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ABSTRACT
Like HTML, many XML documents are resident on native
file systems. Since XML data is irregular and verbose, the
disk space and the network bandwidth are wasted. To over-
come the verbosity problem, the research on compressors for
XML data has been conducted. However, some XML com-
pressors do not support querying compressed data, while
other XML compressors which support querying compressed
data blindly encode tags and data values using predefined
encoding methods. Thus, the query performance on com-
pressed XML data is degraded.

In this paper, we propose XPRESS, an XML compressor
which supports direct and efficient evaluations of queries
on compressed XML data. XPRESS adopts a novel encod-
ing method, called reverse arithmetic encoding, which is in-
tended for encoding label paths of XML data, and applies
diverse encoding methods depending on the types of data
values. Experimental results with real-life data sets show
that XPRESS achieves significant improvements on query
performance for compressed XML data and reasonable com-
pression ratios. On the average, the query performance of
XPRESS is 2.83 times better than that of an existing XML
compressor and the compression ratio of XPRESS is 73%.

1. INTRODUCTION
The eXtensible Markup Language (XML) [4] is intended

as a markup language for an arbitrary document structure,
as opposed to HTML which is a markup language for a spe-
cific kind of hypertext data.

XML data comprises hierarchically nested collections of
elements, where each element is represented by a start tag
and an end tag that describe the semantics of the element.
In addition, an element in XML data can contain either
atomic raw character data or a sequence of nested subele-
ments and can have a number of attributes composed of
name-value pairs. XML data is irregularly structured and
self-describing like semistructured data. Using tags, XML
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separates contents and the representation (i.e., structure) in
XML documents.

To retrieve XML data, XML query languages such as
XPath [6] and XQuery [3] have been proposed recently. These
languages are based on path expressions to traverse irregu-
larly structured data. Therefore, the efficient support of
path expressions over XML data is a major issue in the field
of XML [11, 12].

The basic data model of XML is a labeled tree, where each
element or attribute is represented as a node in the tree, and
its tag corresponds to the label of the corresponding node.
This tree structured data model is simple enough to devise
efficient as well as elegant algorithms for it. Due to its
flexibility and simplicity, XML is rapidly emerging as the de
facto standard for exchanging and querying documents on
the Web required for the next generation Web applications
including electronic commerce and intelligent web searching.

Currently, a variety of research in the XML area has fo-
cused on issues related to XML storage [10], retrieval [8, 17],
path indexes [5, 11]and publication [9, 19]. Although some
XML data are managed in the XML storage, large portions
of XML data are still on native file systems as in the case of
HTML. Thus, in order for XML to become the true internet
standard, the research on the efficient management of the
file based XML is required.

One of the interesting applications for file based XML
is web searching. In this application, if each web server
manages its own data in the form of XML and transmits
it through the network, the storage and the network band-
width are wasted since XML data is irregular and verbose.
To overcome the verbosity problem, the research on com-
pressors for XML data has been conducted [16, 23].

XMill [16] was designed to minimize the size of compressed
XML data. However, XMill was not intended to support
querying compressed XML data.

Recently, XGrind [23] was devised to evaluate queries di-
rectly on compressed XML data. However, the encoding
scheme of XGrind does not sufficiently take account of the
properties of XML data and query languages. Tags and
data values are encoded by dictionary encoding and huff-
man encoding [15]. To evaluate a path expression, the query
processor parses and traverses compressed XML data. And,
whenever a new element (or attribute) is visited by the query
processor, the query processor finds the simple path of the
visited element (or attribute) and checks whether the incom-
ing path satisfies the given path expression. Furthermore,
some kinds of queries such as range queries always require



the partial decompression of compressed XML data.

1.1 Our Contributions
In this paper, we propose XPRESS, an XML compressor,

to compress XML data for the purposes of archiving, retriev-
ing and exchanging. XPRESS supports direct and efficient
evaluations of queries on compressed XML data.

In contrast to the web search engines for HTML, XML
search engines can use structural predicates such as path
expressions for search conditions since XML differentiates
the structure from contents. For example, if users want to
select XML files that contain some information about sales
of houses, users can submit a search condition like “∃(//
sales/house)”.

To perform the kinds of queries as mentioned above on
the compressed data in XMill, a complete decompression is
required. In XGrind, although the overhead for the complete
decompression is removed, the overhead of maintenance and
evaluation of the simple path to each element, similar to
that for uncompressed XML data, still remains. In contrast
to the other XML compressors, XPRESS gets rid of this
overhead by using a novel encoding method, called reverse
arithmetic encoding, and minimizes the overhead of partial
decompression by utilizing diverse encoding methods.

XPRESS has the following novel combination of charac-
teristics to compress and retrieve XML data efficiently.

• Reverse Arithmetic Encoding: Since existing XML
compressors simply represent each tag by using a unique
identifier, they are inefficient to handle path expres-
sions on compressed XML data. In contrast, XPRESS
adopts the reverse arithmetic encoding method that
encodes a label path as a distinct interval in [0.0, 1.0).
Using the containment relationships among the inter-
vals, path expressions are evaluated on compressed
XML data efficiently.

• Automatic Type Inference: Some XML compres-
sors compact data values of XML elements by using
predefined encoding methods (e.g., huffuman encod-
ing). However, according to the types of data values,
the kinds of efficient encoding methods are different.
In some XML compressors, the types of data values
are manually interpreted. Thus, if there is no hu-
man interference, data values of XML elements and
attributes are not compressed properly. In XPRESS,
to apply effective encoding methods to various kinds
of data values of XML elements, we devise an efficient
type inference engine that does not require the human
interference.

• Apply Diverse Encoding Methods to Different
Types: According to the inferred type information,
we apply proper encoding methods to data values.
Thus, we achieve a high compression ratio and min-
imize the overhead of partial decompression in the
query processing phase.

• Semi-adaptive Approach: Our compression scheme
is categorized as the semi-adaptive approach [14] which
uses a preliminary scan of the input file to gather
statistics. Since the semi-adaptive approach does not
change the statistics during the compression phase, the
encoding rules for data are independent to the loca-

tions of data. This property allow us to query com-
pressed XML data directly.

• Homomorphic Compression: Like XGrind, XPRESS
is a homomorphic compressor which preserves the struc-
ture of the original XML data in compressed XML
data. Thus, XML segmentations that satisfy given
query conditions are efficiently extracted.

We implemented XPRESS and conducted an extensive
experimental study with real-life XML data sets. In our
experiment, XPRESS demonstrates significantly improved
query performance and reasonable compression ratio com-
pared to the other XML compressors. On the average, the
query performance of XPRESS is 2.83 times better than that
of an existing XML compressor and the compression ratio
of XPRESS is 73%.

1.2 Organization
The remainder of the paper is organized as follows. In Sec-

tion 2, we present general purpose compression methods and
compression tools for XML data. In Section 3, we present
the features of XPRESS. Section 4 describes the compression
techniques of XPRESS. Section 5 contains the result of our
experiments which compares the performance of XPRESS to
those of the other XML compressors. Finally, in Section 6,
we summarize our work and suggest some future studies.

2. RELATED WORK
The data compression has a long and rich history in the

field of information theory [15, 20].
One advantage of data compression is that the required

disk space of data can be reduced significantly. The second
advantage is the saving of the network bandwidth. Since
the overall size of data is decreased, much more data can
be transferred through the network within a given period of
time. Another advantage is that data compression improves
the overall performance of database systems. By compress-
ing data, more information can be loaded in the buffer and
the number of disk I/Os is reduced. Therefore, the perfor-
mance of database systems is enhanced.

According to the ability of data recovery, compression
methods are classified into two groups: the lossy compres-
sion and the lossless compression.

The lossy compression reduces a file by permanently elim-
inating certain information. The data compressed by the
lossy compression cannot be reconstructed into the original
data by the decompression. Thus, in this paper, we do not
address the lossy compression since the lossless recovery is
required for textual information.

The lossless compression is categorized into three groups:
static, semi-adaptive, adaptive [14]. The static compression
uses fixed statistics or does not use any statistics. The semi-
adaptive compression scans the input data to gather statis-
tics preliminarily and rescans the data to compress. In the
semi-adaptive compression, the statistics are not changed
during the compression phase. The adaptive compression
does not require any prior statistics. Statistics are gathered
dynamically, and updated during the compression phase.

The representative compression methods of the static com-
pression are dictionary encoding, binary encoding and differ-
ential encoding.

The dictionary encoding method assigns an integer value
to each new word from the input data so that each word in



the input data can be compressed by using a uniquely as-
signed integer value. Encoded values by the dictionary en-
coding method do not preserve the order relationship among
original data items. Some special types of data such as nu-
meric data can be encoded in binary, e.g., integer or floating.
This is called the binary encoding method. The differential
encoding method, also called delta encoding, replaces a data
item with a code value that defines its relationship to a spe-
cific data item. For example, a data sequence of 1500, 1520,
1600, 1550 will be encoded as 1500, 20, 100, 50.

Since the static approach does not consider the nature of
given data, compression ratios are quitely different depend-
ing on the input data. Thus, it is important to adopt proper
encoding methods on account of data properties.

In the semi-adaptive encoding method, huffman encod-
ing [15] and arithmetic encoding [24] are the examples.
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Figure 1: An example of the huffman tree

The basic idea of the huffman encoding method is to as-
sign shorter codes to more frequently appearing symbols and
longer codes to less frequently appearing symbols. To assign
a code to each character, a binary tree, called the huffman
tree, is constructed by using the statistics gathered by a
preliminary scan. A simple example of the huffman tree is
shown in Figure 1. The leaf nodes of the huffman tree are
assigned symbols in input data. The value in a leaf node is
the frequency of the symbol. The left edges of the huffman
tree are labeled with 0 and the right edges are labeled with
1 so that the code assigned to each symbol is the sequence of
labels starting from the root to the leaf node of the symbol.
The code generated by huffman encoding does not keep the
order information among symbols.

The arithmetic encoding method represents a given mes-
sage by choosing any number from a calculated interval.
Symbols are assigned disjoint intervals according to their
frequencies. Successive symbols of a message reduce the
length of the interval of the first symbol in accordance with
the frequencies of the symbols. After reducing the length of
the interval by applying all the symbols of the message, the
message is transformed into a variable length bit string that
represents any number within the reduced interval.

In the adaptive compression, adaptive huffman encoding,
adaptive arithmetic encoding, and LZ encoding are repre-
sentatives. These methods dynamically update statistics
of each symbol based on the previous statistics (see details
in [18]).

Recently, some research on compressors for XML data has
been conducted. The representative XML compressors are
XMill and XGrind.

XMill physically separates XML tags and attributes from
their data values and groups semantically related data values

into containers. XML tags and attributes are compressed
by the dictionary encoding method. Each container can be
compressed by a user specified encoding method. In or-
der to apply specialized compressors to containers, it needs
the interpretations of containers from human. Finally, each
compressed container is recompressed by a build-in library,
called zlib.

A distinguishable feature of XGrind compared to XMill
is that it supports querying compressed XML data. In
XGrind, data values are compressed by huffman encoding
or dictionary encoding and tags are compressed by dictio-
nary encoding. Using DTD, XGrind determines to apply
huffman encoding or dictionary encoding for a certain at-
tribute value. In XGrind, to evaluate a path expression,
whenever an element is visited by the query processor, the
identifier sequence which represents the label path from the
root element to the currently visited element is found and
the query processor checks whether this identifier sequence
satisfies the path expression. In addition, to evaluate range
queries on compressed XML data, a partial decompression
is always required since huffman encoding and dictionary
encoding do not preserve any order information.

3. FEATURES OF XPRESS
In this section, we present the major features of XPRESS

which support effective query processing on compressed XML
data. In our work, we do not distinguish attributes from
elements since attributes in XML data are considered as
specific elements.

To support an effective evaluation of path expressions, we
devise a novel encoding method, called reverse arithmetic
encoding, which is inspired by arithmetic encoding. We first
define some notations with a simple XML data to explain
our proposed encoding method.

<book>
<author> author1 </author>
<title> title1 </title>
<section>

<title> title2 </title>
<subsection>

<subtitle> title3 </subtitle>
...

</subsection>
</section>

</book>

Figure 2: An example of XML data

Definition 1. A simple path of an element en in XML data
is a sequence of one or more dot-separated tags t1.t2 . . . tn,
such that there is a path of n elements starting from the
root element e1 to en and the tag of the element ei is ti.

For example, in the XML data shown in Figure 2, the sim-
ple path of a subsection element is book.section.subsection.

Definition 2. When the simple path of an element e in
XML data is a1.a2 . . . an, a dot-separated tag sequence bk.bk+1

. . . bn is a label path of e if we have bk = ak, bk+1 = ak+1

. . . bn = an, where 1 ≤ k and k ≤ n. Furthermore, for two
label paths, P= pi . . . pn and Q=pj . . . pn of e, if i ≥ j, then
we call P is a suffix of Q.



Again in Figure 2, section.subsection is a label path of
the subsection element. And, subsection is a suffix of sec-
tion.subsection. In XML, the structural constraints of queries
are based on the label path such as //section/subsection.

Now, we present the reverse arithmetic encoding method.
In contrast to existing XML compressors that transform the
tag of each element to an identifier, reverse arithmetic en-
coding represents the simple path of an element by an in-
terval of real numbers between 0.0 and 1.0. The basic idea
of reverse arithmetic encoding is simple but elegant.

First, reverse arithmetic encoding partitions the entire in-
terval [0.0, 1.0) into subintervals, one for each distinct ele-
ment (in contrast to one of multiple elements with same
tag). An interval for element T is represented as IntervalT .
The size of IntervalT is proportional to the frequency (nor-
malized by the total frequency) of element T. The following
example shows the intervals for elements in Figure 2.

Example 1. Suppose that the frequencies of elements =
{book, author, tile, section, subsection, subtitle} are {0.1,
0.1, 0.1, 0.3, 0.3, 0.1}, respectively. Then, based on the
cumulative frequency, the entire interval [0.0, 1.0) is parti-
tioned as follows:

element frequency cumulative IntervalT
frequency

book 0.1 0.1 [0.0, 0.1)
author 0.1 0.2 [0.1, 0.2)
title 0.1 0.3 [0.2, 0.3)

section 0.3 0.6 [0.3, 0.6)
subsection 0.3 0.9 [0.6, 0.9)
subtitle 0.1 1.0 [0.9, 1.0)

Next, reverse arithmetic encoding encodes the simple path
P= p1.. . . .pn of an element e into an interval [mine, maxe)
using the algorithm in Figure 3.

Function reverse arithmetic encoding(P= p1.. . . .pn)
begin
1. [mine, maxe) := Intervalpn

2. if(n = 1) return [mine,maxe)
3. length := maxe - mine

4. [qmin, qmax) := reverse arithmetic encoding(p1.. . . .pn−1)
5. mine := mine + length* qmin

6. maxe := mine + length* qmax

7. return [mine, maxe)
end

Figure 3: An algorithm of reverse arithmetic encod-
ing

Intuitively, the function reverse arithmetic encoding re-
duces Intervalpn using the interval for the simple path p1 . . . pn−1

where pn is the tag of the element e. For understanding, we
used a recursive function call in Line (4) in Figure 3. Ba-
sically, we encode the simple path of an element in a given
XML data to an interval starting from the root element to
other elements in the depth first tree traversal. Therefore,
the recursion is not necessary in implementation since [qmin,
qmax) has already been computed at the time of encoding
the parent element of e. Thus, the time complexity to com-
pute all intervals of elements can be easily shown to be O(E),
where E is the number of elements in a given XML data.

Example 2 which is the continuation of Example 1 illus-
trates the behavior of reverse arithmetic encoding.

Example 2. The interval [0.69, 0.699) for a simple path
book.section.subsection in Figure 2 is obtained by the follow-
ing process:

element simple path IntervalT subinterval
book book [0.0, 0.1) [0.0, 0.1)

section book.section [0.3, 0.6) [0.3, 0.33)
subsection book.section.subsection [0.6, 0.9) [0.69, 0.699)

The intervals generated by reverse arithmetic encoding
express the relationship among label paths as follows:

Property 1. Suppose that a simple path P is represented
as the interval I, then all intervals for suffixes of P contain
I.

For instance, the interval [0.6, 0.9) for a label path sub-
section and the interval [0.69, 0.78) for a label path sec-
tion.subsection contain the interval [0.69, 0.699) for a sim-
ple path book.section.subsection. If a label path expression
of a query is //section/subsection, this label path expres-
sion is represented as an interval [0.69, 0.78). And then, the
query processor efficiently selects the elements whose corre-
sponding intervals are within [0.69, 0.78). As a result, path
expressions based on label paths are effectively evaluated by
Property 1.

Finally, without any loss of information, the start tag of an
element e is replaced by the minimum value of the subinter-
val generated by the function reverse arithmetic encoding.
Since the minimum value of the subinterval is also consistent
to Property 1, the corresponding tag of a minimum value
can be obtained at the decompression phase easily using bi-
nary search of IntervalT s. In addition, path expressions are
evaluated at the query processing phase effectively.

Furthermore, reverse arithmetic encoding can be natu-
rally applied to some XML storage systems [21, 22] which
maintain the path information of individual elements by the
path identifier.

Our encoding scheme belongs to the semi-adaptive com-
pression. Since statistics, required in the XML compression
phase, are collected and fixed at the preliminary scan, the
generated code by XPRESS is independent to the location
of the corresponding symbol (tags and data values).

If the adaptive compression such as adaptive huffman en-
coding is applied, the compression time is saved since the
preliminary scan is not required. In the adaptive compres-
sion, the encoded value of a certain symbol is changed de-
pending on the location of the occurrence of the symbol
since the adaptive compression modifies the encoding model
(e.g., huffman tree) dynamically. Thus, to evaluate a query
with data value predicates, the complete decompression of
compressed XML data is required. This degrades the query
performance severely. Note that, generally, the XML data
compression is an one time operation and queries are eval-
uated repeatedly. Therefore, the two-scan overhead on the
XML data compression is compensated by frequent query
evaluations.

Also, at the preliminary scan, XPRESS infers the type
of data values of each distinct element. As described in
Section 2, depending on the type of data values, the effec-
tive data encoding methods are different. However, existing
XML compressors blindly use predefined encoding methods
or apply some encoding methods manually. For example, in



XMill, data values are bypassed to a built-in compression
library, zlib, if the data encoders are not specified manu-
ally. Additionally, in XGrind, the data values for elements
and general attributes are compressed by huffman encod-
ing and the data values of enumeration typed attributes are
compressed by dictionary encoding. Without considering
the nature of data values, the size of compressed XML data
may increase. Therefore, we devise an effective type infer-
ence engine which infers the type of data values of each
distinct element by simple inductive rules during the pre-
liminary scan phase.

In the compression phase, data values are compressed by
proper encoding methods according to their inferred types.
Although the huffman encoder and the dictionary encoder
are effective to general textual data, these methods do not
preserve the order relationship among data. That is, let two
data be v1, v2 and their corresponding compressed version
be c1, c2, then v1 > v2 6⇒ c1 > c2. Thus, to evaluate the
queries with the range of data values, a partial decompres-
sion should be performed.

While, for numeric typed data values, XPRESS applies
binary encoding first and then differential encoding with
the minimum value. For example, data values of element
e “120”, “150”, “100” “130” are transformed into integers
120, 150, 100, 130 and encoded as 20, 50, 0, 30. Since this en-
coding method preserves the order relationship among data
values, the overhead of a partial decompression for numeric
typed data is removed. However, XPRESS adopts the huff-
man encoder and the dictionary encoder for textual data
since we can not find an effective encoding method which
preserves the order relationship among textual data and
achieves similar compression ratios compared to those of the
huffman encoder and the dictionary encoder.

<A> 
<B> v1 </B>
<B></B>
<B>v2</B>

</A>

C0
T1

T2 C1 /
T2 /
T2 C1 /

/
C1
encode(v1)
encode(v2)

T1
T2 encode(v1) /
T2 /
T2 encode(v2) /

/

(a) OrignalXML     (b) Non-homomorphic (c) Homomorphic

Figure 4: An example of homomorphism

Like XGrind, XPRESS obeys the homomorphism [23].
The homomorphic compression technique preserves the struc-
ture of the original XML data on compressed XML data.

As shown in Figure 4-(b), some XML compression tools
such as XMill physically separate structures (i.e., tag) and
data (i.e., value). Here, the tags A and B are encoded as T1
and T2, respectively, and the end tags are replaced by ’/’.
By applying this technique, a built-in compression library
such as zlib can reduce the size of compressed XML data
well since the strings which have semantically/syntactically
similar properties are grouped into a container. However,
this technique incurs difficulty in query processing. For ex-
ample, to compute a query “/A/B[text()=’v2’]” on com-
pressed XML data in Figure 4-(b), two file pointers are
needed to keep the currently visited locations of the first

container (C0) and the second container (C1)1. If the struc-
ture of XML data and/or the predicates of queries are very
complex, a dedicated handling of multiple file pointers is
required. However, handling the multiple file pointers effec-
tively is very hard and results in inefficient query process-
ing. In contrast to the non-homomorphic compression, since
the homomorphic compression preserves the structure of the
original XML data, the homomorphic compression allows us
to evaluate queries and extract XML segmentations which
satisfy given query conditions efficiently.

As a result, based on the above features, the compressed
XML data generated by XPRESS supports the query pro-
cessing effectively without the complete decompression of
compressed XML data.

4. COMPRESSION TECHNIQUES IN XPRESS
In this section, we present the architecture of XPRESS

and detailed techniques developed for XPRESS.
Based on the features described in Section 3, we designed

the architecture of XPRESS as depicted in Figure 5.
The core modules of XPRESS are XML Analyzer and

XML Encoder. As mentioned earlier, the compression scheme
of XPRESS is categorized as the semi-adaptive compression.
During the preliminary scan of given XML data, XML An-
alyzer (see details in Section 4.1) is invoked. XML Analyzer
gathers the information used by XML Encoder (see details
in Section 4.2) which generates queriable compressed XML
data.

XML Analyzer consists of two submodules: the statistics
collector and the type inference engine. The statistics col-
lector computes the adjusted frequency (see Section 4.1) of
each distinct element. The adjusted frequencies of elements
are used as inputs to the reverse arithmetic encoder. The
type inference engine infers the type of data values of each
distinct element inductively and produces the statistics for
the type dependent encoders in XML Encoder.

4.1 XML Analyzer
The main algorithm of XML Analyzer is shown in Fig-

ure 6.

Function XML Analyzer()
begin
1. Pathstack := new Stack();
2. Elemhash := new Hash();
3. do {
4. Token := XMLParser.get Token()
5. if(Token is a tag)
6. Statistics Collection(Token, Pathstack, Elemhash)
7. else //Token is a data values
8. Type Inferencing(Token, Pathstack, Elemhash)
9. }while(Token != EOF)
10. return Elemhash
end

Figure 6: An algorithm of XML Analyzer

To compute the frequency of each distinct element, the
procedure Statistics Collection is executed. To infer the
types of data values, the procedure Type Inferencing is ex-
ecuted. The algorithm XML Analyzer generates a hash ta-
ble called Elemhash. The entry of Elemhash is ELEMINFO
1each container is represented by a dotted box in Figure 4-
(b)
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which keeps the information (e.g., type of data values, fre-
quency) of each distinct element. A stack called Pathstack
is used to keep the trace of the currently visited element.

To get IntervalT for each distinct element, the statistics
collector can simply count the number of occurrences of each
distinct element. However, since tags of higher level ele-
ments (e.g., the root element) appear rarely, the intervals
for simple paths shrink quickly. This requires the use of
high precision floating arithmetic.

book

author title section

title subsection

7

1 1 4

1
2

(a) weighted frequency        (b) adjusted frequency

2subsection
1subtitle

3section
1title
1author
6book

subtitle 1

Figure 7: Various frequencies

To prevent the rapid shrinking of an interval, we can use
the concept of the path tree which is devised for the selec-
tivity estimation of XML path expressions [1]. Every node
in the path tree represents a simple path of XML data. The
path tree of XML data in Figure 2 is shown in Figure 7-
(a). In the original path tree of [1], each node keeps the
number of elements reachable by the path starting from the
root node to the node. As shown in Figure 7-(a), a node
in our path tree keeps the number of subnodes including
itself which we call the weighted frequency. Thus, intervals
for higher level elements are enlarged and the intervals for
simple paths do not shrink quickly. However, as mentioned
in [1], the path tree consumes a large amount of memory, in
the worst case, O(E), where E is the number of elements.

Thus, instead of the path tree, we use a simple heuristic:
if we visit an element whose tag is a new tag, then we in-
crease the frequencies of elements which are ancestors of the
currently visited element. Thus, like the weighted frequency,
the intervals for higher level elements are enlarged. We call
this frequency the adjusted frequency.

Our simple heuristic method requires O(L) space, where
L is the length of the longest simple path in given XML
data. Furthermore, our method is more efficient than that
of the path tree. Whenever a new node in the path tree is
created, the weighted frequencies of ancestor nodes of the
new node should be increased by 1. However, our method

increases the adjusted frequencies of ancestor nodes when an
element with a new tag appears. As illustrated in Figure 7-
(b), with the reduction of space requirement and enhanced
performance, we can obtain the statistics similar to those of
the path tree.

Procedure Statistics Collection(Token, Pathstack, Elemhash)
begin
1. if(Token is START TAG) {
2. Pathstack.push(Token)
3. eleminfo := Elemhash.hash(Token)
4. if (taginfo = NULL) {
5. eleminfo := new ELEMINFO(Token)
6. Elemhash.insert(eleminfo)
7. for each token t in Pathstack do {
8. tempinfo := Elemhash.hash(t)
9. tempinfo.adjusted frequency += 1
10. Elemhash.total frequency += 1
11. }
12. }
13. } else // Token is END TAG
14. Pathstack.pop()
end

Figure 8: The algorithm of the statistics collector

The algorithm of the statistics collector is presented in
Figure 8. The input token is a tag. The trace of the cur-
rently visited element is kept by Pathstack (Line (2) and
Line (14)). The hash at Line (3) is the hash function which
returns an ELEMINFO for a given tag. Thus, when an el-
ement with a new tag appears, the hash function returns
NULL (Line (4)). Then, the statistics collector makes an
ELEMINFO for the element (Line (5)-(6)) and increases the
adjusted frequencies for ancestors of the element including
itself (Line (7)-(11)). At Line (10), we accumulate the total
frequency to normalize the adjusted frequencies.

To produce the statistics of the inferred type for data val-
ues of each distinct element, the ELEMINFO has five fields:
inferred type, min, max, symhash and chars frequecy. The
inferred type field keeps the type of data values, up to now.
The inferred type is set as undefined initially. The min and
max fields keep the track of the minimum binary value and
the maximum binary value of data values, respectively. The
symhash field is a hash table which keeps distinct data val-
ues. This symhash can be used as a dictionary for the dic-
tionary encoder when the type of an element is the enumer-
ation. The chars frequency is an integer array which keeps
the frequencies of individual characters of data values. This



chars frequency field is used to build a huffman tree for the
huffman encoder. To obtain the proper statistics of data
values of each distinct element, the algorithm of the type
inference engine shown in Figure 9 is executed.

Procedure Type Inferencing(Token, Pathstack, Elemhash)
begin
1. Tag := Pathstack.top()
2. eleminfo := Elemhash.hash(Tag)
3. type := Infer Type(Token)
4. switch(eleminfo.inferred type) {
5. case undefined :
6. case integer :
7. if(type = integer){
8. eleminfo.inferred type := integer
9. intvalue := get IntValue(Token)
10. eleminfo.min := MIN(eleminfo.min, intvalue)
11. eleminfo.max := MAX(eleminfo.man, intvalue)
12. eleminfo.symhash.insert(Token)
13. eleminfo.accumulate chars frq(Token)
14. }
15. else { // string
16. eleminfo.symhash.insert(Token)
17. if(the number of entries in eleminfo.symhash < 128) {
18. eleminfo.inferred type := enumeration
19. }else eleminfo.inferred type := string
20. eleminfo.accumlate chars frq(Token)
21. }
22. break
23. case enumeration :
24. . . .
25. break
26. case string :
27. eleminfo.accumlate chars frq(Token)
28. break
29. }
end

Figure 9: The algorithm of the type inference engine

The input token of Type Inferencing is a data value. As
mentioned above, Pathstack keeps the trace of currently vis-
ited elements. Thus, the tag of the element which is the
owner of the given data value is at the top of Pathstack
(Line (1) in Figure 9). Therefore, we obtain the correspond-
ing ELEMINFO using this tag easily (Line (2)).

The function Infer Type at Line (3) infers the type of the
given data value using a simple rule such that: if all char-
acters of the data value are numeric (‘0’s‘9’) and the first
character is not ‘0’, then Infer Type returns integer which
denotes that the data value is an integer. Otherwise, we
consider the type of the data value as a string.

If the type of the element is an integer or undefined and
the type of the given data value is an integer (Line (5)-(14)),
then we transform the data value into a binary value (Line
(9)) and adjust the min and max fields using the binary value
(Line (10)-(11)). The inferred type can be changed even
though the currently inferred type is an integer. Thus, to
prepare for the future change, we also maintain the symhash
field and chars frequency field, properly (Line (12)-(13)).

If the type of the data value is a string (Line (15)-(21)),
we change inferred type. Even though the preceding data
values are integers, we change inferred type since the in-
teger type does not express the string but the string type
can express the numeric typed data using numeric charac-
ters. XPRESS has two types for textual data : enumer-
ation and string. The string type is for general textual

data, while the enumeration type is for the special string
whose number of distinct values is less than 128. To keep
the distinct values, the hash table, symhash, discards dupli-
cated string (Line (12) and (16)). Thus, if the number of
distinct entries of symhash is less than 128, we assign enu-
meration to inferred type. Otherwise, we assign string to
inferred type. Also, because inferred type can be changed
to string, chars frequency field is updated (Line (20)).

When inferred type is enumeration (Line (23)-(25)), we
only check whether inferred type can be changed to string
without considering the type of the given data value. Thus,
Line (24) is the same as Line (16)-(20). If inferred type
is string, chars frequency field is updated only (Line (26)-
(28)).

For brevity, we omit the behavior for the floating type.
However, the extension of the algorithm for the floating type
is straightforward.

4.2 XML Encoder
In this section, we describe the details of XML Encoder

which compresses XML data using various encoders.
There are six encoders for data values in XPRESS, shown

in Table 1. Each distinct element has its own encoder which
is one of six encoders.

Encoder Description

u8 encoder for integers where max-min< 27

u16 encoder for integers where 27 + 1 <max-min< 215

u32 encoder for integers where 215 + 1 <max-min< 231

f32 encoder for floating values
dict8 dictionary encoder for enumeration typed data
huff huffman encoder of textual data

Table 1: Data Encoders

u8, u16, u32 and f32 are the differential encoders for nu-
meric data and dict8 and huff are the encoders for textual
data.

As mentioned in Section 3, the encoders for numeric data
transform the numeric data into binary and apply differen-
tial encoding with the minimum value obtained by the type
inference engine. Note that the most significant bit (MSB)
of the encoded value by the numeric data encoders is 0. u8,
u16 and u32 use 7 bits, 15 bits and 31 bits, and generate
one byte, two bytes and four bytes, respectively.

1                             8                       16        24                    32
S    E                                  M

sign(1bit) biased exponent(8bits) mantissa(23bits)

Figure 10: IEEE 32bit floating point standard 754

A floating value generated by the encoder f32 is always
positive since f32 generates the difference from the minimum
value. Thus, the sign bit in Figure 10 is always 0. Also, the
encoder dict8 uses maximally 7 bits since, as described in
Section 4.1, the number of distinct string values is less than
128(= 27). Thus, the MSB of one byte generated by dict8
is also 0.

In contrast to the other encoders, the encoder huff gen-
erates variable length encoded sequences. To parse this en-
coded sequence easily, we divide the encoded sequence into
subsequences whose lengths are less than 128 and put one
byte in front of each subsequence to denote the length of it.



The encoded sequence whose length is less than 128 is not
partitioned but has one byte for the length. Therefore, the
MSB of each sequence or subsequence is always 0 since its
length is less than 128. Consequently, in XPRESS, every
MSB of encoded values for data values is 0.

Until now, we described the encoders for data values.
Next, we present the encoder for tags.

Start tags of individual elements are encoded by reverse
arithmetic encoding using simple paths. In practice, we im-
plement an approximated encoder, called the approximated
reverse arithmetic encoder (ARAE), to improve the com-
pression ratio and to parse compressed XML data without
ambiguity.

Every MSB of the code generated by ARAE is 1. As men-
tioned above, every MSB of encoded data values is 0. Thus,
the parser for compressed XML data easily distinguishes
data from structure.

To do this, ARAE adds 1.0 to the minimum floating value
of the interval for a simple path. Since the minimum floating
value generated by reverse arithmetic encoding is in [0.0,
1.0), the added value is in [1.0, 2.0). According to the IEEE
floating point representation (see Figure 10), a floating value
is represented as S×1.M×2E−127. For example, the binary
representation of 1.25 is 1.01 and this is transformed into
1×1.01×20. Thus, S = 0, E = 0+127 = 0111 1111, and M
= [1.]01. The first bit2 of the second byte for every floating
value in [1.0, 2.0) is always 1 since the sign bit and the biased
exponent are 0 and 127 (= 0111 1111), respectively. Thus,
by cutting the first byte, the MSB of the code generated by
ARAE is always 1.

In addition, to reduce the size of compressed XML data,
ARAE truncates the last byte. Due to the reduction of
the precision, the code generated by ARAE may not always
represent the corresponding simple path exactly. However,
at least, the code generated by ARAE represents the tag of
an element. As described in Example 3, the generated code
still represents a label path (i.e., a suffix of a simple path).

Example 3. Suppose that ARAE truncates digits less than
10−2 (i.e., last 17 bits) and that tags and corresponding
IntervalT s are the same as those in Example 1. The in-

1.9      1.96       1.969       1.9699       1.978     1.99    2.0

subtitle

subsection.subtitle
section.subsection.subtitle

book.section.subsection.subtitle

terval for a simple path book.section. subsection.subtitle is
[1.0 + 0.9 + 0.1 × 0.69 = 1.969 , 1.0 + 0.9 + 0.1 × 0.699
= 1.9699). Then, the truncated value is 1.96 which is in the
interval [1.96, 1.99) for subsection.subtitle.

Therefore, this approximation does not damage the ac-
curacy and the efficiency of query processing. Recall that
the reduction of data size by the data compression induces
the performance improvement due to the reduction of disk
I/Os. Furthermore, common structural constraints of XML
queries are partial matching path expressions based on label
paths instead of simple paths since users may not know or
may not be concerned with the detailed structure of XML

2it is represented by the gray box in Figure 10

data and intentionally make the partial matching path ex-
pression to get intended results. But, note that too much ap-
proximation incurs the inefficiency of query processing since
a label path represented by the encoded value becomes too
short.

Finally, to distinguish start tags and end tags, the interval
[1.0+0.0 = 0x8000, 1.0+ 2−7 = 0x8100) is reserved. For all
end tags, one byte 0x80 (= 1000 0000) is assigned since the
codes for the interval start with 0x80. And codes for start
tags are always greater than or equal to 0x8100. Therefore,
the parser for compressed XML data distinguishes the codes
for start tags and the codes for end tags.

Procedure XMLEncoder(Elemhash)
begin
1. XMLParser.reinit()
2. Initialization(Elemhash)
3. Pathstack := new Stack()
4. IntevalStack := new Stack()
5. do {
6. Token := XML Parser.get Token()
7. if(Token is a tag)
8. ARAE(Token,Pathstack,Intervalstack,Elemhash)
9. else //Token is a data value
10. Encoding(Token,Pathstack,ElemHash)
11. } while(Token != EOF)
end

Figure 11: The algorithm of XML Encoder

The algorithm of XML Encoder is in Figure 11. First,
XML Parser is reinitialized to rescan a given XML file (Line
(1)). Then, for each distinct element, XML Encoder calcu-
lates IntervalT and chooses a proper encoding method (e.g.,
u8) using the function Initialization (Line (2)). To compute
IntervalT , we used the interval [2−7, 1.0-2−15] as the entire
interval instead of [0.0, 1.0) since [0.0, 2−7) is reserved for
end tags and the value less than 2−15 can not be represented
using 15 bits. Also, for the same reason, we adjust the length
of IntevalT to a number greater than 2−15. In general, this
case does not appear.

Pathstack is used to keep the information of an owner el-
ement of data values (Line (3)). To compute the interval
for the currently visited element, the interval for the par-
ent element is required. To keep the interval for a parent
element, a stack, called Intervalstack, is created (Line (4)).
And then, the token generated by XMLParser is compressed
by encoders of XPRESS (Line (5)-(11)).

4.3 Query Processing
To evaluate queries on compressed XML data generated

by XPRESS, we devise a query processor. The query pro-
cessor partitions a long label path expression into short la-
bel path expressions whose corresponding interval sizes are
greater than 2−15 using ARAE. Thus, a label path expres-
sion is transformed into a sequence of intervals. Generally,
the length of the sequence is 1 since a label path expres-
sion is usually short. By using the sequence of intervals,
the query executor tests elements in compressed XML data
whether their encoded values are in an interval of the se-
quence or not.

Data values of exact matching conditions in a query are
converted into encoded values. Then, the query processor
detects the elements which satisfy the label path expres-
sion and the value without decompression. Also, the range



condition for a numeric typed element are encoded by the
data value encoder for the element. Then, without the de-
compression of encoded values, the query is evaluated. For
the range condition for a textual typed element, a partial
decompression is required since our encoders (i.e., huff and
dict8) for textual data do not preserve the order information
among data values.

5. EXPERIMENTS
To show the effectiveness of XPRESS, we empirically com-

pared the performance of XPRESS with two representative
XML compressors XMill3 and XGrind4 as well as a general
compressor gzip using real-life XML data sets. In our ex-
periments, XPRESS shows a reasonable compression ratio
compared to XMill. To the best of our knowledge, there is
no XML compressor which supports querying compressed
XML data except XGrind. Thus, we compared the query
performance of XPRESS to that of XGrind. XPRESS shows
significantly better query performance than XGrind.

5.1 Experimental Environment
The experiments are performed on a Sun Ultra Sparc II

168MHz platform with Solaris 2.5.1 and 384 MBytes of main
memory. The data sets were stored on a local disk. In
our experiments, XMill does not have any user-specified en-
coders. In XGrind, the query processor of compressed XML
data does not support partial matching path queries. Thus,
we implemented a query processor which supports partial
matching path queries in XGrind.

Data Sets We evaluated XPRESS using three real-life
XML data sets: Baseball, Course, and Shakespeare. The
characteristics of the data sets used in our experiment are
summarized in Table 2. Size denotes the disk space of XML
data in MBytes, Depth is the length of the longest simple
path of each XML data set, Tags indicate the number of
distinct tags, Numeric represents the number of distinct el-
ements whose data values’ type is numeric(i.e., integer or
float), and Enum indicates the number of distinct elements
whose data values’ type is enumeration.

Data Set Size Depth Tags Numeric Enum
Baseball 17.06 6 46 19 5
Course 12.28 6 18 5 4

Shakespeare 15.3 5 21 0 0

Table 2: XML Data Set

The Baseball [13] contains the complete baseball statis-
tics of all players of each team that participated in the 1998
Major League. Since it contains statistics, it has many inte-
ger and float typed values. To test the effectiveness of large
sized XML data, we scale up the original data by 16 times.

The Course [2] addresses the description of courses held in
the University of Washington. Since it is for the description
of courses, it has some integer values to indicate schedule
lines, credits, and class rooms, and some enumerated values
to describe course code, title, days of classes, and building
names. We scale up the original data by 4 times.

The Shakespeare [7] is the collection of plays of Shake-
speare which is marked up by Jon Bosak. In our experiment,

3available in http://www.researech.att.com/sw/tools/xmill/
4available in http://sourceforge.net/projects/xgrind/

we concatenated 37 plays of Shakespeare into a single XML
document. And, we scale up the original data by 2 times.

Queries We evaluated XPRESS using several queries.
The characteristics of queries used in our experiment are
described in Table 3.

The first character in the first column indicates the data
set on which the query is executed: ‘S’ denotes the Shake-
speare, ‘B’ is for the Baseball and ‘C’ is for the Course. The
number in the Query name column represents the type of
queries. The queries of type 1 are path expressions based
on the simple path, the queries of type 2 are partial match-
ing path expressions, the queries of type 3 are complicated
partial matching path expressions, and the queries of type 4
are partial matching path queries with the range of data val-
ues. Query definition in Table 3 describes the corresponding
XPath queries.

We choose these kinds queries for the following reasons.
Queries of type 1 evaluate the query performance for long
path expressions. Queries of type 2 test the query perfor-
mance of simple partial matching path queries. Query type
3 is similar to query type 2 but is more complicated than
query type 2. Finally, to measure the query performance of
range queries, we choose the query type 4. The query type
4 represents a general query style since, generally, users do
not know the entire structure of XML data and want to se-
lect XML fragmentations for a certain range of values. In
addition, B4 is the range query of the enumeration typed
data values, C4 is the range query of the integer typed data
values and S4 is the range query of the general textual data
values.

5.2 Experimental Results
In this section, we first present the compression ratio of

each compressor. The compression ratio is defined as fol-
lows:

Compression ratio = 1− Size of compressed XML data

Size of original XML data

And, we report the compression time of each compressor.
In addition, to show the effect of zlib in XMill, we show the
compression ratio of gzip which is applied to the compressed
XML data of XPRESS and XGrind. Lastly, we show the
query performance of XPRESS with that of XGrind.
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Figure 12: Compression ratio

Figure 12 shows the compression ratios for different data
sets and compressors. For each data set, the four con-
nected bars represent XMill, gzip, XGrind and XPRESS.
Since XMill uses the dictionary encoding method for struc-



Query name Query definition
B1 /SEASON/LEAGUE/DIVISION/TEAM/PLAYER/GIVEN NAME
B2 //TEAM/PLAYER/SURNAME
B3 /SEASON/LEAGUE//TEAM/TEAM CITY
B4 /SEASON/LEAGUE//TEAM[TEAM CITY >= Chicago and TEAM CITY <= Toronto]
C1 /root/course/selection/session/place/building
C2 //session/time
C3 /root/course//session/time/start time
C4 /root/course//session/time[start time >= 800 and start time <= 1200]
S1 /PLAY/ACT/SCENE/SPEECH/STAGEDIR
S2 //PGROUP/PERSONA
S3 /PLAY/ACT//SPEECH/SPEAKER
S4 /PLAY/ACT//SPEECH[SPEAKER>= CLEOPATRA and SPEAKER <= PHILO]

Table 3: XML Query Set

tural information, and groups semantically related data val-
ues into containers before compressing with zlib, as we ex-
pected, XMill achieved the best compression ratio, on the
average of 92%. The average compression ratio of XPRESS
is 73%. Since XPRESS uses the type inference engine to
apply appropriate compression methods for data values, it
performs well if the data values are enumeration, floating,
or integer type. Thus, the compression ratio of XPRESS
for the Baseball is better than that for the other data sets
since the Baseball contains many numeric typed data values.
As shown in Table 2, the Shakespeare does not contain any
numeric and enumeration typed data. For the Shakespeare
data set, the compression ratio of XPRESS is slightly lower
than that of XGrind since the huffman encoder in XPRESS
inserts the length of an encoded value in front of the value.
However, XPRESS shows a reasonable compression ratio for
all cases.
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Figure 13: Compression time

Figure 13 shows the compression time of each compressor.
In our experiments, XGrind shows the worst compression
time. As mentioned earlier, to determine the data value
encoders (i.e., huffman encoding and dictionary encoding),
XGrind uses DTDs. To parse and obtain some information
from DTDs, XGrind adopts a shareware XML parser. Thus,
the overhead of XML parsing and DTD validation is huge.
In contrast to XGrind, XPRESS and XMill parse the XML
document efficiently since they do not use any information
from DTDs.

Also, XGrind encodes data values using the huffman en-
coder. Generally, huffman encoding is less efficient than
differential encoding due to the massive traverse of the huff-
man tree. Furthermore, XGrind checks whether encoded
data values by huffman encoding have predefined symbols

for tags and inserts escaped characters to parse compressed
XML data easily. However, the huffman encoder in XPRESS
dose not use the same procedure since it locates the length
of an encoded value in front of the value. In addition, us-
ing proper encoding methods that are determined by the
inferred types, XPRESS has much better compression time
compared to that of XGrind. XMill and gzip show the best
performance of data compression since they compress XML
data by one scan. In the evaluation of the decompression
time, the result shows the similar pattern of the compression
time. Thus, we omit the graph of the decompression time.
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Figure 14: Compression ratio after performing gzip

In addition, to show the effect of the built-in compres-
sion library zlib in XMill, we re-compressed the compressed
files generated by XGrind and XPRESS using gzip which
uses zlib internally. The result is shown in Figure 14. In
Figure 14, as we expected, XMill still shows the best com-
pression ratio. Since XMill groups semantically related data
values into same containers, zlib effectively compresses XML
data. However, the compression ratios of the re-compressed
XML data by gzip are very close to that of XMill. Thus,
for archiving, applying gzip selectively for compressed XML
data which is seldom queried is another alternative.

Although XMill shows the best performance in the com-
pression ratio and the compression time, XMill does not
support querying compressed XML data. Thus, to show the
effectiveness of XPRESS, we compared the query perfor-
mance of XPRESS to that of XGrind which support query-
ing compressed XML data.

We plotted the query processing cost of all the queries for
the three data sets in Figure 15. The query performance of
XPRESS outperforms that of XGrind over all cases.
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Figure 15: Query evaluation time

The query cost of query type 1 (i.e., B1, C1, and S1) shows
that the approximated reverse arithmetic encoder does not
incur the degradation of efficiency. Since the lengths of path
expressions in query type 2 (B2, C2, and S2) are short and
simple, the query processing cost is cheaper than those of
query type 3 and query type 4. Thus, the difference of query
performance of query type 2 between XPRESS and XGrind
is less conspicuous than those of query type 3 and query
type 4. However, the query performance of XPRESS for
complicated path expressions (B3, C3, and S3) outperforms
that of XGrind since the query processor of XPRESS effi-
ciently evaluates the queries using reverse arithmetic encod-
ing. Also, for range queries, the performance gap increases
since XPRESS minimizes the overhead of a partial decom-
pression using order preserved encoders. Of particular in-
terest is the performance gap for S4. The huffman encoder
of XPRESS inserts the length of an encoded sequence in
front of the sequence, while the huffman encoder of XGrind
inserts escaped characters into an encoded sequence. Thus,
in XGrind, escaped characters are eliminated from the en-
coded sequences to decompress the encoded sequence by the
huffman decoder. Therefore, the overhead of a partial de-
compression of XPRESS is less than that of XGrind. On the
average, the query performance of XPRESS is 2.83 times
better than that of XGrind.

Consequently, XPRESS achieves significantly improved
query performance compared to XGrind and shows the rea-
sonable compression ratio.

6. CONCLUSION
In this paper, we propose XPRESS, an XML compressor

which supports direct and efficient querying on compressed
XML data. In XPRESS, we devise a novel encoding method,
called reverse arithmetic encoding, which encodes a label
path to a distinct interval in [0.0, 1.0). Using the contain-
ment relationships among the intervals, path expressions are
evaluated on compressed XML data effectively. Further-
more, to save the disk space, we implement the approxi-
mated reverse arithmetic encoder which does not incur the
loss of the accuracy and the efficiency. Also, to apply proper
encoders for data values, we devise an efficient type inference

engine and, by inferred type information, XPRESS encodes
the data values. Since the encoders for numeric typed data
values do not lose the order information, we minimize the
overhead of a partial decompression for range queries.

We implemented XPRESS and a query processor for com-
pressed XML data. To show the efficiency of XPRESS,
we conducted an extensive experimental study with real-life
XML data sets. Experimental results show that XPRESS
improves query performance significantly. The compression
ratio of XPRESS is superior to that of another XML com-
pressor which supports direct querying compressed XML
data. On the average, the query performance of XPRESS is
2.83 times better than that of an existing XML compressor
and the compression ratio of XPRESS is 73%.

Currently, the type inference engine of XPRESS distin-
guishes the numeric data and textual data. Thus, for our
future work, we plan to extent XPRESS to support complex
typed data values such as URI (Uniform Resouce Identifier)
using data mining algorithms.
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