen 
the competitiveness of their commodities on related markets.  

Various defects are generated during the process of attaching 

films to the panel at the production line. The accurate and timely 
detection of these defects is crucial process. In order to detect 
those defects, it is essential to use an automated defect inspection 
system since the panel moves fast along the production line and 
some defects are too small to be recognized by the human eye. 
The defect inspection is divided into two sub-processes: defect 
detection and defect classification. Most studies have focused on 
the former while only few researches have been made for the latter. 
As the quality and productivity issues are critical, the accurate 
classification is becoming important since engineers can handle 
defects properly depending on the types.   

Although the defect inspection is becoming important, a few 
literatures have been published since most companies consider the 
inspection as confidential. As a recent work, Lu and Tsai [5] 
extracted defect regions using the singular value decomposition. 
They determined defect regions by eliminating the orthogonal 
components and re-building the image. However it causes 
considerable overheads in decomposing and reconstructing a 
defect image. There are researches that use well-known approach, 
an adaptive threshold technique. Kim et al. [3] used the statistical 
characteristics of local blocks and pattern elimination techniques 
based on the pixel difference and adaptive multilevel threshold 
technique. Oh et al. [7] used a directional filter bank (DFB) and 
an adaptive multilevel threshold technique to find line-type 
defects in TFT-LCD panels. These methods are fast but they have 
a weakness in that it identifies only specific types (spot and line 
types) of defects, preventing it from being applied for diverse 
applications.  

There are considerable researches [1, 2, 4] that focused on 
classifying a non-uniformity defect, known as mura. They 
quantized and detected mura using a polynomial approximation 
[1], an analysis of the variance [2], and modified regression 
diagnostics and thresholds [4], respectively. However, these 
methods focused on detection without considering classification. 
In order to classify multiple defect types, Yoon et al. [8] proposed 
a classification method that exploited region-growing based 
segmentation using a gray level co-occurrence matrix. They 
classified micro defects that needed to be magnified before 
processing. But, it degrades the runtime efficiency considerably. 

In this paper, we present an effective defect classification system 
for FDP film images which are acquired in LCD and PDP 
production lines. Using statistical techniques and adaptive 

 
 
 
 
1

 

This work was supported by Defense Acquisition Program 
Administration and Agency for Defense Development under the 
contract UD030000AD. Corresponding author: Seok-Lyong Lee 
(sllee@hufs.ac.kr) 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and 
that copies bear this notice and the full citation on the first page. To 
copy otherwise, or republish, to post on servers or to redistribute to 
lists, requires prior specific permission and/or a fee. 

�2�6�4



 

 

methods, a film image is segmented into a binary image which has 
two non-overlapping regions: defect and non-defect regions. From 
the defect regions, various features are extracted such as 
brightness distribution, linearity, and morphologic characteristics. 
Our system is designed to classify five types of defects, i.e., 
hollows, craters, scratches, black spots, and water bubbles, 
through the analysis of those features extracted.   

2. PROPOSED WORK 
2.1 Binary Image Generation 
From a defect image, a binary image is generated to detect and 
quantize defects. It is important to determine a threshold that 
distinguishes defects from the background of the image. We use a 
statistical method to get the threshold using a mean (μb) and 
standard deviation (σb) of the background. Exploiting a control 
chart, each pixel is evaluated whether it is included in a defect 
region or not. Thus, we get an adaptive threshold, μb ± kσb, since 
μb and σb
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 vary according to the brightness of background, as 
follows:  

    (1)  

In Equation (1), I(x, y) and I’(x, y) are the intensities of pixels at 
(x, y) of the original and binary image, respectively. k is a 
parameter to compute a threshold for the defect region and is 
determined empirically. Figure 1 shows original film images and 
corresponding binary images using a statistical method.  

 

      
 

     

(a)                (b)            (c)             (d)              (e) 
Figure 1. Original FT-LCD film images and corresponding 

binary images using an adaptive threshold method, μb ± kσb

2.2 Feature Extraction 

: 
(a) hollow, (b) crater, (c) scratch, (d) black spot, (e) water 

bubble 

2.2.1  Linear fitting 
The linear fitting (LF) is used to evaluate the linear characteristics 
of a defect. It is useful to classify line-type defects such as 
scratches. First, an equation of the first degree of a line is derived 
such that the line might fit in with the distribution of pixels in a 
defect region. Let (xi, yi) be rectangular coordinates of pixel pi
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(1≤i≤u). Then the equation of a line is as follows: 

 

DxCy +=                               (2) 

The distance between pixel pi
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 and the line derived from Equation 
(2) is calculated. The distribution of these distances represents the 
linear property of a defect and LF is computed as follows: 

                         (3) 

where d(i, j) is the distance between pi and pj 

),(minarg lidi
Ll∈

=′
(1 ≤ i,j ≤ u), 

, where L is a set of pixels on the line derived 

from equation (2), and V is the variance with respect to d(i, l). A 
defect tends to be line-types as LF decreases. 

2.2.2 Multi-level intensity ratio 
When a film defect does not have any specific shape, it is difficult 
to apply the linear fitting. For these non-uniformity defects, we 
propose the multi-level intensity ratio (MIR) that represents the 
distribution for a specific range of intensity values.  We construct 
an intensity ratio histogram (IR), each bin of which contains a 
ratio of a specific intensity range with respect to the whole 
intensity, as follows:  

},)(:{#)( DRptpIptIRA ∈==                 (4) 

Where A is a defect image, t is a specific intensity value (0 ≤ t ≤ 
255), I(p) is an intensity of pixel p,  and DR is a set of pixels in a 
defect region of A. Figure 2 shows a defect image and its intensity 
ratio histogram. 
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           (a)                                               (b) 

Figure 2. A defect images (a) and its intensity ratio 
histogram (b) 

To simplify and speed up the process, we quantize the intensity 
depending on application requirements. We introduce a parameter 
m that represents the level of quantization. For example, the 
histogram has 256 bins, a bin for each intensity value when m = 1, 
and it has 4 bins (0-63, 64-127, 128-191, and 192-255) when m = 
7. Using the multi-level intensity ratio histogram, the similarity, 
simMIR(A, B), between two defect images, A and B, is defined as 
follows:  
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By considering the multi-level intensity, we can identify film 
defects at diverse levels of granularity, from detail to overall 
intensity distribution. In this paper, we consider 7 levels of 
quantization (m=1 through 7) at the same time.  

2.2.3 Shape context 
For the shape identification of defects, we use the shape context 
[6], in which a shape is represented by a set of points, Ｐ= {p1, …, 
pn}, pi∈Ｒ

2 of n points, that are sampled from the contours on 
the shape. For a point pi on the shape, a histogram hi of the 
relative coordinates of the remaining n-1 points is defined as the 
shape context of pi

))}((:{#)( kbinpqpqkh iii ∈−≠=

 and is expressed as follows:  

               (6) 

In the above equation, bin(k) is the kth bin of hi. Consider the 
insect image in Figure 3(a). A log-polar coordinate system with 
5x12 bins is shown in Figure 3(b), where random sample points 
were chosen from edge points and median distance λ for all N2 
point pairs is shown for reference. Figure 3(c) gives an example of 
the log r, θ histogram where the dark bins denote larger values.  

            
(a)                                         (b)  

 
 (c)  

Figure 3. Log-polar histogram: (a) An insect image (b) 
Diagram of log-polar histogram with 5x6 bins (c) log r, θ 

histogram 
The matching cost, Cs, of two defects is computed from the shape 
context and is given by the χ2 distance between the two 
corresponding histograms. Let the two histograms be denoted by 
hi(k) and hj(k) respectively. Then, Cs
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 can be computed as follows:  

                      (7) 

2.3 Defect Classification 
To determine the type of a defect, a binary image for each defect 
is produced as described in Section 3.1. Line-typed defects such 
as scratches are first discriminated using the linear fitting method. 
A defect is regarded as line-typed if LF≤THLF, where THLF is a 
threshold that is determined empirically. In determining other 
types of defects, a template database is used, where feature values 
of referential defects are stored. We have chosen a set of 
representative defects for each type according to domain experts’ 
recommendation. For classifying the non-uniformity defects such 
as black spots and water bubbles, the multi-level intensity ratio is 
used. A defect is considered as the same as that of the best 
matched referential defect in the database. If the similarity 
between a defect and a referential defect is larger than a threshold 
(THMIR), then the defect is assumed to be another type. Finally, 
for defects with comparatively clear shapes like hollows and 
craters, the shape context is used. When a defect is to be evaluated, 
the shape feature of the defect is extracted, and the matching cost 
between the defect and referential defects in a template database is 
computed. The defect type is determined by matching a defect to a 
referential image whose matching cost with respect to the defect is 
the smallest among all template images in the database. If the 
given defect is not matched to any referential defect in the 
database (i.e. the minimum cost is larger than a specified 
threshold THSH

3. EXPERIMENTS AND CONCLUDING 
REMARKS 

), it is regarded as an unknown type.  

 To evaluate the effectiveness of our proposed method, we have 
implemented a defect inspection system using MS Visual C++ 
under a Xeon 2.5GHz Dual CPU Server.  

 
Figure 4. Precision and recall with respect to THMIR for non-
uniformity defects. The most effective result is observed when 

THMIR

An experimental data set consists of 70 defect images including 
19 scratches, 7 black spots, 5 water bubbles, 15 hollows, 18 
craters, and 6 unknown defects. We need to determine thresholds 
for the defect classification using separate data sets. The threshold 

 = 0.21. 
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values THLF, THMIR, and THSH are empirically chosen to be 0.03, 
0.21, and 0.27, respectively. Due to the space limitation, we do 
not include all processes that determine those thresholds. Instead, 
we give an example for THMIR. Figure 4 shows the precision and 
recall with respect to non-uniformity defects using MIR. We can 
observe that THMIR

Table 1. Experimental results with respect to the classification 
of defect types 

 = 0.21 produces the most effective result 
(precision=0.9, recall=0.9). Table 1 shows the final experimental 
results on classifying defect types. As we can see from the table, 
most of defects are correctly classified. The recall is in the range 
0.67-1.0 and on the average 0.90 while the precision is in the 
range 0.71-1.0 and on the average 0.90. These results come up to 
our expectations and we believe our method is applicable in 
related industries.  

 
In this paper we proposed an effective defect classification system 
that is used in the last stage of flat display panel manufacturing. 
We used three features in determining defect types: linear fitting, 
multi-level intensity ratio, and shape context. Using those features 
we were able to classify five frequently-occurred defects 
effectively. An application that is emphasized in this paper is the 
classification of film defects, but we believe other potential 
inspection areas, such as flaw detection over glass surfaces, 
vessels, and various types of films, can also benefit from the 
research. 
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Defect type 

Total 
Scra-

tch 
Black 

spot 
Water 

bubble 

Hol- 

low 
Crater 

Un- 

known 

Ground 
Truth 19 7 5 15 18 6 70 

Res-
sult 

Correct 19 6 5 10 18 5 63 

In- 

correct 
0 1 0 0 4 2 7 

Precision 1 0.86 1 1 0.82 0.71 0.90 

Recall 1 0.86 1 0.67 1 0.83 0.90 
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