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Abstract 

A range-sum query is very popular and becomes 
important in finding trends and in discovering 
relationships between attributes in diverse 
database applications. It sums over the selected 
cells of an OLAP data cube where target cells are 
decided by the specified query ranges. The direct 
method to access the data cube itself forces too 
many cells to be accessed, therefore it incurs a 
severe overhead. The response time is very 
crucial for OLAP applications which need 
interactions with users. In the recent dynamic 
enterprise environment, data elements in the 
cube are frequently changed. The response time 
is affected in such an environment by the update 
cost as well as the search cost of the cube.  
In this paper, we propose an efficient algorithm 
to reduce the update cost significantly while 
maintaining reasonable search efficiency, by 
using an index structure called the ∆-tree. In 
addition, we propose a hybrid method to provide 
either an approximate result or a precise one to 
reduce the overall cost of queries. It is useful for 
various applications that need a quick approxi-
mate answer rather than an accurate one, such as 
decision support systems. 

1. Introduction 
On-Line Analytic Processing (OLAP) [Cod93] is a 
category of database technology that allows analysts to 

gain insight on an aggregation of data through the access 
to a variety of possible views of information. It often 
needs to summarize data at various levels of detail and on 
various combinations of attributes. Typical OLAP appli-
cations include product performance and profitability, 
effectiveness of a sales program or a marketing campaign, 
sales forecasting, and capacity planning [BS97]. Among 
various OLAP application areas, a data model for the 
multidimensional database (MDDB), which is also known 
as a data cube[HAMS97], becomes increasingly important. 

A data cube is constructed from a subset of attributes 
in the database. Certain attributes are chosen to be 
measure attributes, i.e., the attributes whose values are of 
interest. Other attributes are selected as dimensions or 
functional attributes [GAES99]. The measure attributes 
are aggregated according to the dimensions. Consider a 
data cube maintained by a car-sales company. It is 
assumed that the data cube has four dimensions 
MODEL_NO, YEAR, REGION, COLOR, and one 
measure attribute AMOUNT_OF_SALES. Let the 
domain of MODEL_NO contain 30 models, of YEAR be 
from 1990 to 2001, of REGION contain 40 regions, and 
of COLOR be {white, red, yellow, blue, gray, black}. 
Then the data cube has 30×12×40×6 cells, and each cell 
contains AMOUNT_OF_SALES as a measure attribute 
for the corresponding combination of 4 functional 
attributes, i.e. MODEL_NO, YEAR, REGION, and 
COLOR. A data cube provides a useful analysis tool on 
data called a range-sum query that applies an aggregate 
operation to the measure attribute within the range of the 
query [GAE00]. A Typical example includes “Find the 
total amount of sales in Seoul for all models with red 
color between 1995 and 2000.” Queries of this form are 
very popular and important in OLAP. 

It is natural that the response time is very crucial for 
the OLAP application which needs user-interaction. The 
direct method to process the range-sum query is to access 
the data cube itself. But it suffers from the fact that too 
many cells need to be accessed to get the range-sum. The 
number of cells to be accessed is proportional to the size 
of the sub-cube defined by the query. To enhance the 
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search efficiency, the prefix sum approach [HAMS97] has 
been proposed, which uses an additional cube called a 
prefix sum cube (PC), to store the cumulative sum of data. 
This method however focuses on reducing the search cost. 
The current enterprise environment forces data elements 
in the cube to be dynamically changed. In such an 
environment, the response time is affected by the update 
cost as well as the search cost of the cube.  

Recently, various excellent studies [GAES99, CI99, 
LWO00, GAE00] have been made to reduce the update 
cost. Those methods use additional data structures such as 
the relative prefix sum cube (RPC) to minimize the update 
propagation over the prefix sum cube. However, those 
approaches have some limitation in the context that they 
still have the update propagation problem even though 
they have reduced it in some degree, since the RPC is a 
slight transformation of the PC. Furthermore, their update 
speed-up is accomplished by the sacrifice of the search 
efficiency. In many OLAP applications, it becomes an 
important issue to improve the update performance while 
minimizing the sacrifice of the search efficiency.  

In this paper, we propose an efficient algorithm to 
make a drastic cut in the update propagation by using an 
index structure called the ∆-tree. Various multi-
dimensional index structures [SRF87, BKSS90, BKK96] 
have been proposed since the R-trees [Gut84]. The ∆-tree 
is a modified version of the R*-tree [BKSS90] to store the 
updated values of a data cube and to support the efficient 
query processing. Our algorithm takes advantage of the 
traditional prefix sum approach to gain considerable 
search efficiency with a significant reduction of the 
update cost. 

Furthermore, in many current enterprise applications 
like the decision support system, there are a number of 
trial-and-error steps involved in getting the right answer. 
It forces range-sum queries to be executed too many times, 
which causes severe query cost. Thus it is important to 
provide the facility to get a quick approximate result 
rather than an accurate one to support the decision making 
process timely. We propose a hybrid method to provide 
either an approximate result or a precise one in order to 
reduce the overall costs of queries for collecting 
information for decision making. 

1.1   Related work 

As we introduced briefly in the previous section, various 
approaches that address the query on an OLAP data cube 
were proposed. Ho, et el. [HAMS97] have presented an 
elegant algorithm for computing range queries in data 
cubes which we call the prefix sum approach. The 
essential idea of the prefix sum approach is to precompute 
many prefix sums of the data cube, which can be used to 
answer ad hoc queries at rum-time. This approach turned 
out to be very powerful. Range-sum queries were 
processed in constant time regardless of the size of the 
data cube. But, it is very expensive to maintain the prefix 

sum cube when data elements in the cube are frequently 
changed. 

To reduce the update propagation in the prefix sum 
cube, Geffner et el. [GAES99] presented an algorithm for 
computing range queries in data cubes which they called 
the relative prefix sum approach. They tried to balance the 
query-update tradeoff between the direct method and the 
prefix sum approach. This approach is however 
impractical in the data cube of high dimensions and high 
capacity since the update cost increases exponentially. 
Chan and Ioannidis [CI99] proposed a new class of cube 
representations called Hierarchical Cubes, which was 
based on two orthogonal dimensions. They have shown 
that a particular cube design called the Hierarchical Band 
Cube has a significantly better query and update trade-off 
than that of the algorithm proposed[GAES99]. But the 
index mapping from a high-level “abstract” cube to a low-
level “concrete” cube is too complicated for implemen-
tation. They did not verify the analytical results of their 
method experimentally. 

More recently, Geffner et el. [GAE00] proposed the 
Dynamic Data Cube which was designed by decomposing 
the prefix sum cube recursively. They assumed that each 
dimension of a data cube was of the same size, and 
constituted a tree structure by a decomposition technique. 
But the data cube of a practical environment, like the 
example of the car-sales company in the previous section, 
has the dimensions of different sizes. (In our example, the 
size of each dimension is 30, 12, 40, and 6, respectively.) 
Dimensions of different sizes make it difficult to keep the 
balance of the tree while decomposing the prefix sum 
cube. Besides, if the data cube is of high dimensions and 
high capacity, it is difficult to apply their approach since 
the tree becomes too large, so the approach incurs a high 
computation overhead. 

1.2 Contributions 

In this paper, we present a new technique called a 
dynamic update cube which exploits an index structure, 
that is, the ∆-tree. Our contributions are summarized as 
follows: 
z We have proposed an efficient algorithm to take 
advantage of the prefix sum approach and to reduce the 
update cost significantly using the ∆-tree. We presented 
the comparison on the update complexities of various 
methods. The update complexity of our algorithm is O(log 
Nu), with respect to Nu, the number of changed cells in the 
data cube. We provided an analysis using various sizes of 
data cube and experimental evaluation which showed that 
our method performed very efficiently on various 
dimensionalities, compared to other methods.  
z We have proposed a hybrid method to provide 
either an approximate result or a precise one with respect 
to OLAP range-sum queries, and also proposed the 
method to reduce the approximation error considerably. 
To our knowledge, the proposed approach is the first 
work specifically addressing a hybrid method that gives 



both approximate and accurate answers at the same time 
on users’ demands. The extensive experiment on the 
approximation method demonstrates a remarkable speed-
up in the query processing while preserving a 
considerable accuracy 

The remainder of the paper is organized as follows: 
The preliminary information for the prefix sum approach 
is described in Section 2. Section 3 provides a detailed 
description of our proposed work. A hybrid method that 
provides either an approximate result or a precise one is 
given in Section 4. Experimental results with respect to 
the performance evaluation of proposed algorithms are 
presented in Section 5 and we give conclusions in Section 
6. 

2. Preliminary 
In this section, we introduce the background information 
regarding the prefix sum cube which is closely related to 
our proposed method. In the prefix sum approach, a prefix 
sum cube PC of the same size as the data cube A, stores 
various precomputed prefix sums of A. Each cell of PC 
contains the sum of all cells up to and including itself in 
the data cube A. Figure 1 shows an 6×8 data cube and its 
prefix sum cube. Cell PC[4,6] contains the sum of all 
cells in the range A[0,0] to A[4,6]. The sum of the entire 
cube A is found in the last cell PC[5,7]. 

Let D = {1, 2, …, d} denote the set of dimensions 
and ni denote the number of cells in dimension i. Ho, et el. 
[HAMS97] have presented a simple method which needs 
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For example, When d = 2, we precompute, for all 0≤x<n1 
and 0≤y<n2, 
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Figure 1 shows an example of A[x1,x2] and its 
corresponding PC[x1,x2] for d = 2. The prefix sum 
approach is very powerful. It provides range-sum queries 
in constant time, regardless of the size of the data cube. 
The Lemma 2.1 below provides how any range-sum of A 
can be computed from up to 2d appropriate elements of 
PC. The left hand side of the below equation specifies a 
range-sum of A. The right side of the equation consists of 
2d additive terms, each of which is from an element of PC 
with a sign “+” or “−” determined by the product of all 
s(i)’s . For notational convenience, let PC[x1, x2,…, xd] = 
0 if xj = −1 for some j ∈  D. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of an 6×8 original data cube A and its 
prefix sum cube PC 
Lemma 2.1 [ HAMS97]. For all j ∈  D, let  

Then, for all j ∈  D, 
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Example 2.2 When d = 2, the range-sum Sum(l1:h1, l2:h2) 
can be obtained by the computation: PC[h1, h2] – PC[h1, 
l2–1] – PC[l1–1, h2] + PC[l1–1, l2–1]. As illustrated in 
Figure 1, the range-sum Sum(1 : 4, 2 : 6) can be derived 
from PC[4,6] – PC[0,6] – PC[4,1] + PC[0,1] = 150 – 34 – 
33 + 9 = 102. � 
Figure 2 gives a geometrical explanation of the 
computation for a two-dimensional case. 

 
                   
   =    −    −    +    
                   
Area_E        Area_A       Area_B        Area_C        Area_D 
Figure 2. A geometric illustration of the two dimensional 
case 

3. Proposed work 

3.1   Motivation  

With the advances of the internet technologies such as the 
World Wide Web, we are able to use diverse applications 
including OLAP servers regardless of time and location. 
Users may be widely spread geographically and also a 
great number of users may want to use a large scale 
OLAP server concurrently. Performance in these environ-
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Index WW XX YY ZZ [[ \\ ]] ^̂

0 4 5 2 8 3 7 5 6 

1 2 1 5 3 7 2 4 2 
2 5 3 9 3 4 7 1 3 
3 3 5 6 1 8 5 1 6 

4 3 2 1 4 7 8 6 4 
5 6 2 2 6 1 9 5 2 

(a) data cube A 

(b) prefix sum cube PC 

Index WW XX YY ZZ [[ \\ ]] ^̂

0 4 9 11 19 22 29 34 40 
1 6 12 19 30 40 49 58 66 

2 11 20 36 50 64 80 90 101 
3 14 28 50 65 87 108 119 136 

4 17 33 56 75 104 133 150 171 
5 23 41 66 91 121 159 181 204 



ments becomes an issue when we support the query 
processing and dynamic data updates at the same time.  

Furthermore, in the previous methods based on the 
prefix sum cube, many queries of users is blocked if the 
ranges of these queries include a single cell which must 
be changed due to the update process. Otherwise, the 
queries produce incorrect answers. Namely, one update 
operation can cause many queries to be blocked. 
Therefore, It is clear that the blocking will degrade the 
overall performance of the OLAP server when the update 
cost is high. 

The OLAP server is widely used as a system for 
supporting the decision making process. A number of 
users may want to issue a large number of queries related 
to theirs’ concerns until they reach some decision. If all 
queries require precise answers, they incur high cost of 
their execution and a great load to the OLAP server. On 
the other hand, if all queries need approximate answers, 
they also make users be confused with inexact answers. 
We need some hybrid method that provides approximate 
answers during the process of focusing and exact answers 
for queries of interest. However, the previous methods 
based on the prefixed sum cube do not provide this kind 
of hybrid method. 

3.2   Idea 

In a dynamic OLAP environment, cells of the data cube 
are frequently changed. The problem is that the cost of 
updating the prefixed sum cube is very high. The basic 
idea is that we store and manage changed cells using the 
virtual cube, called the ‘dynamic update cube’ instead of 
updating the prefixed sum cube directly. When a range-
sum query is processed, the prefixed sum cube and the 
dynamic update cube are manipulated simultaneously. 

Regardless of being dense or sparse of the data cube, 
the prefixed sum cube is always dense. On the other hand, 
the dynamic update cube is sparse because it involves 
only the changed cell of the data cube. 

 
Example 3.1  As shown in Figure 3, the prefixed sum 
cube(PC) is always dense since it stores the cumulative 
sums of data cube cells even though the data cube is 
sparse. In this Figure, ‘×’ indicates a changed cell and ‘∆’ 
indicates the difference of the values of a changed cell, 
that is, ∆ = ×new − ×old. Since the dynamic update cube 
stores ∆ values, it is sparse. �� 
 
 
 
 
 
 
 
 
 
 
 

The positions of the dynamic update cube cells can 
be represented as multidimensional points and so, these 
cells are stored into the multidimensional index structure, 
called the ‘∆-Tree’. The cells that are spatially close each 
other are clustered into a corresponding the minimum 
bounding rectangle(MBR). When searching the ∆-Tree, 
non-overlapping MBRs of the ∆-Tree are pruned 
efficiently. More details are explained in Section 3.4. The 
positions and ∆ values of the dynamic update cube cells 
are stored into the ∆-Tree. 

The idea proposed in this paper are summarized as 
follows: 
z Since the prefixed sum cube is dense and the 
dynamic update cube is sparse, whenever the data cube 
changes, we do not update directly to the prefixed sum 
cube. Instead we store the changes of the data cube into 
the ∆-Tree and then manage it. This reduces the update 
cost and resolves the problem of propagating updates in 
the prefixed sum approach. 
z When processing a range-sum query, we can get 
an approximate answer by searching the ∆-tree partially. 
That is, searching is performed from the root to an 
internal node of the level i instead of a leaf node. The 
details of calculating an approximate answer are 
explained in Section 4. 
z The size of the ∆-tree can increase as the cells of 
the data cube are changed. When the ∆-tree is too large, 
the cost of search and update becomes high. Thus, all 
information stored in the ∆-Tree needs to be reflected on 
the prefix sum cube(so-called ‘bulk updates’) periodically, 
depending on applications, i.e., weekly, monthly, or at 
some threshold. 
 
 
 

 
 

 
 
 

3.3   The ∆-tree 

In this section, we introduce the structure of the ∆-tree, as 
shown in Figure 4. The construction process of the ∆-tree 
is the same as that of the R*-tree. Initially the ∆-tree has 
only a directory node(called the root node). Whenever the 
data cube cell is updated, the difference(∆) between the 
new and old values of the data cube cell and its spatial 
position are stored into the ∆-tree. We define the ∆-tree 
formally as follows: 
Definition 3.2 (the ∆-tree) 
1. A directory node contains (L1, L2,..., Ln), where Li is the 
tuple about the i’th child node Ci and has the form (Σ∆, M, 
cpi, MBRi). Σ∆ is the sum of all Σ∆ values(∆ values) of Ci 
when Ci is a directory node(data node). cpi is the address 
of Ci and MBRi is the MBR enclosing all entries in Ci .  M 

root Σ∆ Σ∆ 

Σ∆ Σ∆ Σ∆ 

∆1 ∆2 ∆3 ∆4 ∆5 

Figure 4.  The structure of ∆-tree 

Σ∆ Σ∆ 

∆6 ∆7 ∆8 ∆9 ∆10 ∆11 ∆12 

× : changed cell 

Dynamic update cube 
:sparse 

Prefix sum cube 
: dense 

Data cube 
:sparse or dense 

Figure 3.  The basic concept of the dynamic update cube 
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has the form (µ1, µ2, ... , µd) where d is the dimension and 
µj is the mean position of the j’th dimension of MBRi 
which is defined as follows:  
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partitions of the j’th dimension of MBRi. 
2. A data node is at the level 0 and it contains (D1, D2,..., 
Dn), where Di is the tuple about i’th data entry and has the 
form (Pi, ∆i). Pi is the position index and ∆i is the 
difference of the changed cell. 
 
The objective of using Σ∆ is to provide both fast and 
approximate answers of the range-sum query and the 
objective of using M is to improve the approximation 
technique (see example 4.2 in Section 4.2). 

3.4   Range-sum query 

We use both the prefix sum cube PC and the ∆-tree in 
order to answer the range-sum query. As we mentioned 
before, PC includes the information which had been most 
recently bulk updated while the ∆-tree includes the 
information which has been updated from then on. The 
update cells which are spatially close each other are 
clustered into a corresponding MBR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3.3    For the example in Figure 5, the cells 
marked by the symbol ‘*’ in the data cube A indicate that 
they have been updated from the data cube in Figure 1-(a). 
In Figure 5-(b), each MBRs in the lowest level of the 
dynamic update cube contain these cells which so far have 
not been reflected to PC. �� 

When a range-sum query Q, where Q is (l1: h1, l2: 
h2,…, ld: hd ), is given, we use PC and the ∆-tree for 
obtaining the answer of Q. Let Sum(Q) be a function that 
returns the answer of Q, PC_sum(Q) be a function that 
returns the answer which is calculated from PC, and 
∆_sum(Q) be a function that return the answer which was 
found from the ∆-tree . Then, the answer will be: 

Sum(Q) = PC_sum(Q) + ∆_sum(Q) 
 
Example 3.4    For Figure 5, when a range-sum query Q 
is given as below, we can obtain the answer of Q using 
PC and the ∆-tree. 

 
We have the answer from the above equation. That is, 
Sum(2 : 5, 4 : 7) = PC_sum(2 : 5, 4 : 7) + ∆_sum(2 : 5, 4 : 
7). The function PC_sum(2 : 5, 4 : 7) can be obtained ‘on-
the fly’ by Lemma 2.1. �� 
 
Definition 3.5 (Disjoint, Inclusive, Intersecting) 
Let MBRQ and MBRT be the MBR of a query Q and the 
MBR of a node T. The relationship between MBRQ and 
MBRT may formally be defined as  
(1) Disjoint iff MBRQ @ MBRT = φ. 
(2) Inclusive iff MBRQ ⊇  MBRT. 
(3) Intersecting iff MBRQ @ MBRT � φ and not inclusive. 
Note that MBRQ ⊂  MBRT is defined to be intersecting. 
 
When the ∆-tree is traversed to find the result from the 
function ∆_sum(Q), a root node is at first visited, and each 
entry of the root node is evaluated with respect to the 
spatial relationship between MBRQ and MBRT, as 
described in Definition 3.5. The brief algorithm of the 
function ∆_sum(Q) is shown as follows: 
 
Algorithm ∆_sum() 
input: query Q, ∆-tree  
output: answer  
procedure:  
 1. Visit the nodes in the ∆-tree in the depth first order 
starting from the root node. If there is no more node to be 
visited, return answer  
 2. Each entry of the node is evaluated. There are three 
cases of the relationship between MBRQ and MBRT of 
each entry, as described in Definition 3.5. Those cases 
and the corresponding pruning strategies are as follows: 
case 1 (disjoint):  
The entry related to MBRT is irrelevant to the query Q. 
Thus, the sub-tree under is pruned.  
case 2 (inclusive):  
Σ∆ of the entry related to MBRT is added to answer. It is 
not necessary to traverse the sub-tree under the entry any 
more since Σ∆ is an exact answer with respect to this 
entry.  
case 3 (intersecting):  

Range-sum query(Q): Select  Sum(A.sales) 
                        From   A 
                      Where 2 ≤ A.x ≤ 5 and 4 ≤ A.y ≤ 7 

Figure 5. Example of a range-sum query in the data cube 
and the dynamic update cube 

Q
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 (b) Dynamic update cube U 



In this case, we have two choices for the range-sum: 
precise and approximate. To get a precise answer, we 
need to evaluate every child MBR which is included in 
MBRT. To get a approximate answer, we compute the 
approximate Σ∆ of the entry related to MBRT, and add it 
to answer. The detail description on how to get the 
approximate answer is discussed in Section 4. The 
algorithm ∆_sum() is recursively called with the ∆-tree 
replaced by the sub-tree under this entry. 
 
Example 3.6    As shown in Figure 6, when a range-sum 
query Q(2:5,4:7) (dotted box) is given, MBR1 is disjoint, 
MBR2 is intersecting, and MBR3 is inclusive. Therefore, 
we can find that the answer of the function ∆_sum(2:5, 
4:7) is 8. Thus, we complete the function Sum(2:5,4:7) as 
follow: 
Sum(2:5,4:7)=PC[5,7]−PC[1,7]−PC[5,3]+PC[1,3]+ 
∆_sum(2:5, 4:7)= (204 − 66 − 91 + 30) + (6 + 2) = 85. � 
 
 

 

 

 

 

 

 

 

 

 

 

3.5   Updates 

When the value of a cell in the data cube is changed, it 
does not affect the prefix sum cube directly. Instead, we 
only need to change the value of an appropriate location 
in the ∆-tree. Let us consider how the update on the value 
of a cell affects the ∆-tree. The update request is given in 
the form (P, ∆) where P is the position index and ∆ is the 
difference from the old ∆ value of the changed cell. The 
first step for the update is to identify the sub-tree into 
which the update is made. Choosing the target sub-tree for 
the update is the same as that for R*-tree. By identifying 
the sub-trees repeatedly, the target data node to reflect the 
update request is finally chosen. Once the target data node 
is identified, our method checks whether the data entry 
with the position P exists in the node or not. There are 
two cases as follows: 

 
Case 1. (when the position P exists) 
In this case, the update is made in the data entry (P, ∆ OLD) 
where ∆OLD is the existing ∆ value of P. The ∆ value is 
added to ∆OLD. And then, for all ancestors of the data node 
in the tree, we set: (Σ∆)ancestor = (Σ∆)ancestor + ∆, where 
(Σ∆)ancestor is Σ∆ of an ancestor node of the data node. This 
process is repeated up to the root node. 
 
Case 2. (when the position P does not exist) 
If the position P does not exist, the data entry (P, ∆) is 
inserted in the end of the node. And also, for all ancestors 
of the data node in the tree, we set: (Σ∆)ancestor = (Σ∆)ancestor 

+ ∆, as described in the case 1. Sometimes, an overflow 
occurs in a node during the insertion process when the 
number of data entries exceeds a specified threshold. In 
this case, the node is split into two nodes. We have 
adopted the same splitting strategy as that of the R*-tree. 
For more details on insert/split algorithms of the R*-tree, 
refer to [BKSS90]. Let us assume that the node S is split 
into S1 and S2. Then it needs to recalculate Σ∆’s of the 
parent of S1 and S2. Adjusted Σ∆’s of the parent of S1 and 
S2 are reflected to all ancestor nodes in the tree, up to the 
root node.   
 
 
 
 
 
 
 
 
 
 
 
Example 3.7  Let us consider the update process when the 
value of the cell A[2,3] in Figure 5-(a) is changed from 4 
to 6. This process corresponds to the update request ([2,3], 
2) into the ∆-tree. As shown in Figure 7, an entry 
(<0:5,0:3>, 12) is at first selected in the root node. 
Traversing down the tree, an entry (<2:3,1:3>, 4) is 
chosen in the intermediate node. Since the data entry with 
the position [2,3] is found in the node which is pointed to 
by the entry (<2:3,1:3>, 4), the ∆ value 2 is added to the 
old value 1, resulting in 3. After changing the data node, 
the Σ∆’s of ancestor nodes are changed from (<2:3,1:3>, 
4) and (<0:5,0:3>, 12) to (<2:3,1:3>, 6) and (<0:5,0,3>, 
14) respectively. � 

3.6   Time complexity of the dynamic update cube 

The dynamic update cube provides a significant efficiency 
compared to the previous methods such as [HAMS97, 
GAES99, LWO00, GAE00]. The time complexity of our 
method for updating a single cell in the ∆-tree is O(logNu), 
where Nu is the number of changed cells. It is usual that 
the number of changed cells is very small compared to the 
total size of the data cube. The complexity O(logNu) 

data node 

([5,0],-1),([5,2],2) ([0,0],3),([1,1],4) ([2,1],-2),([2,3],1),([3,2],5) 

(<0:1,0:1>,7), (<2:3,1:3>,4), (<5:5,0:2>,1) 

(<0:5,0:3>,12), (<0:5,5:7>,15) root 
directory node 

Figure 7. The detail structure of the ∆-tree in Figure 6-(b). 
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Figure 6. Dynamic update cube U and ∆-tree corres-
ponding to U. 



corresponds to the complexity of descending a single path 
in the tree. Table 1 shows the comparison of complexities 
among different methods. Here, we assume that N = nd 
and n is the number of cells in each dimension. Thus, it is 
clear that our method outperforms other methods since the 
size of the dynamic update cube is very small than that of 
the original data cube. that is, Nu << N.  

 
Table 1. Time complexities among different methods 

Method Update time 
Prefix Sum[HAMS97] O(nd) 
Relative Prefix Sum[GAES99] O(nd/2) 
Dynamic Data Cube[GAE00] O(logd n) 
Dynamic Update Cube O(log Nu) 

 
As an example of the comparison of time complexities 

shown in Table 1, Table 2 shows the number comparison 
of the update costs for various methods when the 
dimensionalities (d in Table) are 2, 4, and 8, and the size 
(n in Table 1) of each dimension is 101 and 102. For 
instance, when d = 4 and n = 102, the total size of a data 
cube N = nd is 108. We assume that the fan-out of the ∆-
tree is 10, that is, the base of log in the complexity of our 
method is 10. We also used 10 as the base of log for the 
dynamic data cube. We consider that generally Nu is 
around 1% of N. Therefore, our method is evaluated for 
three cases: Nu = 0.1%, 1%, and 10% of N. As we observe 
the results in Table 2, our method outperforms other 
methods.  
 
Table 2. The number comparison of update costs for 
various methods 

 
The previous methods based on the prefix sum cube 

compromise the query cost in order to improve the update 
cost.  Our method has a very efficient update performance 
using the ∆- tree, but it requires for processing queries, 
therefore, both the previous methods and our method 
incur additional overhead compared with the prefix sum 
approach. The experiments in Section 5 demonstrate that 
the query processing of our method is quite efficient. 

4. Hybrid Method 
In a real OLAP environment users typically search for 
trends, patterns, or unusual data behaviors by issuing 
queries interactively. Thus, users may be satisfied with 
approximate answers for queries if the response time can 
be greatly reduced. In this section, we propose a hybrid 
method to provide either an approximate result or a 
precise one to reduce the overall cost of queries. It is 

highly beneficial for various applications that need quick 
approximate answers rather than time consuming accurate 
ones, such as decision support systems. We provide the 
approxim-ation technique and illustrate how to reduce the 
errors of the approximation technique with a little 
additional cost. 

4.1   Approximation technique  

When processing a range-sum query, we can obtain an 
approximate answer by searching the ∆-tree partially. 
That is, searching is performed from the root to an 
internal node of the level i instead of a leaf node. There 
exist several MBRs which are participated in answering a 
range-sum query. We can classify these MBRs into two 
groups as follows: 
1. Inclusive MBRs: MBRi (i=1,…,m), where m is the 
number of inclusive MBRs. 
2. Intersecting MBRs: MBRj (j=m+1,…,n), where n − m 
is the number of intersecting MBRs. 
 
Example 4.1    As shown in Figure 8, we can see the level 
i-th cross-section of the ∆-tree. That is, MBR 1 and MBR 2 

are inclusive MBRs, the other side, MBR 3, MBR 4 and 
MBR 5 are intersecting MBRs. � 
 
 
 
 
 
 
 
 
 
 
Figure 8. The shape of query MBR and MBRs in the level 
i of the ∆-tree. 
 

Let (Σ∆)i (i=1,…,m) be the Σ∆ value of the i’th 
inclusive MBR, and (Σ∆)j (j=m+1,…,n) be the Σ∆ value 
of each intersecting MBR. The answer of the range-sum 
query at the level i of the ∆-tree can be approximated by 
the following equation: 
Approx_sum(Q) = 

4.2   Improving approximation technique  

In this section, we propose to use the list of mean 
positions (M in Definition 3.2) for improving the 
approximation technique. We resize the area of a range 
query for a more accurate approximation and calculate the 
difference between the approximation value without 
resizing and that with resizing to find nodes for further 
searching. Example 4.2 illustrates this. 
Example 4.2     As shown in Figure 9, the overlapping 
region is (0:x, y:L2) and µ1, µ2 have been calculated. Then 
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the region is resized for a more accurate approximation. 
Let us consider the vertical side of the node. [0, µ1] 
contains a half of the values. We want to find α such that 
[0,α] , when values are uniformly distributed, contains the 
values contained in [0,x] when µ1 is the mean position. 
Then 
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Therefore, 0:x is resized to 0:
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resizing of y:L2 can be similarly calculated to be 

2

2

2 µ
yL × :L2 . And, we calculate the difference between 

the approximation value with resizing and that without 
resizing to find nodes to be searched down in the next 
lower level. We select the nodes whose difference values 

are bigger than others. v 
When searching intersecting nodes in the level i, the 

error can be reduced much with a little additional 
overhead if we search down to the level i-1 for a few 
nodes in the level i having big differences. 
 
 

 

 

 

 

 

 

5. Experimental Evaluation 
In this section, we present the experimental environment 
and the performance evaluation of our proposed method. 
The method proposed in this paper uses both the prefix 
sum cube and the ∆-tree. That is, the update is made in 
real-time on the ∆-tree and all updates are reflected in the 
prefix sum cube periodically. Therefore we evaluated the 
update performance by using the update on the ∆-tree. As 
for the query efficiency, we considered the prefix sum 
cube as well as the ∆-tree since the query is processed on 
both. We evaluated the accuracy of approximate results 
by accessing both the prefix sum cube and the ∆-tree. 
The ∆-tree was implemented by modifying the R*-tree to 
accommodate Σ∆ and M, and its node size was adjusted to 
have a reasonable depth (say, 5 or 6) for evaluating 
approximate results for the hybrid method. Test data sets 
were generated to have two types of distributions: 
uniform and Zipf distributions. The z parameter of Zipf 
distribution was determined to have a constant value 

(z=0.9) regardless of the dimension. The dimensionalities 
of the test data are 2, 3, 4, and 5. The cardinality of each 
dimension d is 1024 for d = 2, 512 for d = 3, 128 for d = 4, 
and 64 for d = 5, respectively. The number of data 
elements that are to be inserted into the ∆-tree is 10000 
through 50000. Three types of queries are used based on 
query size (i.e., query volume / data cube volume) as 
follows: large(=0.1), medium(=0.05), small(=0.01). 

All experiments have been done on a Sun Ultra II 
workstation with 256M main memory and 10G hard disk. 
The error rates in the experimental results indicate the 
percentage error. Each experimental result has been 
obtained by issuing 30 queries and 30 updates for 
evaluating the range-sum query and the update process 
respectively, and by averaging the results of them. 

Figure 10 shows the efficiency of range-sum queries 
in the dimensionality of 3 (d = 3) for various query sizes, 
i.e. large, medium, and small sizes. Figure 11 illustrates 
the results of the query execution for the medium-size 
query with respect to the dimensionalities of 3, 4, and 5, 
respectively. Those results have been obtained by visiting 
nodes of the ∆-tree from the root to the level 0, i.e. the 
data node, and thus those results are exact (not 
approximate). The efficiency of queries is measured by 
the execution time in second. For d = 3, the result shows a 
considerable efficiency, that is, the execution time is 
below one second. 
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Figure 10. Exact query performance(=level 0) for uniform 
distribution, dim=3 and query sizes = large,medium,small 
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Figure 11. Exact query performance (=level 0) for 
uniform distribution, dim=3,4,5 and medium size query 

 
Figure 12 shows the performance as the number of 

page accesses for inserting the value of a changed cell to 
the ∆-tree. For this experiment, we inserted up to 100000 
data elements into the ∆-tree. The X-axis represents the 
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Figure 9. Resizing of the query 



number of data elements in the ∆-tree while the Y-axis 
represents the number of page accesses to insert a single 
value into the tree which corresponds to the depth of the 
tree. As we observe in the Figure, the number of page 
accesses is O(log Nu), where Nu is the number of changed 
cells. 
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Figure 12. Insert performance 

a

ca

ea

ga

ia

baa

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
¤
�
�

��£��

����¦�

¤��� �

 

a

f

ba

bf

ca

cf

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
££
 
£

� � £��

� ���¦�

¤� �� �

 
Figure 13. Performance and error rates for uniform 
distribution, dim=4, query sizes=large, medium, small, 
and number of data =10000 
 

Figure 13 shows the error rate of approximate query 
results by the hybrid method. Experimental parameters 
are of the dimensionality 4, uniform data distribution, and 
10000 updates stored in the ∆-tree. The X-axis represents 
the approximation level of the ∆-tree up to which the 
approximate query is performed. The level of data nodes 
(i.e. leaf nodes) is 0 and their parents have level 1, and so 
on. The approximation level 0 indicates that the query is 
evaluated up to the data node, and the approximation level 
1 indicates that the query is evaluated up to the level 1. 
The approximation level 0.4 (=0.6×0+0.4×1) indicates 
that the query is evaluated up to the level 1 for 40% of 
nodes at the level 1, and up to the level 0 for 60% of 
nodes at the level 1. Similarly, the approximation level 
1.7(= 0.3×1+0.7×2) indicates that the query is evaluated 

up to the level 2 for 70% of nodes at the level 2, and up to 
the level 1 for 30% of nodes at the level 2. For nodes 
whose differences of approximation values (see Section 
4.2) are bigger, the search goes down to 1 lower level.  
As shown in Figure 13, the evaluation time is reduced 
rapidly as the approximation level becomes higher, while 
the error rate increases slightly. Therefore, we can obtain 
the high performance within a reasonable error rate if we 
select an appropriate approximation level. Figure 14 
shows the case that the ∆-Tree has 50000 data. Compared 
to Figure 13 which is the case that the ∆-Tree has 10000 
data, the error rate is decreased as more data are stored in 
the ∆-Tree, while the query performances are decreased. 

Figure 15 shows the experimental results with the 
uniformly distributed data. The number of data is 50000, 
the query size is large, and the dimensionality is varied 
from 2 to 5. Figure 16 shows the experimental results with 
the Zipf distributed data. The number of data is 50000 and 
the dimensionality is varied from 2 to 4. As shown in 
Figure 15 and 16, approximation levels between 1 and 2 
are observed to be good points for the hybrid method. 
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Figure 14. Performance and error rates for uniform   
distribution, dim=4, query sizes = large, medium, small, 
and number of data in the ∆-tree = 50000. 
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Figure 15. Performance and error rates for Uniform 
distribution, dim=2,3,4,5, query size = large, and 
number of data in the ∆-tree = 50000 
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Figure 16. Performance and error rates for Zipf 
distribution, dim=2,3,4, query size = large, and number of 
data in the ∆-tree = 50000 

6. Conclusion 

In this paper, we proposed a new technique called a 
dynamic update cube which is designed to reduce the 
update cost of the data cube significantly, while 
maintaining reasonable search efficiency. In the recent 
dynamic enterprise environment where data elements in 
the data cube are frequently changed, the response time is 
affected by the update cost as well as the search cost of 
the cube. We exploited a hierarchical data structure, called 
the ∆-tree, to store the information of updated cells in the 
data cube and thus to minimize the update cost since only 
a small fraction of data elements in the data cube is 
changed. In addition, by taking advantages of the 
hierarchical tree structure of the dynamic update cube, we 
proposed a hybrid method to provide either an approxi-
mate result or a precise one to reduce the overall cost of 
queries. It is useful for diverse applications that need 
quick approximate answers rather than accurate ones, 

such as decision support systems.  
The update complexity of our method is O(log Nu), 

with respect to Nu, the number of changed cells in the data 
cube. We have also provided experimental evaluations on 
the query and update efficiency and on the approximation 
accuracy and efficiency, with respect to various 
dimensions and query sizes. Experimental results demon-
strate that our method performs very efficiently for update 
and query operations, and show reasonable approximation 
error rates with a significant gain in speed when the 
hybrid method is used.  
    As the future work, we plan to investigate techniques to 
further reduce the approximation error of the hybrid 
method, and to develop indexing mechanisms for high-
dimensional (e.g, 10 and 20 dimensions) data cubes.  
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