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ABSTRACT 
A query optimizer requires selectivity est imation of a query 
to choose the most efficient access plan. An effective method 
of selectivity estimation for the future locations of moving 
objects  has not yet been proposed. Existing methods for 
spatial  selectivity estimation do not accurately est imate the 
selectivity of a query to moving objects, because they do 
not consider the future locations of moving objects, which 
change continuously as t ime passes. 

In this paper,  we propose an effective method for spatio- 
temporal  selectivity estimation to solve this problem. We 
present analytical formulas which accurately calculate the 
selectivity of a spatio-temporal  query as a function of spatio- 
temporal  information. Extensive experimental  results show 
tha t  our proposed method accurately est imates the selectiv- 
i ty over various queries to spat io- temporal  da t a  combining 
real-life spatial  da ta  and synthetic temporal  data.  When 
Tiger/ l ines is used as real-life spatial  data,  the application 
of an existing method for spatial  selectivity estimation to 
the estimation of the selectivity of a query to moving ob- 
jects has the average error ratio from 14% to 85%, whereas 
our method for spatio-temporal  selectivity est imation has 
the average error ratio from 9% to 23%. 

1. INTRODUCTION 
The development of technologies such as wireless com- 

munication systems and global positioning systems (GPS) 
shows tha t  there can be many applications for spat io- temporal  
databases.  In recent years, spat io- temporal  databases have 
been s tudied intensively. Most research has progressed in 
modeling [3, 9] and in indexing [2, 5, 7, 8, 11]. In gen- 
eral, access methods to moving objects are considered for 
two kinds of selection queries: one for historical positions of 
moving objects and the other for future positions of moving 
objects. This paper is related to the latter,  which is referred 
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to as a future query [9]. 
An example of a future query is as follows: "retrieve all 

airplanes which will be inside a query rectangle 10 minutes  
from now." Airplanes can be represented as moving objects  
tha t  move as t ime passes. Sistla et al. [9] proposed a da t a  
model tha t  can manage the future positions of an object  
with the last update  information: the spat ial  position, the  
velocity, and the last update  time. The model  reduces the  
number of updates,  because the object  is represented by 
a t ime function whose value continuously changes as t ime 
passes. Recently, various studies [2, 5, 8, 12] are based on 
this model. Our work is also based on this model. 

In order to process the selection query efficiently, an accu- 
rate  est imation of the selectivity is required. The selectivity 
is defined as the ratio of the number of da t a  in the query 
result to the total  number of da t a  in the database.  The 
query optimizer chooses an efficient execution plan among 
all the possible plans by est imating the cost of each plan. 
The accuracy of the selectivity est imation significantly af- 
fects the selection of an efficient plan. Exist ing methods  for 
spatial  selectivity estimation do not accurately es t imate  the  
selectivity of the query for the future posit ions of moving 
objects, because they handle the spatial  posit ions of objects  
only with the current time, as shown in Figure 1. 

Figure l (a )  shows that  moving objects  will move from 
positions of the current t ime to positions of the  future time. 
Figure l (b)  shows the positions of moving objects  and the 
query rectangle of the current time. The moving objects  0 3  
and 0 4  exist in the query rectangle. Figure l (c)  shows the 
positions of moving objects and the query rectangle of the 
future time. The moving objects O1, 02 ,  and  0 4  exist in 
the query rectangle. Although the query rectangles are the 
same, the query results are different depending on the given 
time. Tradit ional  methods of spatial  selectivity est imation 
accurately est imate the selectivity of the query in the case 
of Figure l (b) ;  however, in the case of Figure l(c) ,  they 
cannot, because they do not consider the  future posit ions of 
the objects. 

In this paper,  with the motivation from the above prob- 
lem, we propose a spat io-temporal  his togram method  for 
selectivity est imation that  can accurately es t imate  the selec- 
t ivi ty of a future query to moving objects. We present an- 
alyticai  formulas which calculate the selectivity of a spatio- 
temporal  query as a function of spat io- temporal  informa- 
tion. The analytical  formulas consider the future posit ions 
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F i g u r e  1: M o v i n g  ob jec t s  a n d  quer ies .  

of moving objects to accurately estimate the selectivity for 
the query• Also, our analytical formulas provide an advan- 
tage that these formulas can be basically used by various 
cost models for moving objects. 

Experimental results show that our selectivity estimation 
provides accurate estimation over various queries for syn- 
thetic moving objects. However, for supporting a more 
realistic experimental environment, we used real-life spa- 
tial data, Tiger/lines [6] and Sequoia [10] popularly used 
in spatial database research, to generate moving objects. 
Since there has been no previous work that specifically ad- 
dresses the selectivity estimation method to moving objects, 
we compared our proposed method with an existing spa- 
tial selectivity estimation method which uses the spatial 
histogram. While the use of the existing method for the 
selectivity estimation of a spatio-temporal query has the av- 
erage error ratio from 14% to 85%, our method for spatio- 
temporal selectivity estimation has the average error ratio 
from 9% to 23%. In addition, we studied the impact of 
the size of the histogram. As the histogram size increases, 
the accuracy of the selectivity estimation using the spatio- 
temporal histogram increases. However, the accuracy of the 
selectivity estimation using the spatial histogram that does 
not consider the future locations of moving objects is not 
significantly affected by the histogram size. 

Our contributions are summarized as follows: 

• We propose an effective method of the selectivity esti- 
mation for spatio-temporal queries. To our knowledge, 
the proposed method is the first work specifically ad- 
dressing the selectivity estimation method for moving 
objects. 

• We present a practical method to maintain the spatio- 

temporal histogram. The method applies the property 
of moving objects to the previous research work [4]. 
While our spatio-temporal histogram is constructed 
using the previous method for spatial selectivity es- 
timation [1], we consider a velocity bounding rectan- 
gle to each bucket of the spatio-temporal histogram to 
deal with the movements of moving objects. 

• We provide extensive experimental results using vari- 
ous queries. For a more realistic experimental environ- 
ment, we use real-life spatial data to generate moving 
objects. The experimental results show that our pro- 
posed method achieves a considerable accuracy. 

The paper is organized as follows. In Section 2, we de- 
scribe the related work, which consists of spatio-temporal 
databases, the selectivity estimation in spatial databases, 
and the histogram update. In Section 3, we explain how to 
estimate the selectivity of a query to moving objects. In Sec- 
tion 4, we show our experimental results and discuss them 
in detail. Finally, conclusions are made in Section 5. 

2. RELATED W O R K  
First, we briefly describe spatio-temporal databases and 

explain the selectivity estimation in spatial databases, and 
then explain the histogram update. 

Spatio-temporal databases manage objects that  move as 
time passes. With new developments in technology, many 
applications have been proposed to deal with the problem 
of movement. These applications require spatio-temporal 
database management systems with modeling [3, 9] and 
query processing to moving objects [2, 5, 7, 8, 11, 12]. Sistla 
et al. [9] proposed a data model to represent moving objects. 
This model introduces a dynamic object that  changes con- 
tinuously its position as time passes. Many studies for query 
processing are based on this model [9]. 

Our work is aimed at an accurate estimation of the selec- 
tivity of a query to moving objects• The query optimizer 
chooses the most efficient plan by using the estimation for 
the selectivity of a query. The accuracy of the selectivity 
estimation significantly affects the selection of an efficient 
plan. However, existing selectivity estimations for spatial 
objects do not accurately estimate the selectivity to mov- 
ing objects. Besides, to our knowledge, there has not been 
a proposed method designed with consideration of motion. 
Our selectivity estimation is related to the studies described 
below. 

We use the histogram method for the selectivity estima- 
tion. The histogram is one of the most popular selectivity 
estimation methods, because it approximates any data dis- 
tribution and requires reasonably small storage with low er- 
ror rates [1]. The histogram is a set of buckets. A bucket 
consists of bounding values to cover objects and the number 
of the objects that  fall in the bounding values. For exam- 
ple, a spatial bucket consists of a spatial bounding rectangle 
and the number of objects in the spatial bounding rectangle. 
However, a spatio-temporal bucket additionally requires a 
velocity bounding rectangle to cover the objects. Therefore, 
our spatio-temporal bucket consists of a spatial bounding 
rectangle, a velocity bounding rectangle, and the number 
of objects in those bounding rectangles. This concept of a 
spatio-temporal bucket is basically the same as the concept 
of the time~parameterized bounding rectangle of the TPR-  
tree [8]. 
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We use the MinSkew algorithm [1] to construct a spatio- 
temporal histogram. The MinSkew algorithm constructs a 
spatial histogram to minimize the spatial-skew of spatial 
objects. The spatial histogram estimates the accurate se- 
lectivity for spatial objects with small storage requirement, 
compared to other work [1]. 

The positions of moving objects are updated very fre- 
quently. If new update information is not reflected to the 
histogram, the query optimizer may choose an inefficient 
plan because an inaccurate estimation of selectivity is used. 
However, it is clearly impractical to construct a new his- 
togram whenever moving objects are updated. The his- 
togram is not required to be updated from the raw objects, 
but it can be updated from sample data [4]. In spatio- 
temporal databases, the histogram can be maintained prac- 
tically by using sample data. The sample data include only 
information related to the histogram construction. Consid- 
ering the moving object, the information consists of the iden- 
tification, the last update time, the spatial position of the 
time, and the velocity. The construction of a new histogram 
from the sample data reduces I /Os  overhead remarkably, 
compared to the overhead of the construction of a new his- 
togram from all of the data. Therefore, we construct the 
histogram only from the sample data of moving objects. 

3. SELECTIVITY ESTIMATION IN SPATIO- 
TEMPORAL DATABASES 

This section explains selectivity estimation in spatio-temporai 
databases. First, we describe our spatio-temporal histogram 
structure and the histogram construction algorithm. We ex- 
plain how to estimate the selectivity of a spatio-temporal 
query to 1D moving objects. Then, we explain how to esti- 
mate the selectivity of a spatio-temporal query to 2D moving 
objects using the 1D selectivity estimation. 

3.1 Histogram Construction 
This section describes our spatio-temporal histogram struc- 

ture to 2D moving objects. Table 1 presents the symbols 
used throughout the paper to describe the proposed algo- 
rithms. 

Our spatio-temporai histogram HBo~ is a set of buck- 
ets like other existing histogram structures. However, our 
spatio-temporal bucket additionally requires a velocity bound- 
ing rectangle. Therefore, the spatio-temporai bucket Bst 
consists of a spatial bounding rectangle SB, a velocity bound- 
ing rectangle VB, and the number, n, of objects in those 
bounding rectangles. HB°t is newly created at the histogram 
update time t ~. A query Q consists of a spatial rectangle 
QB and a time interval t, where the low value t l of t is 
greater than or equal to the current time. The sample fac- 
tor sf is defined as the ratio of the total number of moving 
objects to the number of sample moving objects. Subscripts 
1 and 2 of SB, VB, and QB represent each dimension in 
2D space. 

Figure 2 shows the construction algorithm of the his- 
togram in the spatio-temporai databases. 

The constructSTH algorithm creates the spatio-temporal 
histogram Hs . t  using the MinSkew algorithm [1]. HBot 
is constructed only by the sample moving objects. The 
MinSkew algorithm uses a spatial grid, SG of cells. Each 
cell relates to its spatial density which indicates the number 
of objects in the cell. SG is similar to the grid structure of 

A l g o r i t h m  constructSTH(t  u , SM, N s , t  ) 
Input:  t u, histogram update  time; 

SM, a set of sample moving objects; 
Ns ,~ ,  total  number of B,~ in Hs ,~  ; 

Output :  Hso~, spat io-temporal  his togram 

for each moving object m in SM, 
calculate the spat ial  position x, located at  ~ ,  of m. 
find a cell of SG such tha t  the cell contains z. 
increase the spat ial  densi ty of the cell. 
adjust  the velocity bounding rectangle of the cell 
to contain the velocity of m. 

execute the bucket creation module of the MinSkew algorithm using SG 
to construct Ns~t  spatial  bounding rectangles of the HB, t .  

for each cell of SG, 
find Brat whose SB contains the cell. 
increase Bat .n  with the spat ial  densi ty of the cell. 
adjust  B~t.VB to contain the velocity bounding rectangle of the cell. 

Figure 2: Algorithm constructSTH for moving ob- 
jects. 

[1]; however our SG also requires a velocity bounding rect- 
angle for each cell. The velocity bounding rectangle in the 
cell bounds the velocities of objects in the cell. The con- 
struction process of the spatio-temporal histogram is sim- 
ilax to that of the original MinSkew algorithm for spatial 
data. There are a few differences, however, as follows: To 
assign all the sample moving objects to SG, the spatial loca- 
tions of the sample moving objects should be calculated at 
the histogram update time and the velocities of the objects 
should be adjusted at the velocity bounding rectangle of the 
corresponding cell. After executing the MinSkew algorithm 
with SG, the velocity bounding rectangle of each cell of SG 
should be adjusted at each Bs~.VB of HB.~. 

We construct the whole spatio-temporal histogram peri- 
odically. When an object is modified, previous techniques 
for the histogram update can update the part of the his- 
togram related to the modified object without construct- 
ing the whole histogram. However, our spatio-temporal his- 
togram structure to moving objects cannot only update the 
part of the histogram related to the modified object, because 
the spatial positions of the non-modified objects implicitly 
change as time passes. We construct the whole spatio- 
temporal histogram per time unit. In Section 4, we demon- 
strate how this update strategy for the spatio-temporal his- 
togram can be possible. 

The next section describes how to estimate the selectivity 
of a query to 1D moving objects. We then explain how the 
1D selectivity estimation can be easily extended to the 2D 
selectivity estimation to 2D moving objects. 

3.2 One-Dimensional Selectivity Estimation 
We describe the selectivity estimation between a spatio- 

temporal bucket and a query to 1D moving objects. There 
are three methods to estimate the selectivity of the query. 
We explain each in detail. Since this section deals with 
only 1D moving objects, we illustrate the 1D selectivity es- 
timation corresponding to the first dimension of 2D moving 
objects. We use x, v, and a rather than Xl, Vl and al, 
respectively, for notational convenience. 

3.2. ] Overview of  One-Dimensional Selectivity Esti- 
mation 
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Table  1: S y m b o l  desc r ip t ion .  
Symbol 
I(I', I h) 
t ~ 

HB.t 
B,~(n,  S B ,  V B )  
S B ( x l ,  x2) 
VB(vl, v2) 
YB,t  
Q ( Q B ,  t) 
Q B ( a l ,  a2) 
s l  

Description 
interval: I t _< Ih; I t, lOW value of I ;  I '~, high value of I 
histogram update time 
spatio-temporal histogram: a set of Bst 
spatio-temporal bucket: n, number of moving objects in S B  and V B  
spatial bounding rectangle: xl, x2 are intervals 
velocity bounding rectangle: vl, v2 are intervals 
total number of B,t in HB,t  
query: time interval t 
spatial rectangle of query: al,  a2 are intervals 
sample factor = number of objects / number of sample objects 

The 1D selectivity estimation is classified into three kinds 
of estimation methods• Figure 3 shows relationships be- 
tween five objects bounded by a spatio-temporal bucket of 
time t u and a query Q(a, ~). As shown in Figure 3, the ob- 
jects move within the range of thick lines as time passes. 
The number of objects passing the query is equal to the 
number of objects that  pass the sides of the query• When 
a moving object passes two sides of the query, the moving 
object should be checked from one side only. In this case, 
we only consider one side of the query that the moving ob- 
ject passes first. Specifically, the number of moving objects 
passing the query is equal to the number of moving objects 
that  passes three sides of the query: the base side, the left 
side, and the right side. If  we check three sides of the query, 
we can consider all the movements of moving objects that  
intersect with the query• The moving object 03  passes the 
left side of the query• The moving object 04  passes both 
the base side and the right side. However, it is estimated 
by using the base side of the query, because the moving ob- 
ject 04  passes the base side of the query first. The moving 
object 02  passes the right side of the query• 

t u 

O l  0 2  0 3  0 4  

* / )(" / 

v, \  \ , 
, / /  

x ! 
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* V h 
/ o° 
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Figure 3: Spat io - t empora l  bucket  and query  t o  1D 
m o v i n g  objects .  

Like the uniform assumption in each bucket of the his- 
togram proposed by [1, 4], we assume a simple and general 
uniform distribution in each spatio-temporal bucket of the 
spatio-temporal histogram. That is, the spatial positions 
of moving objects are distributed uniformly in the spatial 
bounding interval x and the velocities of moving objects are 
distributed uniformly in the velocity bounding interval v. 

We describe several definitions for explaining the pro- 
posed algorithms• The following definitions describe four 
relationships between moving objects bounded by the ve- 
locity bounding interval and the query. 

Definition 1. Let t~ be the histogram update time, v the 
velocity bounding interval of the spatio-temporal bucket, a 

the spatial interval of the query, and t the time interval of the 
query. CQ is the maximum spatial interval at t ~ of moving 
objects that  can pass the query. CQB, CQL, and CQR are 
the maximum spatial intervals at t" of moving objects that  
can pass the base side of the query, the left side of the query, 
and the right side of the query first, respectively. [] 

For example, let us consider a query and moving objects 
limited by a velocity bounding interval v[v z < 0,v h > 0]. 
As shown in Figure 4, for CQ, the thick line I depicts the 
maximum spatial interval of moving objects that  can pass 
the query. 

t 

t h 

t u 

v h Q ;', V ! 
. . . . . . . . . . . . . .  - ; / :  . . . . . . .  

It 

/ 

/ J  

I 

II a I a h I h 
P 

x 

Figure  4: M a x i m u m  spatial  interval  I derived by 
CQ. 

The following are formulas derived for the above defini- 
tion. 

* CQ( tU ,v ,a , t )  has an interval I as follows: 

i l =  j" a z - ( t  z - t u ) v  h i fv  h < 0  

t a z - (t h - P')v h otherwise 

• i h _-- f a h - (t t - tU)v ! if 0 < v l 
t a h (t h - tu)v t otherwise 

• C Q B ( t = , v , a , t )  has an interval I as follows: 

• I t = a  t - ( t  t - t ~ ) v  h 
• I h = a  h - ( t  t - t ~ ) v  z 

• CQL(t ~, v, a , t )  has an interval I as follows: 

I = f  O ifvh < 0 
i 

[It,I hI otherwise 

• I t = a  t _ ( t  h - t ~ ) v  n 
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Ih = { a t if V l < 0 
I 

a I - (t I -- tU)v t otherwise 

• C Q R ( t ~ , v , a , t )  has an interval I as follows: 

x = f  0 i f 0 < v  t 
b 

[I I , I  h] otherwise 

i t  = ~ a h - (t I - tU)v h if v h < 0 
b 

a h otherwise 

. I h = a h _ ( t  h - t~ )v  t 

Let us briefly consider the estimation of 1D selectivity of 
a query on a single spatio-temporal  bucket with n moving 
objects bounded by x and v. A formula (t  t - tU)(v  h - v t) 
indicates the  length of all possible positions at  t t of a mov- 
ing object  tha t  s tar ts  from a point in x. This is i l lustrated 
in Figure 5. The length corresponds to all the  movements 
of the moving objects. Then (x h -- x t ) ( t  t -- tU)(v  h -- v t) 
corresponds to all the movements of all the moving objects  
tha t  s tar t  from x. To consider all the movements of moving 
objects tha t  pass the query, we present a function L ( s )  as 
i l lustrated in Figure 6. L ( s )  is the length of a sub-interval 
of x. Moving objects tha t  s tar t  from the sub-interval corre- 
sponding to L ( s )  should pass both the point (s, t t) and the 
query. [sl ,s2] is the interval intersecting with the  movements 
tha t  can pass the query. Then, f : ~  L ( s ) d s  corresponds to all 
the movements of moving objects that  s tar t  from a subset of 
x and pass the query. Therefore, the selectivity is es t imated 
as follows (for, v t # v h A t ~ # tt): 

L(s)ds 
n (x h _ x t ) ( t l  _ t u ) ( vu  _ vt ) (1) 

In the  case of v t = v h or t = = t z, we should consider a 
different formula for (1), because the formula (x h - x t ) ( t  t - 
t=)(v  a - v t) becomes 0. More details are given in Section 
3.2.4. 

t 

t ] 

t u P 

(tktU)(vh-v 1) 
• #¢ 

• i / 

, / °.° V h V I 1. ', . ° 
i ff # ; ', / ." 

• • ~'" °°° 

X I X h X 

F i g u r e  5: A l l  p o s s i b l e  p o s i t i o n s  a t  t t o f  a m o v i n g  
o b j e c t .  

Figure 7 shows the calculation of f : ~  L ( s ) d s  to 1D moving 

objects. We deal with only the formula f~? L ( s ) d s  until  
Section 3.2.4, because n and (x h - x t ) ( t  t - t ~ ) ( v  h - v z) of 
formula (1) are considered when we make an extension for 
the 2D selectivity estimation. As shown in Figure 7, the E 
algorithm summates  the est imated result of each case after 
checking whether moving objects that  can pass each of the 
three sides of the query exist. The EQB, the EQL, and the 
EQR are the est imation algorithms using the base side of 
the query, the left side of the query, and the right side of 
the query, respectively. Because the EQL and the EQR are 
symmetrical ly calculated, we only describe the EQB and the 
EQL in order. 

t 

t h 

t' 

t u | 
X 

v\//:"if? ,.........v 
x ] L(s) x h 

:¢ 
#,¢# 

F i g u r e  6: L ( s ) .  

P r o c e d u r e  E(t  ~, x, v, a, t) 
I n p u t :  t u, histogram update  time; x, spatial  bounding interval; 

v, velocity bounding interval; a, spatial  interval of query; 
t, t ime interval of query 

O u t p u t :  s u m ,  the value of the integration of L ( s )  

s u m  4-.- O. 

/ / c o m p u t a t i o n  using the base side 
I ~ C Q B ( t  ~, v, a, t) .  
I ~ - - x N I .  
i f  I # 0, s u m  +-- s u m  + E Q B ( t " ,  x ,  v, a, t ) .  

/ / c o m p u t a t i o n  using the left side 
I ~ C Q L ( t ~ , v , a , t ) .  
I ~ - . - x ~ I .  
i f I #  @ A t  t ¢ t h, s u m  ~ s u m  + E Q L ( t ~ , x , v , a , t , I ) .  

/ / c o m p u t a t i o n  using the right side 
I ~- CQR( t  ~, v, a, t). 
I ~-- x N I .  
i f  I # q} A t t # t h, s u m  ~ s u m  + E Q R ( t  ~, x ,  v, a, t ,  I ) .  

F i g u r e  7: A l g o r i t h m  E .  

3 .2 .2  E s t i m a t i o n  U s i n g  Q u e r y  B a s e  S i d e  

We consider only moving objects tha t  first pass the base 
side of the query. As shown in Figure 8, there exists three 
possible cases between moving objects  and the base side of 
the query. The function L ( s )  has different formulas for three 
sub-intervals of the base side(here, we consider the base side 
of the query can be the  same as I ) .  

To find three different formulas of the L ( s ) ,  we introduce 
a function PESB to par t i t ion the base side. PESB par- 
t i t ions the interval of x that  is extended at t ime t z into 
three sub-intervals, as shown in Figure 8. Let t ~ be the his- 
togram update  time, x the spatial  bounding interval of a 
spat io-temporal  bucket, v the velocity bounding interval of 
the spat io- temporal  bucket, and t the t ime interval of the  
query. From Figure 8, an interval list L I  = ( I 1 , I 2 , I 3 )  pro- 
duced by PESB(t  ~, x, v, t) can be determined as follows: 

I~ = z ~ + (t ~ - t D d  

X~ = { xh  + (t! -- tu )v l  if(xh -- x t )  < (tt -- tU)(vh -- v t )  
~C l + (t  t -- t~)V h otherwise 
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t u -I ' L ~ "  ) 

~. I~ 12 13 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

x ~ LB,(s)  LB2(s ) LB3(s ) x ~ x 

Figu re  8: T h r e e  sub- in te rva l s  for  L(s) .  

P r o c e d u r e  EQB(t u, x, v, a, t) 
I n p u t :  t ~, histogram update time; x, spatial bounding interval; 

v, velocity bounding interval; a, spatial interval of query; 
t, time interval of query 

O u t p u t :  s u m ,  the value of the integration of L ( s )  

s u m  ~-- O. 
L I  ~-- P E S B ( t ~ , x , v , t ) .  

for  i ~ 1 t o  3 do, 
Q I  ~-- a ~ n I . I i .  
if Q I  i~ @, s u m  ~- s u m  + E Q B i ( t  ~', x ,  v,  t, Q I ) .  

I~ h = { xt  + (t  t - t ~ ) v  n if(x h - x  t) < (t  t - t ~ ) ( v  u - v  t) 
x h + (t  t - t~ )v  t otherwise 

I~ = x~ + (t t - t" )v  ~ 

Now, we consider the calculation of ffi~ L(s )d s .  For three 
sub-intervals of the base side, L ( s )  has different formulas: 
L B i ( s l ,  n B z ( s ) ,  and L S z ( s ) .  As depicted in Figure 9, 
L B I ( a  ) is (a ~ -  (t t - t ~ ' ) v  t)  - x  t. And, L B i ( a  t + X) = 
(a t - (t t - t " ) v  t) - x t + X f o r  0 < ) t < a  h - a t . Therefore, 
the integration of LB~ (s) using the base side of the query 

is f ~ h - a '  ((a t _ (t t _ tU)v t) _ x t + s)ds .  L B 2 ( s )  and L B z ( s )  
are similar to L B x  (s). 

I 1 

t |  ~i ~ i I2 I3 

t ~ t----3d----~--~A:.~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  __~ _..~....___~_ ." 
/ .., ~. ,~a! / ' ."h v ~ ,' ' , /  ~ .." V 

t o ] ~'::fil i."" , 
x ~ LB~(a ~) X h X 

Figu re  9: Ca lcu la t ion  o f  f ~ h  L B ~ ( s ) d s .  

The procedure in Figure 10 shows a simple algorithm to 
calculate the estimation using the base side of the query to 
moving objects. This algorithm is called the EQB algorithm. 
After producing three intervals/1, I2, a n d / 3  by PESB, we 
can obtain common intervals Q I i ,  QI2 ,  and  QI3,  between a 
and I1, /2,  and I3, respectively. EQB summates the result of 
each case. The following equations provide the integration 
of L ( s )  for QI1,  QI2,  and QI3,  respectively. 

• E Q B l ( t ~ , x , v , t ,  Q l l )  : 

fo Qt~-Q']  ((QI~ - (t t - t~)v I) - x t 4- s)ds 

• E Q B 2 ( t u , x , v , t ,  Q l 2 )  : 

i h I 
foQ 2 -Ql2(~h _ ~Z)d ~ 
foQ'2 h -O'~ (t ~ _ t~)(v h _ vZ)ds 

• E Q B a ( t u , x , v , t ,  Q I 3 )  : 

f oQ~-Q '~ ( z  h - (QI~ - (d - t")v h) - s)ds 

i f ( x  h - x  l) < (t  l - t u ) ( v  h - v  z) 

o t h e r w i s e  

Figu re  10: A l g o r i t h m  E Q B .  

3.2.3 Estimation Using Query Left Side 
We consider only moving objects that  first pass the left 

side of the query. Since the velocities of moving objects are 
limited between 0 and v n, we consider only those moving 
objects. 

As shown in Figure 11, let us consider a spatial bounding 
interval I at t ~, where I z = a l - (t h - t U ) v  h and  I h _< a t. We 
present a function L L ( s )  that  represents the length of a sub- 
interval of I satisfying the following two conditions. First, 
moving objects that  start from the sub-interval should pass 
both the point (s, t z) and the left side of the query. Second, 
the velocities of moving objects should be limited between 
0 and v h, where 0 < v h. As seen in Figure 11, the function 
L L ( s )  has different formulas for two sub-intervals between 
s t and s h. s t is the s value of a point ( s , t  t) on a line that 
connects two points: ( I  t, t ~) and  (a t, th) .  s m is the s value of 
a point (s, t t) on a line that  connects two points: ( I  h, t u) and  
(a t , th ) .  s h is the minimum value between I n + ( t  t - t u )v  h 
and a' .  

The integration of L L ( s )  between s t and s h is the sum 
of the integration of LL1  (s) between s t and s ra and the in- 
tegration of L L 2 ( s )  between s m and s h. For s t _< s < s m, 
consider s = s t + X. As seen in Figure 11, since L L i ( s  z + 

t I tu  
A) = (~_-~ir)X, f ~ ' L L l ( s ) d s  f~5~ ,' v, = ( ~ _ ~ r ) ( s  -- s t )ds  = 

fo s m  _81 [ ~ l _ t u  ~ ~ 81 S m ~ - : T r ) s a s .  Similarly, consider s = + ~k for < 
s < s h. Since L L 2 ( s  t + X )  = I h -  (a t -  (t  h - t u ) v  h ) -  

8 h 
),, f:~ L L 2 ( s ) d s  f s h - d  rI  h - - = ~ m - 8 , ~  - (a t - (t h t ~ ) v  h) s)ds. 

t l - - t u  Since L L i ( s  t + X) and L L 2 ( s  t + )t), L L i ( s )  = (~ - :Tr ) s  and  

L L 2 ( s )  = I h - (a t - (t  h - tU)v h) - s. Therefore, the integra- 
tion of L L ( s )  between s t and s h , called EQLS(t ~, I h, v h, a, t ) ,  
is given by: 

* E Q L S ( t  ~, I h, v h, a, t )  : 

foS 
m - - s l [ t l - - t  u ~  ~ - -  f s h - - S l t r h  / I 

~ ~x - zP) sas~ .h -~ - s I  (1 -- (a -- (t h - - t~ )v  h) -- s )ds  

where s l -- a l - (t h - t l ) v  h, s m - s ! _- (t  h - t l ) ( v  h - 

aZ-I h ,  h l m i n ( i  h _ ( a l _ ( t h _ t u ) v h ) ,  ( t h _ _ t l ) v h ) .  
t h _ t  u ) ,  8 - - 8  ---- 

We develop a general algorithm called EQL based on the 
EQLS function as shown in Figure 12. We provide a geo- 
metrical explanation of the computation for the EQL algo- 
rithm(see Figure 13). If j l ,  corresponding to the input J of 
the EQL algorithm, is not equal to c~ = a z - (t  ~ - t~ )v  h, we 
subtract the result of the EQLS applied to a spatial interval 
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(a) L L i ( s ) .  
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t h 
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t u / ~ • "7- 
P + I h a I x 

L L 2 ( s )  

(b) LL2(s) .  

Figure  11: LL(s) using  t h e  left side o f  the  query. 

[a, f ]  from the result of the EQLS applied to a spatial in- 
terval [oq jh]. If v l, corresponding to the input v of the EQL 
algorithm, is greater than 0, we subtract the result of the 
EQLS applied to a velocity interval [0, v ~] from the result of 
the EQLS applied to a velocity interval [0, vh]. 

3.2.4 Estimation Including Now Query 
Let us consider a relationship between the histogram up- 

date time and the time interval of the query. The relation- 
ship for the future query certainly satisfies the following con- 
dition t ~ < t t. We have dealt with only the case of t ~ < t t. 
Now, we should consider the case of t u = t t that considers 
the query of the current time, called the now query. The 
reason is that the equation (x h - x ~ ) ( t  z - t ~ ) ( v  h - v  t) of the 
formula (1) in Section 3.2.1 becomes 0 in the case of t ~ = t t. 

To consider all the movements of moving objects that pass 
the query, we present a function P(s) ,  where s is the spa- 
tial position at t z of a moving object passing the query, as 
illustrated in Figure 14. P ( s )  is the ratio of ~ to "3'- '7 is the 
length of all possible positions at t h of the moving object 
that start from the point s. ~ is the length of all possible 

P r o c e d u r e  EQL(t ~, x, v, a, t, J) 
I n p u t :  t ~, histogram update time; x, spatial bounding interval; 

v, velocity bounding interval; a, spatial interval of query; 
t, time interval of query; J,  spatial interval 

O u t p u t :  sum,  the value of the integration of LL(s )  

sum  ~ O. 
s u m  ~ E Q L S ( t  ~, j h ,  vh, a, t). 
i f  j l  5k a z _ (th _ t~,)v h, 

s u m  +- s u m  -- E Q  L S ( t  ~, f ,  v h, a, t). 

i f  v I > 0, 
U l ~ V 1. 

U h ~ V l . 

J ~-- CQL( t~ ' ,u ,a , t ) .  
J ~--- x ~ J .  
i f J  ¢ 0 ,  

s u m  +- s u m  - E Q L S ( t  ~, j h ,  v t ' a, t). 
i f  j l  5k a t -- (t h -- tU)v z, 

s u m  ~ s u m  + E Q L S ( t  ~, f ,  v z, a, t). 

Figure  12: A l g o r i t h m  EQL. 

vV , 
0 a jl jh 

+ 
| 

Figure 13: G e o m e t r i c  i l lustrat ion o f  the  a lgor i thm 
EQL.  

positions at t h of the moving object that  pass the query. 
P(s )  for a point in the base side of the query is 1, because 

all the possible movements of the point (s, t l) intersects with 
the query. Consequently, the estimation using the base side 
of the query corresponds to the sub-interval length of x in- 
tersecting with a. 

We use Figure 14 to illustrate how P(s )  is calculated us- 
ing the left side of the query. As shown in Figure 14, let us 
consider a spatial bounding interval I and moving objects 
with velocities 0 < v t _< v h. The function P ( s )  has dif- 
ferent formulas for two sub-intervals: P L I ( S )  in [It,/3] and 
P n 2 ( s )  in [/3,1 h] where /3 = a t - (t u -  tZ)v z. For I l _< 
s < /3, consider s = I z + ~. As seen in Figure 14(a), 

since P L i ( I  z + A) = (f+(th--tt)~h)--~t+X f ~  P L l ( s ) d s  = (th--tt)O,h--Vl) , 
f ~  (It+(th-tt)vu)-at+s-lt  4 - B-11 (II÷(th--tt)vh)--al÷s. 

Since P L i ( I  t + A), P L i ( s )  = (l%(~h-d)vh)-'J+8 PL2(s )  (tU_tl)(,~_vl) • 
is 1. Therefore, the integration of P(s )  between I t and I h, 
called EQLTu, is given by: 

• E Q L T u ( t ~ ' , v , a , t , l )  : 

fo  l h - I I  ( l l  + ( t h - - t l ) v h ) - - a l  +S d8 i f  I h < /3 
th tl vh vl 

( -- )( -- t) 
r t~-xl  ( x t + ( ~ h - - t ~ ) ' h ) - a  + ' ' ¢  ~ r r h - t g  d s  if  l I < 1 3 <  [h  

JO ( th__~l)( .h__vl)  ~8 I do  

J h - I t  d s  o t h e r w i s e  

w h e r e / 3  = a I -- ( t  h - t l ) v  I. 

Figure 15 shows the ETu algorithm for the condition of 
t ~ = t t. The algorithm is simpler than the E algorithm of 
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(b) PL2(s) .  

F i g u r e  14: P(s) u s i n g  t h e  left s i d e  o f  t h e  q u e r y  (t ~ = 

Figure 7. Like the E algorithm, the ETu algorithm sum- 
mates three estimation results using the base side of the 
query, the left side of the query, and the right side of the 
query. The function I L ( I )  has the length of an interval I. 
The EQRTu is the estimation algorithm using the right side 
the query in the condition of t ~ = t I. 

3.3 Two-Dimensional  Selectivity Estimation 
The 1D selectivity estimation is easily extended to the 2D 

selectivity estimation. The estimation of one dimension is 
independent of that  of the other. Therefore, the selectivity 
estimation to 2D moving objects becomes the product of two 
individual 1D estimations. Figure 16 shows the selectivity 
estimation algorithm to 2D moving objects. The estimation 
is calculated for each Ba~. If S B  intersects with the result 
of CQ for QB ,  the selectivity is estimated for the query and 
the corresponding Bs~. In Figure 16, l(a) shows the esti- 
mation method for the first dimension. In the condition of 
v l = v h, the estimation is only for moving objects with a 
constant velocity and corresponds to the ratio of the sub- 
spatial interval length of xl intersecting with the result of 
CQ for al to the length of xl. In the condition of t  ~ = t l, the 
estimation is calculated according to the method of Section 
3.2.4. In the third condition, the estimation is calculated 
according to the method of Section 3.2. In Figure 16, l(b) 
shows the estimation method for the second dimension, l(c) 
describes the selectivity estimation for a Bs~. In 2 of Fig- 
ure 16, the final result of selectivity estimation is obtained 

P r o c e d u r e  ETu(t u, x, v, a, t) 
I n p u t :  t~, histogram update time; x, spatial bounding interval; 

v, velocity bounding interval; a, spatial interval of query; 
t, time interval of query 

O u t p u t :  sum,  the value of the integration of P(s )  

s u m  +- O. 

I + - x ~ a .  
if  I i~ q), s u m  ~ s u m  + I L ( I ) .  

I ~ C Q L ( t  ~, v, a, ~). 
I +- x N I .  
if  I ~ ~ A t I i~ t h, s u m  ~ s u m  + E Q L T u ( t  ~, v, a, t, I) .  

I e-  C Q R ( t  ~, v, a, ~). 
I + - x N I .  
i f I  ¢ @ At  z ¢ t h, s u m  ~ s u m  + E Q R T u ( t ~ , v , a ,  L I ) .  

F i g u r e  15: A l g o r i t h m  ETu.  

by multiplying the sample factor sf .  

4. E X P E R I M E N T S  
In this section, we present the experimental environment 

and the experimental results of our proposed method. Mov- 
ing objects are synthetically generated by using real-life spa- 
tial data to make a realistic experimental environment. We 
evaluate the accuracy of approximate results by using queries 
with various spatial rectangle sizes and various time interval 
lengths. In addition, we show that  the existing spatial esti- 
mation method does not accurately estimate the selectivity 
of a query to moving objects. 

4.1 Experimental  Environment  
Our experimental environment is similar to the previ- 

ous works proposed by [5, 8]. Objects with the maximum 
speed 3.0 kin/rain (180 kin/h) were set to move in 1000 
km × 1000 km 2D space. However, we generated mov- 
ing objects to make a more realistic experimental environ- 
ment than a simple synthetic experimental environment. We 
used a real-life spatial data, Tiger/lines [6] popularly used 
in spatial database research, to generate moving objects. As 
shown in Figure 17(a), we represented the initial spatial po- 
sitions of moving objects using road data of California area 
Tiger/lines. The number of moving objects is 374,231. Fig- 
ure 17(b) describes the velocity distribution to update the 
velocities of moving objects. To update the velocity of a 
moving object, we randomly chose a point in a circle with 
a radius 3 corresponding to the maximum speed. The posi- 
tion of the chosen point with respect to the center point of 
the circle determines the movement of the object. The dis- 
tance between two points indicates the new updated speed 
of the object. The direction from the center point to the 
chosen point indicates the new updated direction of the ob- 
ject. Also, we used vertices of road data of Tiger/lines to 
generate realistic movements of moving objects with skewed 
speed distribution and skewed direction distribution. In the 
same way, we made another realistic experiment environ- 
ment by using Sequoia [10] for the initial spatial positions 
and the movements of moving objects, as in Figure 18. The 
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Procedure selectivityST(t u, HBo~, Q, s f) 
I n p u t :  t ~, histogram update time; 

HB,~, spatio-temporal histogram; Q, query; 
sf ,  sample factor 

O u t p u t :  s u m ,  the result of selectivity estimation 

s u m  ~-- O. 

1. for each B ~ ( n ,  S B ,  V B )  in the H~,~, 
I~ 4-- C Q ( t ~ , v ~ , a l , t ) .  
I1 4 -  x~ ~ I i .  
12 ~ C Q ( t ~ , v ~ , a 2 , t ) .  
I~ ~- x2 r) i~. 
ifI~ ~q) AI~¢@, 

(a) 
/ /  computation for the first dimension 

h U . IL(I~ , )  ifv~ = vl,  s ml ~-- /L(=~)" 
else i f t  u = t t, s u m l  4-- E T u ( t  , Z l , V l , a l , t ) .  

I L ( z l )  
E ( ~ U , ~ , V l , a l , t )  else s u m ~  4 -  (=~,-=~)(t~-~,,)Cv~-v~)" 

/ / compu ta t i on  for the second dimension 

( b )  i f  = o 
• " ~ - u  -I _ _  E T u ( t  z2  v2 a2 t)  

e m e  l I  $ : ~ , s u m 2  v I L ( - ' 2 )  ' ' " 

E ( t U , z 2 , v 2 , a 2 , t )  elsesum24-- h_ ~ ~_ u h_  ~ • (=2 =2)( ~ t )(v2 t'2) 

/ / p r o d u c t  of two individual 1D estimations 
(c) s u m  4-- s u m  + n ( s u m l ) ( s u m 2 ) .  

2. s u m  ~ ( s u m ) ( s f ) .  

F i g u r e  16: Algorithm selectivityST for 2D m o v i n g  
objects. 

...... ~ ...:. ( ::: .... ~ :::.L~.~.~ , 
• ... \.. \ ":... :; .:~;~:;,. ::.~ 

. : : :--,-  . ~ . ~ , ~  . ~ .  . . - ' ~ .  

(a) Initial spatial loca- (b) Speed and direc- 
tion. tion for update. 

Figure 17: Synthetic moving objects generated by 
Tiger/lines data. 

(a) Initial spatial loca- 
tion. 

(b) Speed and direc- 
tion for update. 

number of moving objects using Sequoia data is 670,201. 
In general, most research presents the concept of time 

units to easily represent the passage of time [5, 7, 8, 11]. 
We used one minute as the time unit and updated approxi- 
mately 1% of the whole moving objects every time unit. We 
randomly selected the updating data from the whole mov- 
ing objects in general. The number of the sample objects 
for the spatio-temporal histogram is 1% of the whole moving 
objects. Therefore, the s. f  for the selectivityST algorithm 
of Figure 16 was set to 100. We selected the sample data 
from the whole moving objects using a simple round robin 
scheme. Also, an efficient random sampling scheme can be 
used. The sample data includes only information related to 
the histogram construction. The information for a sample 
object needs only the identification, the last update time, 
the spatial position of the time, and the velocity. This re- 
quirement decreases the size of the sample data  remarkably. 

We updated the spatio-temporal histogram from the sam- 
ple data every time unit. This histogram update strategy 
can be possible because the I /O overhead for the spatio- 
temporal histogram update from the sample data is remark- 
ably low, compared to the update overhead of approximately 
1% of the whole moving objects per time unit. Experiments 
conducted on a Pentium IV 1.7 Ghz PC with 256 Mbytes 
of main memory. It took about 0.15 second to update the 
histogram from the sample data. The size of the spatio- 
temporal histogram was set to 4 Kbytes, which corresponds 

Figure 18: Synthetic moving objects generated by 
Sequoia data. 

to a page size. We can use only the array values of S G  for 
representing S B  because the histogram is constructed only 
for the sample data. Like S B ,  we can use the approximated 
values for representing V B .  So, the size of a spatio-temporal 
bucket was set to 12 bytes for n = 4 bytes, for S B  = 4 bytes, 
and for V B  = 4 bytes. The number of the spatio-temporal 

4096 ~ 341. A spatial grid ( S G )  for con- buckets N B ,  is - i T  
structing the spatio-temporal histogram was set to 50 × 50. 

Experiments were executed for 500 time units. The size of 
the query spatial rectangle ( Q B )  varied as 0.25%, 0.5%, 1%, 
2%, 4% of the size of the data space. The spatial position 
of the query was randomly chosen in the data space. The 
length of the query time interval (t) varied as 0, 20, 40, 60, 
80. The t t of the time interval was randomly chosen between 
t ~ and t ~ + 80. To generate various queries, we dealt with 
25 queries: All combinations for five types of Q B  and five 
types of t as mentioned above. For each time unit, 25 queries 
were generated. The actual results of queries were compared 
to the results estimated using the proposed method in this 
paper. % error was used to assess the accuracy of estimation 
results: 

error (%) = lactuaZ . . . .  ~c~uallt-estima~ed~e~=lt . . . .  It] × 100. 
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4.2 Experimental Results 
Figure 19 shows the experimental results evaluated from 

• " ~  × 500 time units). The results rep- 12500 querms(t lme umt 
resent the average relative error with respect to the time 
interval length of the query and the spatial  rectangle of the 
query. Each query type is evaluated by the average rela- 

• , 1 ouerv t i re  error of 500 quenes~ • ~ × 500 t ime units)• Fig- - ~lme unit 
ure 19(a) shows the experimental  results to moving objects 
using Tiger/ l ines data. The average relative error is from 9% 
to 15%. As the spatial  rectangle size of the query increases, 
the average relative error decreases, as in the general ex- 
perimental  results [1]. However, as the t ime interval length 
of the query increases, the average relative error gradually 
increases. This is because our method considers the move- 
ments of moving objects that  pass the left/r ight sides of the 
query as t ime passes. T h a t  is, the more the t ime interval 
length increases, the more the error in calculation using the 
left /r ight sides of the query increases. Figure 19(b) shows 
the similar experimental  results to moving objects using Se- 
quoia data. 

16 

? 14 
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o 10 

~8 
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Time intercal length 

QB = 0.25% 
QB = 0.5% 

--.k- QB = 1% 
--~..QB = 2% 
---~-QB = 4% 

(a) Moving objects generated by Tiger/l ines 
data.  

25 
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+ QB = 0.25% 
QB = 0.5% 

---~--QB = 1% 
- ~  QB = 2% 
-~-QB=4% 

(b) Moving objects generated by Sequoia 
data.  

F i g u r e  19: A v e r a g e  r e l a t i v e  e r r o r  for  d i f f e r en t  QB 
sizes  a s  t h e  t i m e  i n t e r v a l  l e n g t h  o f  t h e  q u e r y  is va r -  
ied.  

Since there has been no previous work that  specifically 
addresses a selectivity est imation method to moving ob- 
jects, we compared our proposed method with existing spa- 
tial selectivity est imation method using the MinSkew algo- 
r i thm [1]. The comparat ive experiments between our spatio- 
temporal  histogram and the previous spatial histogram are 
based on moving objects using Tiger/l ines data. The use of 
Sequoia da ta  shows similar results. Like the spat io-temporal  
histogram, the spatial  histogram was reconstructed every 
time unit. The number of the spatial  histogram buckets in- 
creased to 512 because only the number of objects and the 
spatial  bounding rectangle are required• Figure 20(a) shows 
the selectivity est imation results with the spatial histogram 
and the spat io- temporal  histogram with respect to the t ime 
interval length of the query applied to the QB size 0.25%. 
As expected, the spatial  histogram that  does not consider 
the property of moving objects produces high error rates. 
As the time interval length of the query increases, the accu- 
racy of the est imation using the spatial  histogram decreases 
remarkably. The average error rate  of a query with a t ime 
interval length of 80 is about  85%. However, the spatio- 
temporal  histogram considering the property of moving ob- 
jects has accurate est imation results with an average error 
rate from 13% to 15%. Figure 20(b) shows the selectivity 
estimation results with the  spatial  histogram and the spatio- 
temporal  histogram with respect to the time interval length 
of the query applied to the QB size 4%. Like Figure 20(a), 
our spatio-temporal  histogram has bet ter  estimation results, 
compared to the spatial  histogram. 

We also studied the impact  of the size of the histogram. 
Figure 21 shows the average relative error with respect to the 
size of the spat io- temporal  histogram for different QB sizes. 
Each query type is evaluated by the average relative error of 
500 queries. The t ime interval length of queries is set to 40. 
As the size of the histogram increases, the average relative 
error decreases as in the general experimental results. Since 
more space can more accurately represent the distribution 
of data, the results are quite natural.  Also, as QB size of 
the query increases, the average relative error decreases. 

In addition, we assessed the average relative error with the 
spatial histogram and the spat io-temporal  histogram with 
respect to histogram size for two QB sizes. The t ime interval 
length is set to 40. For Figure 22(a), QB size is set to 0.25%. 
As expected, our spat io- temporal  histogram has accurate 
estimation results, compared to the spatial  histogram. As 
the histogram size increases, the accuracy of the estimation 
using the spat io-temporal  histogram increases. However, the 
accuracy of the est imation using the spatial  histogram tha t  
does not consider the future locations of moving objects is 
not significantly affected by the histogram size. Figure 22(b) 
shows the impact of the histogram size applied to the QB 
size 4%. Like Figure 22(a), the spatial  histogram technique 
does not accurately est imate the selectivity, compared to 
our spatio-temporal  histogram. 

Figure 23 shows the average relative error with respect to 
the size of the spat io- temporal  histogram for different t ime 
interval lengths. The QB size of the query is set to 1%. As 
the size of the histogram increases, the average relative error 
decreases as in the general experimental  results• However, as 
the time interval length of the query increases, the average 
relative error increases. The more the time interval length of 
the query increases, the more the error in calculation using 
the left/right sides of the query increases. 
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(b) QB size : 4%. 

F i g u r e  20: A v e r a g e  r e l a t i v e  e r r o r  for  t h e  s p a t i a l  h i s -  
t o g r a m  a n d  t h e  s p a t i o - t e m p o r a l  h i s t o g r a m  as  t h e  
t i m e  i n t e r v a l  l e n g t h  of  t he  q u e r y  is v a r i e d  w h e n  
T i g e r / l i n e s  is u s e d .  

5. C O N C L U S I O N S  
Spatio-temporal databases have been studied intensively 

in recent years in light of technological developments tak- 
ing into account the movements of objects. In this paper, 
we proposed a method to estimate the selectivity of a query 
for the future locations of moving objects. We used ana- 
lytical formulas that accurately estimate the movements of 
moving objects. Our analytical formulas provide an advan- 
tage that  these formulas can be basically used by various 
cost models for moving objects. To experiment in a realistic 
environment, we generated synthetic moving objects by us- 
ing real-life spatial data with a reasonable skew distribution. 
In the experiments, the proposed method provided accurate 
estimation results over various queries with different spa- 
tial area sizes and time interval lengths. To our knowledge, 
the proposed method is the first work specifically addressing 
the selectivity estimation method for moving objects. So, 
we compared our proposed method with an existing spa- 
tial selectivity estimation method. It was observed that our 
proposed method accurately estimated the selectivity of a 
query to moving objects, compared with the existing spatial 
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F i g u r e  21: A v e r a g e  r e l a t i v e  error  for  d i f f e r e n t  QB 
s i z e s  as t h e  h i s t o g r a m  size is va r i ed  (t = 40).  

selectivity estimation method. 
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