Dynamic Update Cubefor Range-Sum Queries

Seok-Ju Chunt Chin-Wan Chungt Ju-Hong Leet Seok-Lyong Leet

tDepartment of Information and Communication Engineering
tDepartment of Computer Science
Korea Advanced Institute of Science and Technology
{ chung,chungcw,jhlee,sllee} @islab.kaist.ac.kr

Abstract

A range-sum query is very popular and becomes
important in finding trends and in discovering
reationships between attributes in diverse
database applications. It sums over the selected
cells of an OLAP datacubewhere target cellsare
decided by the specified query ranges. The direct
method to access the data cube itself forces too
many cels to be accessed, therefore it incurs a
severe overhead. The response time is very
crucid for OLAP applications which need
interactions with users. In the recent dynamic
enterprise environment, data dements in the
cube are frequently changed. The response time
is affected in such an environment by the update
cost as well asthe search cost of the cube.

In this paper, we propose an efficient algorithm
to reduce the update cost significantly while
maintaining reasonable search efficiency, by
using an index structure called the A-tree In
addition, we propose a hybrid method to provide
either an approximate result or a precise one to
reduce the overal cost of queries. It is useful for
various applications that need a quick approxi-
mate answer rather than an accurate one, such as
decision support systems.

1. Introduction

On-Line Analytic Processng (OLAP) [Cod93] is a
category of database technology that allows analysts to

*Thiswork was supported by the Korea Research Foundation Grant
(KRF-2000-041-E00262).
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permisson of the Very Large Data Base Endowment. To copy otherwise,

or to republish, requires a fee and/or special permisson from the
Endowment.

Proceedingsof the 27th VL DB Conference,
Roma, Italy, 2001

gain insight on an aggregation of data through the access
to a variety of possble views of information. It often
needs to summarize data a various levels of detail and on
various combinations of attributes. Typical OLAP appli-
cations include product performance and profitability,
effectiveness of a sales program or amarketing campaign,
sdes forecasting, and capacity planning [BS97]. Among
various OLAP gpplication areas, a data modd for the
multidimensional database (MDDB), which is also known
as adata cubelHAM S97], becomes increasingly important.

A data cube is constructed from a subset of attributes
in the database. Certain attributes are chosen to be
measure attributes, i.e., the attributes whose values are of
interest. Other attributes are selected as dimensions or
functional attributes [GAES99]. The measure attributes
are aggregated according to the dimensions. Consider a
data cube maintained by a car-sales company. It is
assumed that the data cube has four dimensions
MODEL_NO, YEAR, REGION, COLOR, and one
measure attribute AMOUNT_OF SALES. Let the
domain of MODEL_NO contain 30 modds, of YEAR be
from 1990 to 2001, of REGION contain 40 regions, and
of COLOR be {white, red, yellow, blue, gray, black}.
Then the data cube has 30x12x40x6 cdlls, and each cell
contains AMOUNT_OF SALES as a measure attribute
for the corresponding combination of 4 functiona
atributes, i.e. MODEL_NO, YEAR, REGION, and
COLOR. A data cube provides a useful analysis tool on
data called a range-sum query tha applies an aggregate
operation to the measure attribute within the range of the
guery [GAEQQ]. A Typica example includes “ Find the
total amount of sales in Seoul for all modds with red
color between 1995 and 2000.” Queries of this form are
very popular and important in OLAP.

It is natural that the response time is very crucial for
the OLAP application which needs user-interaction. The
direct method to process the range-sum query is to access
the data cube itself. But it suffers from the fact that too
many cells need to be accessed to get the range-sum. The
number of cells to be accessed is proportiond to the size
of the sub-cube defined by the query. To enhance the

search efficiency, the prefix sum approach [HAM S97] has
been proposed, which uses an additional cube caled a
prefix sum cube (PC), to store the cumulative sum of data
This method however focuses on reducing the search cost.
The current enterprise environment forces data € ements
in the cube to be dynamically changed. In such an
environment, the response time is affected by the update
cost as well asthe search cost of the cube.

Recently, various excelent studies [GAES99, CI99,
LWOO00, GAEOQ] have been made to reduce the update
cost. Those methods use additional data structures such as
therelative prefix sum cube (RPC) to minimize the update
propagation over the prefix sum cube. However, those
approaches have some limitation in the context that they
still have the update propagation problem even though
they have reduced it in some degree, since the RPC is a
slight transformation of the PC. Furthermore, their update
speed-up is accomplished by the sacrifice of the search
efficiency. In many OLAP applications, it becomes an
important issue to improve the update performance while
minimizing the sacrifice of the search efficiency.

In this paper, we propose an efficient algorithm to
make a drastic cut in the update propagation by using an
index structure caled the A-tree. Various multi-
dimensional index structures [SRF87, BKSS90, BKK96]
have been proposed since the R-trees [Gut84]. The A-tree
isamodified version of the R*-tree [BKSS90] to store the
updated values of a data cube and to support the efficient
guery processing. Our algorithm takes advantage of the
traditional prefix sum approach to gain considerable
search efficiency with a significant reduction of the
update cogt.

Furthermore, in many current enterprise applications
like the decision support system, there are a number of
trial-and-error steps involved in getting the right answer.
It forces range-sum queries to be executed too many times,
which causes severe query cost. Thus it is important to
provide the facility to get a quick approximate result
rather than an accurate one to support the decision making
process timely. We propose a hybrid method to provide
either an approximate result or a precise one in order to
reduce the overall costs of queries for collecting
information for decision making.

1.1 Related work

As we introduced briefly in the previous section, various
approaches that address the query on an OLAP data cube
were proposed. Ho, et el. [HAMS97] have presented an
elegant algorithm for computing range queries in data
cubes which we cal the prefix sum approach. The
essential idea of the prefix sum approach isto precompute
many prefix sums of the data cube, which can be used to
answer ad hoc queries a rum-time. This approach turned
out to be very powerful. Range-sum queries were
processed in constant time regardless of the size of the
data cube. But, it is very expensive to maintain the prefix

sum cube when data elements in the cube are frequently
changed.

To reduce the update propagation in the prefix sum
cube, Geffner et e. [GAES99] presented an algorithm for
computing range queries in data cubes which they called
the relative prefix sum approach. They tried to balance the
guery-update tradeoff between the direct method and the
prefix sum @gpproach. This agpproach is however
impractica in the data cube of high dimensions and high
capacity since the update cost increases exponentialy.
Chan and loannidis [CI99] proposed a new class of cube
representations called Hierarchical Cubes, which was
based on two orthogona dimensions. They have shown
that a particular cube design called the Hierarchical Band
Cube has a significantly better query and update trade-off
than that of the agorithm proposed GAES99]. But the
index mapping from a high-level “abstract” cubeto alow-
level “concrete” cube is too complicated for implemen-
tation. They did not verify the analytical results of their
method experimentally.

More recently, Geffner et el. [GAEOQ] proposed the
Dynamic Data Cube which was designed by decomposing
the prefix sum cube recursively. They assumed that each
dimension of a data cube was of the same size, and
constituted a tree structure by a decomposition technique.
But the data cube of a practical environment, like the
example of the car-sales company in the previous section,
has the dimensions of different sizes. (In our example, the
size of each dimension is 30, 12, 40, and 6, respectively.)
Dimensions of different sizes make it difficult to keep the
balance of the tree while decomposing the prefix sum
cube. Besides, if the data cube is of high dimensions and
high capacity, it is difficult to apply their approach since
the tree becomes too large, so the approach incurs a high
computation overhead.

1.2 Contributions

In this paper, we present a new technique called a
dynamic update cube which exploits an index structure,
that is, the A-tree. Our contributions are summarized as
follows:

) We have proposed an efficient algorithm to take
advantage of the prefix sum approach and to reduce the
update cost significantly using the A-tree. We presented
the comparison on the update complexities of various
methods. The update complexity of our algorithm is O(log
N,), with respect to N, the number of changed cells in the
data cube. We provided an analysis using various s zes of
data cube and experimental evaluation which showed that
our method performed very efficiently on various
dimensionalities, compared to other methods.

) We have proposed a hybrid method to provide
either an approximate result or a precise one with respect
to OLAP range-sum queries, and aso proposed the
method to reduce the approximation error considerably.
To our knowledge, the proposed approach is the firgt
work specifically addressing a hybrid method that gives

both gpproximate and accurate answers at the same time
on users demands. The extensive experiment on the
approximation method demonstrates a remarkable speed-
up in the query processng while preserving a
considerable accuracy
The remainder of the paper is organized asfollows:

The preliminary information for the prefix sum approach
is described in Section 2. Section 3 provides a detailed
description of our proposed work. A hybrid method that
provides either an approximate result or a precise one is
given in Section 4. Experimental results with respect to
the performance evduation of proposed agorithms are
presented in Section 5 and we give conclusions in Section
6.

2. Préliminary

In this section, we introduce the background information
regarding the prefix sum cube which is closdy related to
our proposed method. In the prefix sum approach, a prefix
sum cube PC of the same size as the data cube A, stores
various precomputed prefix sums of A. Each cell of PC
contains the sum of all cells up to and including itself in
the data cube A. Figure 1 shows an 6x8 data cube and its
prefix sum cube. Cell PC[4,6] contains the sum of all
cells in the range A[0,0] to Al4,6]. The sum of the entire
cube A isfound in thelast cel PC[5,7].

Let D = {1, 2, ..., d} denote the set of dimensions
and n; denote the number of cellsin dimensioni. Ho, et €.
[HAMS97] have presented a smple method which needs

N =] ‘dj n, additional cells to store certain

precomputed prefix-sums such that any d-dimensional
range-sum can be computed in 2¢ — 1 computation steps,
based on up to 2° gppropriate precomputed prefix sums.
Formally, for all 0<x<n; and iCID,
PCX1,X05-- X = SUM(O : X3, 0 @ Xp, ... , 0 : X9 =

X X2 Xq
oY Aligyizeidl

=0 i,=0 iy=0

For example, When d = 2, we precompute, for all 0<x<n;
and 0<y<n,

PCIxY] = SUMOX 09)= S S Al j]
=0 {=o

Figure 1 shows an example of A[x;x] and its
corresponding PC[x;,%] for d = 2. The prefix sum
approach is very powerful. It provides range-sum queries
in constant time, regardless of the size of the data cube.
The Lemma 2.1 below provides how any range-sum of A
can be computed from up to 2 gppropriate elements of
PC. The left hand side of the below equation specifies a
range-sum of A. Theright side of the equation consists of
2% additive terms, each of which is from an element of PC
with a sign “+” or “~" determined by the product of all
§(i)’s . For notational convenience, let PC[xy, Xp,..., X4 =
0if x = —1 for somej [JD.

Index

ald|lw|N|e

olwlwluo|n|s|e
NN o |w e o | =
N (R |o o o [N
od |k |w|w|oo|w
RN | d(Nw |
© |||~ N N o
glo|lkR|k|s|la|o
N d|lo|lw|Nv|o |~

(8) datacube A

Index| 0 1 2 3 4 5

0 4 9 11 19 22 29 34 | 40
6 12 19 30 40 49 58 | 66
11 | 20 36 50 64 80 90 | 101
14 | 28 50 65 87 | 108 | 119 | 136
17 | 33 56 75 | 104 | 133 | 150 | 171
23 | 41 66 91 | 121 | 159 | 181 | 204

(=]
~

QR |W|IN|F

(b) prefix sum cube PC

Figure 1. Example of an 6x8 origina data cube A and its
prefix sum cube PC
Lemma2.1[HAMS97]. For all j D, let

Then, for all j O D, . if x,=h,.

S(J):S-l, if x,=1,-1

Sum(ly: hy, 12: hy,..., Id: hg)

2 %;ﬁs(i)EDPC[Xl,XZ,...,Xd]gl

DXjD{Ij—l,hj} F1

Example 2.2 When d = 2, therange-sum Sum(l1:hg, I2:h2)
can be obtained by the computetion: PC[h,, h,] — PC[h,,
I,-1] — PC[l-1, h,] + PC[l,-1, I,-1]. As illustrated in
Figure 1, the range-sum Sum(1 : 4, 2 : 6) can be derived
from PC[4,6] — PC[0,6] — PC[4,1] + PC[0,1] =150 34—
33+9=102. m

Figure 2 gives a geometrical explanation of the
computation for atwo-dimensional case.

Area E Area A Area B Area C Area D
Figure 2. A geometric illustration of the two dimensional
case

3. Proposed work

3.1 Maotivation

With the advances of the internet technologies such as the
World Wide Web, we are able to use diverse applications
including OLAP servers regardless of time and location.
Users may be widely spread geographically and also a
great number of users may want to use a large scale
OLAP sarver concurrently. Performance in these environ-

ments becomes an issue when we support the query
processing and dynamic data updates at the sametime.

Furthermore, in the previous methods based on the
prefix sum cube, many queries of users is blocked if the
ranges of these queries include a single cell which must
be changed due to the update process. Otherwise, the
gueries produce incorrect answers. Namely, one update
operation can cause many queries to be blocked.
Therefore, It is clear that the blocking will degrade the
overall performance of the OLAP server when the update
cost ishigh.

The OLAP server is widely used as a system for
supporting the decision making process. A number of
users may want to issue a large number of queries related
to theirs concerns until they reach some decision. If all
gueries require precise answers, they incur high cost of
their execution and a great load to the OLAP server. On
the other hand, if al queries need agpproximate answers,
they dso make users be confused with inexact answers.
We need some hybrid method that provides gpproximate
answers during the process of focusing and exact answers
for queries of interest. However, the previous methods
based on the prefixed sum cube do not provide this kind
of hybrid method.

3.2 ldea

In a dynamic OLAP environment, cells of the data cube
are frequently changed. The problem is that the cost of
updating the prefixed sum cube is very high. The basic
idea is that we store and manage changed cells using the
virtua cube, called the ‘dynamic update cube’ instead of
updating the prefixed sum cube directly. When a range-
sum query is processed, the prefixed sum cube and the
dynamic update cube are manipulated smultaneously.

Regardless of being dense or sparse of the data cube,
the prefixed sum cube is always dense. On the other hand,
the dynamic update cube is sparse because it involves
only the changed cdll of the data cube.

Example 3.1 As shown in Figure 3, the prefixed sum
cube(PC) is always dense since it stores the cumulative
sums of data cube cells even though the data cube is
sparse. In this Figure, ‘x’ indicates a changed cell and ‘A’
indicates the difference of the values of a changed cell,
that is, A = Xpay — Xgg. Since the dynamic update cube
stores A values, itissparse. |

Daacube Prefix sum cube Dynamic update cube
‘sparse or dense : dense ‘sparse
X
X
9 X
X X

X X

x : changed cdll

Figure 3. The basic concept of the dynamic update cube

The positions of the dynamic update cube cells can
be represented as multidimensiona points and so, these
cells are stored into the multidimensional index structure,
caled the ‘A-Tree'. The cells that are spatially close each
other are clugtered into a corresponding the minimum
bounding rectangle(MBR). When searching the A-Tree,
non-overlgpping MBRs of the A-Tree are pruned
efficiently. More details are explained in Section 3.4. The
positions and A values of the dynamic update cube cells
are stored into the A-Tree.

The idea proposed in this paper are summarized as
follows:
) Since the prefixed sum cube is dense and the
dynamic update cube is sparse, whenever the data cube
changes, we do not update directly to the prefixed sum
cube. Instead we store the changes of the data cube into
the A-Tree and then manage it. This reduces the update
cost and resolves the problem of propagating updates in

the prefixed sum approach.
) When processing a range-sum query, we can get

an gpproximate answer by searching the A-tree partially.
That is, searching is performed from the root to an
internal node of the levd i instead of a leaf node. The
detaills of calculating an approximate answer are
explained in Section 4.

° The size of the A-tree can increase as the cells of
the data cube are changed. When the A-tree is too large,
the cost of search and update becomes high. Thus, all
information stored in the A-Tree needs to be reflected on
the prefix sum cube(so-caled ‘bulk updates') periodically,
depending on applications, i.e., weekly, monthly, or at

some threshold.
ZA SASA ZA A

[808] [Bs8aBs] [Bey] [B68s] [DroBirbss |

Figure4. The structure of A-tree
3.3 TheA-tree

In this section, we introduce the structure of the A-tree, as
shown in Figure 4. The construction process of the A-tree
is the same as that of the R*-tree. Initidly the A-tree has
only adirectory node(cdled the root node). Whenever the
data cube cdl is updated, the difference(A) between the
new and old values of the data cube cell and its spatia
position are stored into the A-tree. We define the A-tree
formally asfollows:

Definition 3.2 (the A-tree)

1. A directory node contains (L4, Ly,..., L), whereL; is the
tuple about the i’ th child node C; and has the form (ZA, M,
cpi, MBR). ZA is the sum of dl ZA values(A values) of G
when C; is a directory node(data node). cp; is the address
of C; and MBR is the MBR enclosing al entriesin C;. M

root ZA A

has the form (uy, Lo, ... , Hg) where d is the dimension and
4 is the mean position of the j'th dimension of MBR;
which is defined asfollows:

i anlzll:i(m)
where F.(m)= z t.:i,’nh f(k

h#j

K, s Ky) o

L]

f (k,,k,,., k,) is the value of an update position (ki,

K,..., ko) in MBR; with 1<k<n;, and n; is the number of
partitions of thej’ th dimension of MBR.

2. A data node is at the level 0 and it contains (D,, D,,...,
D), where D; is the tuple about i’th data entry and has the
form (P, A). P is the podtion index and A; is the
difference of the changed cell.

The objective of using ZA is to provide both fast and
approximate answers of the range-sum query and the
objective of using M is to improve the approximation
technique (see example 4.2 in Section 4.2).

3.4 Range-sum query

We use both the prefix sum cube PC and the A-tree in
order to answer the range-sum query. As we mentioned
before, PC includes the information which had been most
recently bulk updated while the A-tree includes the
information which has been updated from then on. The
update cedls which are spatially close each other are
clugtered into acorresponding MBR.

index| 0 | 1 | 2 [3] 4a]5][6]7
o | =[5 28]] 7 12«6
1 2 | 5% | 5 3 = N
2 | 5 [T ¢ [1] s]
3 5 | 1ix| 1 T8 | 5 | 4|6
a s 2| 1] ag7]s 6] =]l
5 [e« 2 a6 19 Fmlal
(a) Datacube A - 0= "_
3
4 ! Q
= =l - 1,
5
I 3
g
: 2 ||!
o

(b) Dynamic update cube U
Figure 5. Example of arange-sum query in the data cube
and the dynamic update cube

Example 3.3 For the example in Figure 5, the cells
marked by the symbol ‘*’ in the data cube A indicate that

they have been updated from the data cube in Figure 1-(a).

In Figure 5-(b), each MBRs in the lowest level of the
dynamic update cube contain these cellswhich so far have
not been reflected to PC. m

When a range-sum query Q, where Q is (I1: hy, 12
hy,..., l¢: hq), is given, we use PC and the A-tree for
obtaining the answer of Q. Let SUM(Q) be a function that
returns the answer of Q, PC_sum(Q) be a function that
returns the answer which is calculated from PC, and
A_sum(Q) be a function that return the answer which was
found from the A-tree.. Then, the answer will be;

SuM(Q) = PC_sum(Q) + A_sum(Q)

Example 3.4 For Figure 5, when arange-sum query Q
is given as below, we can obtain the answer of Q using
PC and the A-tree.

Range-sum query(Q): Select Sum(A .sdes)
From A
Where2< Ax<5and4<Ay<7?

We have the answer from the above equation. That is,
IM(2:5,4:7)=PC_sum(2:5,4:7)+ A sum(2:5,4:
7). The function PC_sum(2: 5, 4 : 7) can be obtained ‘ on-
thefly by Lemma2.1. m

Definition 3.5 (Digoint, Inclusive, Intersecting)

Let MBRg and MBRy be the MBR of a query Q and the
MBR of a node T. The relationship between MBRq and
MBRr may formdly be defined as

(1) Digointiff MBRg N MBRr = @.

(2) Inclusiveiff MBRq [MBRr.

(3) Intersecting iff MBRg N MBRy # @ and not inclusive.
Note that MBRg [0 MBRy is defined to be intersecting.

When the A-tree is traversed to find the result from the
function A_sum(Q), aroot node is at first visited, and each
entry of the root node is evaluated with respect to the
gpatial relationship between MBRp and MBRy, as
described in Definition 3.5. The brief adgorithm of the
function A_sum(Q) is shown as follows:

Algorithm A_sum()
input: query Q, A-tree
output: answer
procedure:

1. Visit the nodes in the A-tree in the depth first order
starting from the root node. If there is no more node to be
visited, return answer

2. Each entry of the node is evaluated. There are three
cases of the relationship between MBRg and MBR; of
each entry, as described in Definition 3.5. Those cases
and the corresponding pruning strategies are as follows:
case 1 (digoint):

The entry related to MBRy is irrelevant to the query Q.
Thus, the sub-tree under is pruned.

case 2 (inclusive):

ZA of the entry related to MBR; is added to answer. It is
not necessary to traverse the sub-tree under the entry any
more since A is an exact answer with respect to this
entry.

case 3 (intersecting):

In this case, we have two choices for the range-sum:
precise and approximate. To get a precise answer, we
need to evaluate every child MBR which is included in
MBRr. To get a approximae answer, we compute the
approximate >A of the entry related to MBRy, and add it
to answer. The detail description on how to get the
approximate answer is discussed in Section 4. The
algorithm A_sum() is recursivey cdled with the A-tree
replaced by the sub-tree under this entry.

Example 3.6 Asshown in Figure 6, when a range-sum
query Q(2:5,4:7) (dotted box) is given, MBR; is digoint,
MBR; is intersecting, and MBR; is inclusive. Therefore,
we can find that the answer of the function A_sum(2:5,
4:7) is 8. Thus, we complete the function UmM(2:5,4:7) as
follow:
Um(2:5,4:7)=PC[5,7]-PC[1,7]-PC[5,3]+PC[1,3] +
A_sum(2:5,4:7)=(204-66-91+30) +(6+2)=85. m

MBR]_ MBRz\ M,BR’
D\ \ |
3

4 7

= - == /-,
5
| s |
: 2 ||
| =—r—"=1
@u
12 15

digoint intersecting

inclusve

7 4 1 13
| |intersecting inclusve
|3 4][215][-1 2] 7(6)[3-32
(b) A-tree

Figure 6. Dynamic update cube U and A-tree corres-
ponding to U.

3.5 Updates

When the value of a cell in the data cube is changed, it
does not affect the prefix sum cube directly. Instead, we
only need to change the value of an appropriate location
in the A-tree. Let us consider how the update on the value
of a cell affects the A-tree. The update request is given in
the form (P, A) where P is the position index and A is the
difference from the old A value of the changed cell. The
first step for the update is to identify the sub-tree into
which the update is made. Choosing the target sub-tree for
the update is the same as that for R*-tree. By identifying
the sub-trees repeatedly, the target data node to reflect the
update request is finally chosen. Once the target data node
is identified, our method checks whether the data entry
with the podtion P exists in the node or not. There are
two cases asfollows:

Case 1. (when the position P exists)

In this case, the update is made in the dataentry (P, A o1p)
where Ao p is the existing A value of P. The A value is
added to Ao p. And then, for all ancestors of the datanode
in the tree, we set: (ZA)ancestor = (ZA)ancestor + A, Where
(ZA) ancestor 1S 2ZA of an ancestor node of the data node. This
processisrepeated up to the root node.

Case 2. (when the position P does not exist)

If the position P does not exig, the data entry (P, A) is
inserted in the end of the node. And also, for dl ancestors
of the data node in the tree, we set: (ZA) ancestor = (Z4) ancestor
+ A, as described in the case 1. Sometimes, an overflow
occurs in a node during the insertion process when the
number of data entries exceeds a specified threshold. In
this case, the node is split into two nodes. We have
adopted the same splitting strategy as that of the R*-tree.
For more details on insert/split agorithms of the R* -tree,
refer to [BKSS90]. Let us assume that the node Sis split
into S; and S,. Then it needs to recaculate ZA's of the
parent of S; and S,. Adjusted >A's of the parent of S; and
S, are reflected to all ancestor nodes in the tree, up to the
root node.

root | (<0:5,0:3>,12), (<0:5,5:7>,15) |
directory node l—'

|(<O:1,0:1>,7), (<2:3,1:3>,4), (<5:5,0:2>,1)| ¢ e

date* node

l00.9.0114] |©21.2.0230.025| | 692022]
Figure 7. The detail structure of the A-treein Figure 6-(b).

Example 3.7 Let us consder the update process when the
value of the cel A[2,3] in Figure 5-(a) is changed from 4
to 6. This process corresponds to the update request ([2,3],
2) into the A-tree. As shown in Figure 7, an entry
(<0:5,0:3>, 12) is a first selected in the root node
Traversing down the tree, an entry (<2:3,1:3>, 4) is
chosen in the intermediate node. Since the data entry with
the position [2,3] is found in the node which is pointed to
by the entry (<2:3,1:3>, 4), the A value 2 is added to the
old value 1, resulting in 3. After changing the data node,
the ZA's of ancestor nodes are changed from (<2:3,1:3>,
4) and (<0:5,0:3>, 12) to (<2:3,1:3>, 6) and (<0:5,0,3>,
14) respectively. m

3.6 Timecomplexity of thedynamic update cube

The dynamic update cube provides a significant efficiency
compared to the previous methods such as [HAMS97,
GAES99, LWO00, GAEQQ]. The time complexity of our
method for updating asingle cell in the A-tree is O(logN,),
where N, is the number of changed cdlls. It is usua that
the number of changed cells isvery small compared to the
total size of the data cube. The complexity O(logN,)

corresponds to the complexity of descending a single path
in the tree. Table 1 shows the comparison of complexities
among different methods. Here, we assume that N = n°
and n is the number of cdlsin each dimension. Thus, it is
clear that our method outperforms other methods since the
size of the dynamic update cube is very smdl than that of
theorigina data cube. that is, N, << N.

Table 1. Time complexities among different methods

Method Updatetime
Prefix SUMHAM S97] o(n%
Relative Prefix SUM[GAES99] o(n"”?
Dynamic Data Cube] GAEOQO] O(log”n)
Dynamic Update Cube O(log N)

As an example of the comparison of time complexities
shown in Table 1, Table 2 shows the number comparison
of the update costs for various methods when the
dimensionalities (d in Table) are 2, 4, and 8, and the size
(n in Table 1) of each dimension is 10" and 102 For
instance, when d = 4 and n = 107 the total size of a data
cube N = n® is 10°. We assume that the fan-out of the A-
treeis 10, that is, the base of log in the complexity of our
method is 10. We aso used 10 as the base of log for the
dynamic data cube. We consider that generdly N, is
around 1% of N. Therefore, our method is evaduated for
three cases: N, = 0.1%, 1%, and 10% of N. As we cbserve
the results in Table 2, our method outperforms other
methods.

Table 2. The number comparison of update costs for
various methods

n d Nz Prefix- |Relativel Dynamic D&’;anlcﬁidatec’:\lﬁe
Sum | PS - |DaaCuel 07\ 1o oin| 01N

2 | 10| 10 | 10! 11 - 1 1

10| 4 |10*]| 10* | 10° 118 1 2 3
8 [10%] 10° | 10* | 14064 | 5 6 7

2 |10*| 10* | 10? 43 1 2 3

00| 4 [10%| 10® | 10* | 1897 5 6 7
8 [10%] 10% | 10® [3600406] 13 | 14 | 15

The previous methods based on the prefix sum cube
compromise the query cost in order to improve the update
cost. Our method has avery efficient update performance
using the A- tree, but it requires for processing queries,
therefore, both the previous methods and our method
incur additional overhead compared with the prefix sum
approach. The experiments in Section 5 demonstrate that
the query processing of our method is quite efficient.

4. Hybrid M ethod

In a red OLAP environment users typically search for
trends, paterns, or unusual data behaviors by issuing
gueries interactively. Thus, users may be satisfied with
approximate answers for queries if the response time can
be greatly reduced. In this section, we propose a hybrid
method to provide either an approximate result or a
precise one to reduce the overdl cost of queries. It is

highly beneficial for various applications that need quick
approximate answers rather than time consuming accurate
ones, such as decision support systems. We provide the
approxim-ation technique and illustrate how to reduce the
errors of the approximation technique with a little
additional cost.

4.1 Approximation technique

When processing a range-sum query, we can obtain an
approximate answer by searching the A-tree partially.
That is, searching is performed from the root to an
internal node of the level i instead of a leaf node. There
exist several MBRs which are participated in answering a
range-sum query. We can classfy these MBRs into two
groups asfollows:

1. Incdusive MBRs: MBR; (i=1,...,m), where m is the
number of inclusive MBRs.

2. Intersecting MBRs: MBR; (j=m+1,...,n), wheren — m
isthe number of intersecting MBRs.

Example4.1 Asshownin Figure 8, we can see the leve
i-th cross-section of the A-tree. That is, MBR ; and MBR»
are inclusive MBRs, the other side, MBR 3, MBR , and
MBR areintersecting MBRs. ®

Cross-section

MBR,

VBR;| | I J

[[mer @ level-i |
I -query MB

MBRs

(a8) MBRsat the level i of A-tree (b) A-tree
Figure 8. The shape of query MBR and MBRs in the level
i of the A-tree.

Let (ZA); (i=1,...,m) be the ZA vdue of the i'th
inclusve MBR, and (24); (j=m+1,...,n) be the ZA vaue
of each intersecting MBR. The answer of the range-sum
guery at the level i of the A-tree can be approximated by
the following equation:

Approx_sum(Q) =
n Hvol (MBR in MBRQ)

4.2 Improving approximation technique

In this section, we propose to use the list of mean
positions (M in Definition 3.2) for improving the
approximation technique. We resize the area of a range
guery for amore accurate approximation and calcul ate the
difference between the approximation value without
resizing and that with resizing to find nodes for further
searching. Example 4.2 illugtratesthis.

Example 42 As shown in Figure 9, the overlapping
region is (0:x, y:L,) and p, Y, have been calculated. Then

the region is resized for a more accurate approximation.
Let us consider the vertical side of the node. [0, pi]
contains a half of the values. We want to find a such that
[0,a] , when values are uniformly distributed, contains the
values contained in [0,X] when p; is the mean postion.

Then X~ 4, _a-05L, Thatis, =iﬁl+ X - U, E

L, -y, 0.5L, 2 L, -y,
Therefore, 0:x is reszed to O: i%“ X = H, E The
2 L, —u,

resizing of y:L, can be dmilaly cdculated to be
L, . ¥ L, . And, we cdculae the difference between
2,

the approximation value with resizing and that without

resizing to find nodes to be searched down in the next

lower levd. We select the nodes whose difference values

are bigger than others. B

When searching intersecting nodes in the levd i, the
error can be reduced much with a little additiona
overhead if we search down to the levd i-1 for a few
nodesin thelevel i having big differences.

query
0
M1
05L,
X 4
Ls

MY e

Y 05L, W
Figure 9. Resizing of the query

5. Experimental Evaluation

In this section, we present the experimenta environment
and the performance evaluation of our proposed method.
The method proposed in this paper uses both the prefix
sum cube and the A-tree. That is, the update is made in
real-time on the A-tree and all updates are reflected in the
prefix sum cube periodicaly. Therefore we evaluated the
update performance by using the update on the A-tree. As
for the query efficiency, we considered the prefix sum
cube as well as the A-tree since the query is processed on
both. We evaluated the accuracy of gpproximate results
by accessing both the prefix sum cube and the A-tree.

The A-tree was implemented by modifying the R'-tree to
accommodate ZA and M, and its node size was adjusted to
have a reasonable depth (say, 5 or 6) for evduating
approximate results for the hybrid method. Test data sets
were generated to have two types of distributions:
uniform and Zipf distributions. The z parameter of Zipf
digribution was determined to have a constant value

(z=0.9) regardless of the dimension. The dimensionalities
of the test data are 2, 3, 4, and 5. The cardinality of each
dimensiond is1024 for d=2,512 ford =3, 128 ford=4
and 64 for d = 5, resgpectivdly. The number of data
elements that are to be inserted into the A-tree is 10000
through 50000. Three types of queries are used based on
query size (i.e, query volume / data cube volume) as
follows: large(=0.1), medium(=0.05), smal(=0.01).

All experiments have been done on a Sun Ultra |l
workstation with 256M main memory and 10G hard disk.
The error rates in the experimenta results indicate the
percentage error. Each experimental result has been
obtained by issuing 30 queries and 30 updates for
evauating the range-sum query and the update process
respectively, and by averaging the results of them.

Figure 10 shows the efficiency of range-sum queries
in the dimensionality of 3 (d = 3) for various query sizes,
i.e. large, medium, and small sizes. Figure 11 illustrates
the results of the query execution for the medium-size
query with respect to the dimensionalities of 3, 4, and 5,
respectively. Those results have been obtained by visiting
nodes of the A-tree from the root to the level 0O, i.e. the
data node, and thus those results are exact (not
approximate). The efficiency of queries is measured by
the execution timein second. For d = 3, the result shows a
considerable efficiency, that is, the execution time is
below one second.

0.7 ——large
0.6 F —l—medium
05 F

(6]

8 04 ——small

10000 20000 30000 40000 50000

number of data in the delta—tree

Figure 10. Exact query performance(=level 0) for uniform
distribution, dim=3 and query sizes = large, medium,small

sec

10000

20000 30000 40000

number of data in the delta—tree

50000

Figure 11. Exact query performance (=level 0) for
uniform distribution, dim=3,4,5 and medium size query

Figure 12 shows the performance as the number of
page accesses for inserting the value of a changed cell to
the A-tree. For this experiment, we inserted up to 100000
data dements into the A-tree. The X-axis represents the

number of data elements in the A-tree while the Y -axis
represents the number of page accesses to insert a single
value into the tree which corresponds to the depth of the
tree. As we observe in the Figure, the number of page
accesses is O(log N,), where N, is the number of changed
cdls.

[0}
(@)
@ [3]
2
° 3
o O
O O
EoRNd)
c ©
=)
o
100 1000 10000 100000
number of data in the delta—tree
Figure 12. Insert performance
100
80 I
—&—large
9 60)
8 —@—medium
E 40 f —&—small
20
0

0 0407 1
Approximation level

1417 2 2427 3

error

14 17 2 24 27 3

0 0.4 0.7 1
Approximation level

Figure 13. Performance and error rates for uniform
distribution, dim=4, query sizes=large, medium, small,
and number of data=10000

Figure 13 shows the error rate of approximate query
results by the hybrid method. Experimental parameters
are of the dimensiondity 4, uniform data distribution, and
10000 updates stored in the A-tree. The X-axis represents
the approximation level of the A-tree up to which the
approximate query is performed. The level of data nodes
(i.e. leaf nodes) is 0 and their parents have level 1, and so
on. The approximation level 0 indicates that the query is
evauated up to the data node, and the gpproximation leve
1 indicates that the query is evaluated up to the leve 1.
The approximation level 0.4 (=0.6x0+0.4x1) indicates
that the query is evaluated up to the level 1 for 40% of
nodes at the level 1, and up to the level O for 60% of
nodes a the level 1. Similarly, the approximation level
1.7(= 0.3x1+0.7x2) indicates that the query is evaluated

up to the level 2 for 70% of nodes at the level 2, and up to
the level 1 for 30% of nodes at the level 2. For nodes
whose differences of approximation values (see Section
4.2) are bigger, the search goes down to 1 lower levd.
As shown in Figure 13, the evaluation time is reduced
rapidly as the approximation level becomes higher, while
the error rate increases slightly. Therefore, we can obtain
the high performance within a reasonable error rate if we
sdect an appropriate approximation level. Figure 14
shows the case that the A-Tree has 50000 data. Compared
to Figure 13 which is the case that the A-Tree has 10000
data, the error rate is decreased as more data are stored in
the A-Tree, while the query performances are decreased.
Figure 15 shows the experimenta results with the
uniformly distributed data. The number of data is 50000,
the query size is large, and the dimensionality is varied
from 2 to 5. Figure 16 shows the experimental results with
the Zipf distributed data. The number of data is 50000 and
the dimensionality is varied from 2 to 4. As shown in
Figure 15 and 16, approximation levels between 1 and 2
are observed to be good points for the hybrid method.

600
500

o 400 | ——large
8 300 | ——medium
IS —&—small

200
100 |

0 04 07 1
Approximation level

1.4 17 2 24 27 3

—&—large
—l—medium
—&—small

error
O MNWEO® DO

0 0407 1 1417 2 2427 3
Approximation level

Figure 14. Performance and error rates for uniform
distribution, dim=4, query sizes = large, medium, small,
and number of datain the A-tree = 50000.

1400
1200
1000 |
800
600
400
200

msec

0 0407 1 1417 2 2427 3
Approximation level

error
cmMw RGO u® 0D

0 0407 1 1417 2 2427 3
Approximation level

Figure 15. Performance and error rates for Uniform
distribution, dim=2,3/4,5, query size = large, and
number of datain the A-tree = 50000

160
140
120
100
80 |
60 |
40 |
20 |

msec

0 04 07 1
Approximation level

1.4 17 2 24 27 3

—e—dim=2
o0 —l—dim=3
—A—dim=4

error
@

0 0407 1 1417 2 2427 3
Approximation level

Figure 16. Performance and error rates for Zipf
distribution, dim=2,3,4, query size = large, and number of
datain the A-tree = 50000

6. Conclusion

In this paper, we proposed a new technique called a
dynamic update cube which is designed to reduce the
update cost of the data cube significantly, while
maintaining reasonable search efficiency. In the recent
dynamic enterprise environment where data elements in
the data cube are frequently changed, the responsetime is
affected by the update cost as well as the search cost of
the cube. We exploited a hierarchical data structure, called
the A-tree, to store the information of updated cells in the
data cube and thus to minimize the update cost since only
a smal fraction of data eements in the data cube is
changed. In addition, by taking advantages of the
hierarchical tree structure of the dynamic update cube, we
proposed a hybrid method to provide either an gpproxi-
mate result or a precise one to reduce the overdl cost of
queries. It is useful for diverse applications that need
quick gpproximate answers rather than accurate ones,

such as decision support systems.

The update complexity of our method is O(log N),
with respect to N, the number of changed cells in the data
cube. We have aso provided experimental evaluations on
the query and update efficiency and on the approximation
accuracy and efficiency, with respect to various
dimensions and query sizes. Experimenta results demon-
strate that our method performs very efficiently for update
and query operations, and show reasonable approximation
error raes with a significant gain in speed when the
hybrid method is used.

Asthe future work, we plan to investigate techniques to
further reduce the gpproximation error of the hybrid
method, and to develop indexing mechanisms for high-
dimensional (e.g, 10 and 20 dimensions) data cubes.

References

[BKK96] S. Berchtold, D. Keim, and H. Kriegel, The X-tree: an
index structure for high dimensional data, Proceedings
of Int'l Conference on Very Large Data Bases, India,
1996, pp. 28-39.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, and B.

Seeger, The R'-tree; an efficient and robust access

method for points and rectangles, Proceedings of

ACM SIGMOD Int'I Conference on Management of

Data, New Jersey, 1990, pp. 322-331.

Alex Berson, Stephen J. Smith, Data WareHousing,

DataMining, & OLAP, McGrawHill, 1997.

[BS97]

[CI99] C.-Y. Chan, Y. E. loannidis, Hierarchical cubes for
range-sum queries, Proceedings of Int’| Conference on
Very Large DataBases, Scotland, 1999, pp. 675-686.

[Cod93] E. F. Codd, Providing OL AP(on-line analytical proce-

ssing) to user-analysts: An IT mandate, Technical
report, E. F. Codd and Associates, 1993.

[GAEQQ] S. Geffner, D. Agrawal, A. El Abbadi, The Dynamic
Data Cube, Proceedings of Int'l Conference on
Extending Database Technology, Germany, 2000,
pp.237-253.

[GAES99] S. Geffner, D. Agrawal, A. El Abbadi, T. Smith,

Relaive prefix sums. an efficient approach for

quering dynamic OLAP Data Cubes, Proceedings of

Int'| Conference on Data Engineering, Australia, 1999,

pp. 328-335.

A.Guttman, R-trees: a dynamic index sructure for

spatial searching, Proceedings of ACM SIGMOD Int’l

Conference on Management of Data, Massachusetts,

1984, pp. 47-57.

[HAMS97] C. Ho, R. Agrawal, N. Megido, R. Srikant, Range
queries in OLAP Data Cubes, Proceedings of ACM
SIGMOD Int'l Conference on Management of Data,
1997, pp. 73-88.

[LWOO0Q] W. Liang, H. Wang, M. E. Orlowska, Range Queries
in dynamic OLAP data cubes Daa & Knowledge
Engineering 34, 2000, pp. 21-38.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-
tree: a dynamic index for multi-dimensional objects,
Proceedings of Int'| Conference on Very Large Data
Bases, England, 1987, pp. 507-518.

[Guts4]

