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Abstract
We propose a new object decomposition method, called
DMBRs, to improve the performance of spatial query
processing. This method is suitable for complex spatial
objects in real-world geographic applications. The basic
idea is that a polygon is recursively divided into two sub-
polygons by splitting its MBR until a given constraint is
satisfied. To increase the efficiency of the DMBRs method,
an extension of an existing spatial indexing structure is
presented. Since this new structure can prune a number of
false hits quickly, the performance of spatial query
processing can be improved. The proposed method is
compared with traditional decomposition methods by an
analytical study. This comparison shows that our decom-
position method outperforms the traditional decomposition
methods.

1  Introduction

Queries in spatial databases are usually concerned with
massive volumes of data and complex spatial objects.
Spatial objects are characterized by extremely irregular
geometric components which do not conform to any fixed
shapes, and by multi-dimensional data which consist of a
large number of coordinates describing the outline of spatial
objects. If there are a large number of such complex objects,
searching a particular spatial object would be expensive,
since a number of geometric computations are required for
exact calculations in locating the spatial object. In order to
locate a spatial object efficiently, the spatial object, in
general, has to be approximated before any geometric
computations are applied. For the efficient approximation of
spatial objects, many database researchers [1-3] have been
considerably interested in the object decomposition.
However, while most of them focused on simple spatial
objects  such as points, lines and rectangles,
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very little attention was devoted to complex spatial objects.
  In this paper, we propose a new object decomposition
method for complex spatial objects such as city, road and
lake in real-world geographic applications. To increase the
efficiency of our proposed method, an existing spatial
indexing structure is extended. Under this structure, we
derive point, region and spatial join query algorithms. The
proposed method is compared with traditional decom-
position methods by an analytical study. This comparison
shows that our decomposition method is superior to the
traditional decomposition methods.
  This paper is organized as follows. Section 2 surveys
related works. Section 3 proposes a new object decom-
position method. Section 4 describes an extension of an
existing indexing structure, and algorithms of typical spatial
queries for this new structure. In Section 5, we determine an
optimal value of the parameter for the proposed method.
Section 6 presents a performance comparison between this
new method and traditional decomposition methods. Finally,
conclusions appear in Section 7.

2  Related work and problem

There are two approaches to approximate spatial objects.
The first approach is that a smallest aligned rectangle
enclosing an object, a minimum bounding rectangle(MBR),
is used to approximate an irregularly shaped spatial object.
MBRs allow appropriate proximity query processing by
preserving the spatial identification and eliminating many
potential intersection tests quickly. For instance, two
objects will not intersect if their MBRs do not intersect.
Most of approximation methods[4-6] based on traditional
spatial access methods are fallen to this approach. The
second approach is that a more accurate approximation
than the MBR, such as a convex container, can be used to
approximate a spatial object. This approach is expected to
improve the performance of query processing by increasing
the quality of the approximation for original objects.
Convex approximations[7] and object decomposition tech-
niques[8] are fallen to the second approach.
  Two well known approximation methods, the filtering-
refinement[9] and the object transformation[10,11], may be
considered in the first approach. In the filtering-refinement
method, the filter step reduces the entire set of objects to a
subset of candidates using their MBRs, and then the
refinement step inspects the exact representation of each



object of the candidates. Although MBRs provide a fast
approximation by existing spatial access methods designed
for MBR containers, they are considered as a rather in-
accurate approximation since a simple rectangle cannot
exactly represent an arbitrary spatial object. By the coarse
approximation of this method, the candidates may contain a
number of 'false hits' not fulfilli ng the query condition.
Furthermore, the whole candidates have to be transmitted
into the refinement step even if they would result in 'false
hits.' In the object transformation method, k-dimensional
spatial objects are transformed to 1-dimensional bitstrings,
or k-dimensional intervals are transformed to points in 2k-
dimensional space. Nevertheless, this method also has a
rough approximation since its mapping was done under the
assumption that spatial objects are MBRs.
  Convex approximations and object decomposition tech-
niques in the second approach have been attempted to
improve the quality of the approximation. However, convex
approximations using more complex containers require
more complex spatial access methods, since complex
containers need more parameters than MBRs. Moreover,
the use of one container on an original complex object
representation cannot decrease the complexity of the spatial
object. This means that time-consuming geometric
computations have to be applied for deciding the complex
objects satisfying the query condition. In contrast, object
decomposition techniques, which decompose a complex
spatial object into a set of simple spatial components such
as trapezoids, lead to both a better quality of the
approximation and simpler spatial objects. However, these
decomposition techniques generate too many components
on complex spatial objects. A number of decomposed
components could result in a storage and query processing
overhead. This is ill ustrated in Example 1.

Example 1 (a number of decomposed components):
In Figure 1(a), spatial objects are approximated by MBRs.
A typical spatial query may ask for all objects intersecting a
user-specified rectangular window Q. In this case, all
rectangles that intersect the search region Q are determined
in the filter step. Here, objects A, B, C and D belong to the
candidate set. In the refinement step, we have to check
whether the exact representation of the objects A, B, C and
D really intersect the search region Q. At this point, the
objects A and B are identified as correct answers of the
query, whereas the objects C and D are not. In order to
improve the quality of the approximation, object
decomposition techniques have given up using one single
MBR for every complex spatial object. That is, the original
complex objects are decomposed into a set of simple
components such as trapezoids. Similar to an existing MBR
approach, all decomposed components can be appro-
ximated by means of MBRs. Contrary to an existing MBR
approach, a good approximation is provided by divided
MBRs. As a result of this method, objects A and B belong

to the candidate set. Figure 1(b) shows the result of this
approximation. However, there are a number of decom-
posed components labeled with the same identifier. For
instance, objects A and B have six decomposed compo-
nents, respectively.
                                         
   Q               C        Q               C

          A                        A

                D                        D
                                         
          B                        B

          (a)                       (b)
       Figure 1: Different approximation approaches
End of Example 1.

  As described in Example 1, traditional object decom-
position techniques have a problem on decomposed
components. Even worse, the more complex spatial objects
are, the more spatial components are produced from the
complex objects. Due to a large number of decomposed
components of such complex objects, the eff iciency of
spatial queries will decrease. Therefore, the development of
a new object decomposition method to overcome this
problem is essential.

3  Controlled decomposition method

We propose a new object decomposition method called
decomposed minimum bounding rectangles(DMBRs). The
basic idea is that a polygon is divided into two sub-
polygons corresponding to disjoint half regions of its MBR
space, then a new MBR, called here a DMBR, for each of
those sub-polygons is generated. This operation is
performed recursively until every DMBR fulfill s a given
constraint. The constraint is expressed by the accuracy of
the decomposition(AOD). This means that a split i s
permitted if the size of the resulting DMBR is above a
threshold. The threshold is controlled by a parameter g:
AOD(g) requires a split of the DMBR that covers more than
2− g of the MBR space. In order to support the recursive
split eff iciently, we use the vertical boundary and the
horizontal boundary in strictly alternating sequence. The
eff iciency of this alternating split has been proven in many
researches[1,2,12,13]. Our decomposition method is
ill ustrated in Example 2.

Example 2 (controlled decomposition):
Consider a polygon shown in Figure 2(a). This figure shows
an MBR enclosing a spatial object. Assume that the
threshold size is 25% of the MBR space, i.e., AOD(2). We
sub-divide the polygon until the given constraint is satisfied.
  At first, the polygon depicted in Figure 2(a) is divided



into two sub-polygons by the middle vertical boundary, then
DMBRs for the sub-polygons is generated (see Figure 2(b)).
While the DMBR of the left sub-polygon is less than 2 2− of
the MBR space, the DMBR of the right sub-polygon is
bigger than 2 2− of the MBR space. Therefore, only the
object decomposition on the right sub-polygon is performed
recursively against the middle horizontal boundary (see
Figure 2(c)). Then, the recursive decomposition terminates
since every DMBR covers less than 2 2− of the MBR space.

      (a)               (b)              (c)
          Figure 2: The process of AOD(2)
End of Example 2.

  The algorithm for the controlled decomposition uses a
'divide and conquer' technique. After accepting an array p as
an input polygon, the algorithm creates two other arrays p1
and p2 as two divided polygons. As soon as two arrays are
created, this algorithm calls itself for each of the divided
polygons, and the next dividing is performed recursively.
To increase the eff iciency of our decomposition algorithm,
the DMBRs of divided polygons are inserted into a two-
dimensional binary tree that is similar to the LSD tree[12].
Since a polygon generates exactly two divided polygons in
our algorithm, the binary tree is appropriate for this kind of
representation. In this binary tree, DMBRs and their
component identifiers are stored at leaf nodes, and
rectangles enclosing sub-polygons are stored at non-leaf
nodes. This algorithm is as follows.

Algorithm 1: Decomposition (p, d)
Input: A series of polygon vertices p=( v1 ,v2 ,…,vn ),

where polygon edges are from vi  to vi+1  for
i=1,2,...,n-1 and from vn  to v1 . A boolean variable d,
where d is toggled on the way that divides the region
to effect the alternating tests on the vertical and
horizontal boundaries.

Output: A new two-dimensional binary tree.

find MBR or DMBR coordinates from p.
case MBR: computer MBR space.
          DMBR space = MBR space.
          initialize a root node in the two-dimensional
          binary tree.
case DMBR: compute DMBR space.
if DMBR space > MBR space/ 2g ,
  then make a middle vertical (or horizontal) boundary.
      for each polygon edge in array p,

         if the edge lies in the left (or above) of the
               middle boundary,
           then endpoints of the edge are added into
               array p1.
         if the edge lies in the right (or below) of the
               middle boundary,
           then endpoints of the edge are added into
               array p2.
         if the edge intersects against the middle
               boundary,
           then find the intersect point and the point is
               added into both p1 and p2.
       end-for
       /* build two-dimensional binary tree */
       DMBR coordinates related p1 is inserted into the
          left node of the current node.
       DMBR coordinates related p2 is inserted into the
          right node of the current node.
       /* call decomposition algorithm recursively */
       d = ¬ d
       call Decomposition (p1, d)
       call Decomposition (p2, d)
   else terminate this program.
End of Algorithm 1.

  The controlled decomposition algorithm has a parameter
that controls the number of components for each object. At
a low value of the parameter, the number of components
can be minimized, but this decomposition provides a rather
poor approximation of the object. On the other hand, the
accuracy of the approximation can be better at a higher
value, but the linear increase in the number of components
can be observed. From this observation, we can conclude
that there is a balanced ratio between the number of
components and the accuracy of the approximation. The
optimal value of the parameter will be explored through
experimental measurements in Section 5. In Section 6, our
method will be compared with traditional decomposition
methods.

4  Spatial query processing based on object
   decomposition

For the use of the two-dimensional binary tree, an extension
of an existing indexing structure is proposed in this section.
Using this new structure, we will discuss algorithms of
spatial query processing based on object decomposition.

4.1 Two-step indexing structure
The success of the object decomposition approach depends
on the abilit y to narrow down quickly the set of components
that are affected by spatial queries. In order to decide which
components are relevant for a particular geometric test, we
need an eff icient indexing structure that organizes a set of
components of one object. A number of spatial indexing



structures based on MBRs have been developed. The most
promising group includes the R-tree and their variations,
e.g., R+ -tree and R* -tree. However, these structures are
considered unsuitable for organizing the decomposed
components, since components with the same identifier are
distributed on the secondary storage independently. An
arbitrary distribution of these objects over the secondary
storage leads to high access cost during query processing.
  The topic of this section is the design of a spatial
indexing structure for spatial query processing based on
object decomposition. However, it is not the intention of
this paper to discuss in detail which indexing structure is the
most suitable to organize decomposed components. We
propose instead an extension of the existing indexing
structure, which integrates two indexing structures for
original objects and their decomposed components. As the
existing indexing structure, the most popular R-tree is
selected for storing MBRs. But our indexing structure can
be easily extended to other R-tree variations.
  Figure 3 depicts our two-step indexing structure sche-
matically. We distinguish two parts: (1) the first level is the
indexing structure for original objects, called here Ro-tree,
which is a straightforward modification of the R-tree; and
(2) the second level is the two-dimensional binary tree,
called here Rd-tree, which is designed to reduce the number
of main memory operations and to store decomposed
components. The Ro-tree consists of leaf and non-leaf
nodes. MBRs of original objects are stored in the leaf nodes.
Each leaf node is supplemented by a pointer to the Rd-tree
and by an object identifier of the original object. Non-leaf
nodes are built by grouping rectangles at the lower level.
The Rd-tree produced by Algorithm 1 is attached to the
corresponding leaf node of the Ro-tree.

     Ro-tree

    

     Rd-tree
    

        Figure 3: Two-step indexing structure

4.2 Two-step processing of spatial queries
Since spatial database systems are used in very different
application environments, there exists currently no standard
set of spatial queries fulfilli ng all requirements of spatial
applications. Thus it is necessary to provide a small set of
basic spatial queries which are supported by database query
faciliti es. Basic spatial queries that have been addressed by
other researchers in the past can be summarized as follows:
• Point query: Given a query point P and a set of objects M,

the point query yields all objects of M geometrically
containing P.

• Region query: Given a polygonal query region R and a set
of objects M, the region query yields all objects of M
sharing points with R. A spatial case of the region
query is a window query. The query region of the
window query is given by a rectangle.

• Spatial join query: Given two sets of objects S1  and S2 ,
a spatial join query yields all pairs of objects ( s1 , s2 ),
s1∈ S1 , s2 ∈ S2  whose spatial components intersect.
More precisely, for each object s1∈ S1 , we have to
look for all objects in S2  intersecting with s1 .

In general, the spatial query processing consists of two
steps: filter step and refinement step. These steps can be
expressed in the query algorithm as follows:

Candidates = Filtering(MBRs)
Result = Refinement(Candidates)

The input parameter of Filtering is MBRs of spatial objects.
The Filtering prunes the search space by means of using a
spatial indexing structure. The Refinement evaluates exactly
the query condition for objects filtered in Filtering. In the
following, we will examine basic spatial queries based on
this two-step processing.

4.2.1 Point query
The result of a point query consists of all stored spatial
objects containing a given query point. The search
algorithm of the Ro-tree is used for the filter step. This
algorithm is analogous to that of the traditional R-tree.
However, the refinement step of the R-tree is very costly if
spatial objects are complex, since this approach is provided
a bad approximation and applied time-consuming computa-
tional geometry algorithms for the complex spatial objects.
In our approach, DMBRs of the Rd-tree is used before
applying the refinement step. The use of the DMBRs can
eliminate a number of false hits quickly and lead to simpler
computational geometry algorithms. That is, regarding a
small number of simple components filtered by DMBRs,
the exact evaluation (i.e., 'point-in-polygon' test) can be
performed.
  One method of the point-in-polygon test is to construct a
line between a point in the question and a point known to be
outside the polygon. Then we count how many intersections
of the line with the polygon boundary occur. If there are an
odd number of intersections, then the point in the question
is inside. An even number indicates that it is outside. When
the point of the intersection is the vertex where two sides
meet, we must look at the other endpoints of the two
segments which meet at this vertex. If these points lie on the
same side of the constructed line, then the point in the
question counts as an even number of intersections. If they
lie on opposite sides of the constructed line, then the point
is counted as a single intersection.
  Algorithm 2 shows point query procedures in the Rd-tree.
First, we find all i ndex records covering a query point



P=(Px, Py) using the search algorithm of the Ro-tree. For
each of these records, we invoke the following algorithm.

Algorithm 2: Point_Query (T)
Input: An Rd-tree rooted at node T.
Output: An Oid covering P.

if T is not a leaf node,
  then if T covers P,
        then call Point_Query(left(T))
            call Point_Query(right(T))
  else if T covers P,
       then count the number of intersections between a
             test line and the component.
           if the count is odd,
             then return(Oid).
End of Algorithm 2.

4.2.2 Region query
A region query yields all spatial objects intersecting a given
query window. Similar to the point query, this query
processing is based on the Ro-tree and the Rd-tree. As
described in Example 1, traditional decomposition tech-
niques do not handle window queries eff iciently, since there
are a number of decomposed components. To avoid this
drawback, we have proposed the DMBRs approach which
can control the number of components. By the trade-off
between the number and the complexity of components, the
exact evaluation (i.e., 'polygon-in-rectangle' tests) can be
performed eff iciently in our approach.
  For the polygon-in-rectangle test, our algorithm performs
some initial tests on polygon edges to determine whether
intersection tests are really necessary. First, edges are
checked to see if they are within the window, so the
polygon can be trivially accepted as the answer. Otherwise,
region checks are applied. For instance, in Figure 4, if x
coordinate boundaries of a query window are at Xmin and
Xmax and y coordinate boundaries are at Ymin and Ymax,
both endpoints of edge e1  have y coordinates greater than
Ymax and thus lie in the region above the window. This
means that the edge needs not an intersection test. Similarly,
we need not intersection tests on edges in regions below
Ymin, to the left of Xmin and to the right of Xmax.
  If both endpoints of an edge don't lie in a region above,
below, to the left or to the right of the window, the polygon
can be either accepted or rejected (e.g., both edge e5  and
edge e7  are this case, but only edge e5  intersects the
window). The algorithm selects an endpoint of the edge that
insures the outside of the window. If this endpoint lies in the
region to the left of the window, then we examine whether
this edge intersects the left boundary of the window. For
instance, edge e5  and edge e7  are tested against the
boundary ab of the window. Similar to the left of the
window, we can investigate this intersection test with
respect to the right, above, and below of the window.

                      e1

             e7             e2

                  a                     c  Ymax

          e6      e4   e3

             e5

                             Q
                  b                     d  Ymin

               Xmin               Xmax

           Figure 4: Polygon-in-rectangle test

  Algorithm 3 shows region query procedures in the Rd-
tree. First, we find all i ndex records whose MBRs overlap
Q=(Xmin, Xmax, Ymin, Ymax) using the search algorithm of
the Ro-tree. For each of these records, we invoke the
following algorithm.

Algorithm 3: Region_Query (T)
Input: An Rd-tree rooted at node T.
Output: An Oid overlapping Q.

if T is not a leaf node,
  then if T is covered by Q,
        then return(Oid).
      if T overlaps Q,
        then call Region_Query(left(T))
            call Region_Query(right(T))
  else if T is covered by Q,
        then return(Oid).
      if T overlaps Q,
        then for each edge of the component,
               if the edge lies within Q,
                 then return(Oid).
                 else apply region checks.
               if the edge isn’ t trivially rejected by the
                     region checks,
                 then apply intersection test.
                     if an intersection is detected,
                       then return(Oid).
                       else take the next edge.
            end-for
End of Algorithm 3.

4.2.3 Spatial join query
A spatial join query combines spatial objects from two or
more relations according to their geometric attributes. In
this section, our discussion is restricted to the intersection
join for two spatial relations which correspond to polygonal
areas. Although join processing has been studied in the
literature extensively (see [14] for a survey), these approa-
ches designed for traditional join processing can be hardly
used for the spatial join without modifications. Only the
approach of nested loops can be used without any modi-
fications[15]. Thus, the nested loops approach will serve as
an initial starting point.
  However, the approach of nested loops is very ineff icient



for spatial join processing because of the high number of
loops. In particular, the refinement step of this approach can
become the bottleneck if spatial objects consist of a large
number of vertices. In this respect, our approach is to
accelerate the expensive step of spatial join processing by
preceding filter steps which reduce the number of vertices
investigated in the refinement step. MBRs and DMBRs are
used for these filter steps. After pruning components that
are clearly not fulfilli ng the join condition by these filters,
'polygon-in-polygon' tests are performed by the plane-
sweep technique[16] from the area of computational
geometry.
  The plane-sweep technique sorts the vertices of two
components in a preprocessing step according to their x
coordinates. Then a vertical li ne (i.e., sweep line) sweeps
the data space from left to right. The sweep line stops at
every vertex, where the status of the plane-sweep is updated.
This sweep line status stores the edges which intersect the
sweep line, and these edges are sorted according to their y
coordinates at the sweep line position. For every vertex, the
corresponding edges are inserted into or deleted from the
sweep line status. While the insert operation is performed,
the considered edge is tested for the intersection with its
new neighbors in the sweep line status. For the delete
operation, the former neighbors of the edge are tested for
the intersection.
  For accelerating the polygon-in-polygon test, DMBRs
can be used for restricting the search space. That is, we only
have to check edges in the plane-sweep algorithm which
intersect the intersection rectangle of the DMBRs. For
instance, edge e1  and edge e5  in Figure 5 do not need to
be processed by the plane-sweep since they can not intersect
an edge of the other polygon. By a linear scan through each
of the two components, we can exclude all edges not
intersecting this rectangle.

                      e1

                     e2

                         e3

                     e4

                        
                           e5

                            sweep line
     Figure 5: Example for the plane-sweep algorithm

  Algorithm 4 shows spatial join query procedures in the
Rd-trees. First, we find all i ndex records whose MBRs
overlapped between two spatial objects (i.e., O1 and O2)
using the search algorithm of the Ro-tree. For each of these
records, we invoke the following algorithm.

Algorithm 4: Spatial_Join_Query (T1, T2)
Input: An Rd-tree rooted at node T1, and another Rd-tree

rooted at node T2.
Output: An Oid whose components overlapped between O1

and O2.

if T1 is not a leaf node,
  then if T1 overlaps MBR of T2,
        then call Spatial_Join_Query(left(T1), T2)
            call Spatial_Join_Query(right(T1), T2)
if T2 is not a leaf node,
  then if T2 overlaps DMBR of T1,
        then call Spatial_Join_Query(T1, left(T2))
            call Spatial_Join_Query(T1, right(T2))
  else exclude edges that not intersect the intersection
          rectangle of the DMBRs.
      apply plane-sweep technique.
      if an intersection is detected,
        then return(Oid).
End of Algorithm 4.

5  Determination of an optimal g value

In this section, our goal is to evaluate which g value of the
controlled decomposition method introduced in Section 3
leads to an optimal performance in spatial query processing.
For this purpose, the two-step indexing structure can be
used. The performance of the first step (i.e., the Ro-tree) is
mainly determined by accesses to the secondary storage and
comparisons within the directory as well as the data pages.
The performance of this Ro-tree, which is used for handling
MBRs of spatial objects, is practically independent of the
object decomposition. Therefore, this performance is not
considered in this test series.
  The performance of the next step is determined by the
time spent for the Rd-tree, which is designed to store
decomposed components. The processing time of the Rd-
tree is measured by the task of handling decomposed
components in the main memory. That is, the performance
of the Rd-tree is determined by the time spent for
comparisons within the directory of the Rd-tree and
computational geometry algorithms for those components.
As this performance strongly depends on the value of
parameter g, we explicitly measured them using various
spatial objects.
  We used three different spatial objects to get expressive
and realistic results on the performance of the object
decomposition. To be as general as possible, these spatial
objects were chosen from real digitized data used in
existing geographic information systems. Figure 6 depicts
the analyzed spatial objects and Table 1 lists their
characteristics. For describing characteristics of the spatial
objects, we provide the number of vertices, the area of a
spatial object and its MBR, and its cover characterizing the
accuracy of the MBR approximation. The cover is



presented by the area of the spatial object normalized to the
area of the corresponding MBR.

       (a) Park       (b) Lake       (c) Korea
           Figure 6: Analyzed spatial objects

    Table 1: Characteristics of analyzed spatial objects
Spatial Object Num. of Area Cover

Vertices Object MBR (%)

Park 83 700 1634 43

Lake 206 472 3105 15
Korea 229 1431 3456 41

Queries that we performed are classified into point queries,
window queries and spatial join queries. For spatial objects
presented in Figure 6, Table 2 presents the average time
required for the evaluation of one single query. The time
values are given in seconds. For a clear evaluation, they are
divided into the query time for 25, 50, 75 and 100 spatial
objects. Due to the space limitation, the full set of results
obtained is not presented in this table. The trends discussed
below were observed in all experiments. In the table, we
have shadowed the best performing values for each type of
queries.

      Table 2: Average time per a query (in second)
Point Query Region Query Spatial Join Query

g 25 50 75 100 25 50 75 100 25 50 75 100

Park
0 0.06 0.11 0.16 0.22 0.01 0.03 0.05 0.06 0.10 0.21 0.31 0.41

2 0.01 0.02 0.03 0.04 0.01 0.02 0.02 0.03 0.04 0.08 0.12 0.16

3 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.02 0.02 0.05 0.08 0.11

4 0.01 0.02 0.02 0.03 0.01 0.02 0.03 0.03 0.03 0.06 0.09 0.12

6 0.00 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.03 0.06 0.08 0.11

Lake
0 0.12 0.24 0.35 0.47 0.04 0.07 0.10 0.13 0.45 0.91 1.37 1.82

2 0.04 0.08 0.12 0.16 0.02 0.03 0.04 0.05 0.12 0.24 0.36 0.48

3 0.02 0.04 0.07 0.09 0.02 0.04 0.05 0.07 0.07 0.15 0.23 0.30

4 0.03 0.06 0.09 0.12 0.03 0.06 0.08 0.11 0.06 0.12 0.17 0.23

6 0.05 0.10 0.14 0.19 0.06 0.10 0.14 0.18 0.08 0.15 0.22 0.29

Korea
0 0.14 0.28 0.41 0.55 0.03 0.06 0.09 0.13 0.36 0.71 1.06 1.40

2 0.03 0.06 0.09 0.10 0.02 0.04 0.05 0.07 0.05 0.10 0.14 0.18

3 0.01 0.03 0.04 0.07 0.01 0.03 0.03 0.04 0.04 0.08 0.11 0.14

4 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.03 0.07 0.10 0.14

6 0.01 0.03 0.04 0.06 0.01 0.03 0.05 0.06 0.05 0.09 0.14 0.18

  Results in Table 2 suggest that the reasoning of the

existence of an optimal g value is valid. The query perfor-
mance of the no decomposition (i.e., g=0) and the high
decomposition (i.e., g=6) is considerably worse than the
middle decomposition (i.e., from g=2 to g=4). When g is 0,
the performance is particularly time-consuming due to the
high complexity of objects which are not decomposed. The
performance degeneration corresponding to the high g value
is strongly caused by a large number of components. From
this test, the optimal g value can be obtained around g=3.

6  Comparison of decomposition methods

The proposed controlled decomposition method is
compared with traditional decomposition methods through
an analytical study in this section. There are many object
decomposition methods in use for representing spatial
objects. The basic principle of these methods is a recursive
decomposition such as 'divide and conquer' techniques. We
classify the object decomposition methods according to the
following three properties of the recursive decomposition:
condition of decomposition, number of partitions, and
containers of components. This classification yields five
classes as in Table 3.

 Table 3: Classification of decomposition methods
Class Properties of Decomposition Spatial Access

Condition Number Containers Methods

C1  no
 redundancy

1  MBR R-tree, R+ -tree,
R* -tree

C2  regular grid 2d  a set of
 fixed grids

quad-tree, B+ -tree
with z-value

C3  grid and
 object shape

variable  variable
 cells

edge-quadtree,
PM quadtree

C4  object
 structure

n  MBRs Cell -tree,
TR* -tree

C5  controllable
 parameters

controll -
able

 DMBRs two-step indexing
structure

2d : the number of grids (i.e., resolution)
 n: the number of decomposed components
  
  In order to determine which method performs best in
terms of the performance of spatial query processing, it is
necessary to analyze each of these classes with respect to
criteria for evaluating the suitabilit y of decomposition
methods.

6.1 Analysis of decomposition methods
For improving the performance of spatial query processing,
the performance of both the filter step and the refinement
step must be considered. The performance of the filter step
considerably depends on the quality of the spatial object
approximation by the container used to filtering issues. The
approximation quality is defined as the amount of area
covered by the container not by the object itself.



Minimizing the amount of that area will directly and
proportionally improve the filtering performance. The
performance of the refinement step depends on the number
of refined objects as well as on their complexity.
Minimizing the number of objects to be refined is the task
of the filter step. Thus the object complexity is the issue to
be examined in the refinement step. A simplification of the
refined objects using the object decomposition technique
may lead to better performance of the refinement step.
However, the main drawback is given by a number of
components. As criteria for evaluating decomposition
methods, therefore, we will consider the number of
components, the quality of the approximation and the
simplification of objects. Table 4 indicates parameters
which are common to the forthcoming analysis.

Table 4: Parameters of the analysis
Parameter Description

d

p
nv

the number of split-levels which decompose
  a region into two equal-sized sub-regions
the perimeter of a spatial object
the number of polygon vertices

• The number of components(NC)
In case of C1, NC obviously is one. NC of a grid-like
representation such as C2 and C3 depends on a function of
the resolution (i.e., the number of split-levels) and the size
of the object (i.e., its perimeter). Walsh[17] and Samet[18]
proved that NCs of C2 and C3 were less than or equal to
3
2 pd and p d⋅ +2 4 1( ) , respectively. NC of C4 may be O( nv )

since this NC is produced by the plane-sweep technique, i.e.,
the vertices are passed and handled with increasing y-
coordinates. NC of C5 is determined by the number of split-
levels, i.e., O( 2d ), since a polygon is split into two divided
polygons recursively.

• The quality of the approximation(QA)
QA is improved by minimizing the deviation of the
approximation from an original object. This deviation is
measured by the false area of the approximation. The QA
can be expressed by the following formula:

QA=
A

A

obj

appr

where Aobj and Aappr denote the area of a spatial object and
of its container, respectively. In general, it is difficult to
predict the area of the spatial object by the analytical
approach. A preliminary approach of counting QA is to use
the value that is inversely proportional to NC. This is due to
the fact that QA improves as NC increases.

• The simplification of objects(SO)
SO can be given by the following formula:

SO=
c

C

ref

obj

where Cobj  and cref  represent the complexity (i.e., the
number of polygon vertices) of an original object and of a
refining object, respectively. In C1, cref is the same with

Cobj . cref of C2 is analogous to that of C1, since the access
method based on z-value (e.g., B-tree) returns original
object identifiers for the refinement step. In C3 and C4, an
original object is decomposed into a set of simple compo-
nents such as straight lines or trapezoids, thus cref of these

classes leads to a small constant which can be ignored. cref

of C5 may be presented as the number of polygon vertices
divided by the number of components, i.e., the average

number of component vertices, 
nv

d2
.

  Table 5 summarizes results from this analysis. The
schematic relationship between d and the corresponding
cost is shown in Figure 7. As d increases, the cost of NC
increases exponentially. On the other hand, as d is
decreased, the cost of QA and SO approaches their maximal
values. To minimize the total cost, a balance among NC,
QA and SO must be taken by selecting a proper d.

       Table 5: Results of complexity analysis
Class NC QA SO

C1 O(1) O(1) O(1)
C2 O(pd)

O(
1

pd
)

O(1)

C3 O( p d⋅2 ) O(
1

2p d⋅
) O(

1

nv
)

C4 O( nv )
O(

1

nv
) O(

1

nv
)

C5 O( 2d ) O(
1

2 d
) O(

1

2 d
)

              Figure 7: Cost Estimation

6.2 Determination of the best strategy
In decomposition methods, both QA and SO should be
considered seriously since the performance of the filter step
and the refinement step is obviously determined by QA and
SO. Table 5 shows that QA and SO of C1 have relatively



high cost even though NC has low cost. That is, C1 cannot
be expected to become the best solution by our cost
estimation. Thus we will exclude C1 strategy from the
performance evaluation.
  The main drawback of traditional decomposition meth-
ods has been proven to generate too many components. This
means that NC should also be considered seriously. In C2,
C3 and C4, NC has relatively high cost since in practical
cases p and nv  dominate d. Although these classes have
relatively low cost to QA or SO, they cannot be expected to
become the best solution since they reveal an extreme
unbalance among QA, SO and NC.
  From the above observation, we may conclude that the
better performance is expected by C5 strategy even though
it does not have the least value in each of the criteria as
compared with other classes. This is due to the fact that
only this strategy can control the parameter d. (Recall that
our decomposition method has a parameter that controls the
number of components.) By controlli ng d, C5 strategy can
tune the trade-off between opposing shaped curves in
Figure 7.

7  Conclusions

We have proposed a new object decomposition method,
called DMBRs, to improve the performance of spatial query
processing, and an extension of an existing indexing
structure, called two-step indexing structure, to increase the
eff iciency of the DMBRs method. Then we have derived
point, region and spatial join query algorithms under this
new structure. The proposed method has been compared
with traditional decomposition methods by an analytical
study. Our method is superior to the traditional decom-
position methods due to its abilit y to tune the trade-off
among evaluation criteria.
  There has been no analytical study up to now with
respect to the comparison of object decomposition methods.
We have provided an analytical approach for this study.
However, the study reported here is preliminary. It would
be desirable to extend the analytical study to a more general
cost model. The experimental verification for this study is
also required in the future.
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