
Dynamic Update Cube for Range-Sum Queries

Seok-Ju Chun† Chin-Wan Chung‡ Ju-Hong Lee† Seok-Lyong Lee†

†Department of Information and Communication Engineering

‡Department of Computer Science
Korea Advanced Institute of Science and Technology

{chunsj,chungcw,jhlee,sllee}@islab.kaist.ac.kr

Abstract

A range-sum query is very popular and becomes
important in finding trends and in discovering
relationships between attributes in diverse
database applications. It sums over the selected
cells of an OLAP data cube where target cells are
decided by the specified query ranges. The direct
method to access the data cube itself forces too
many cells to be accessed, therefore it incurs a
severe overhead. The response time is very
crucial for OLAP applications which need
interactions with users. In the recent dynamic
enterprise environment, data elements in the
cube are frequently changed. The response time
is affected in such an environment by the update
cost as well as the search cost of the cube.
In this paper, we propose an efficient algorithm
to reduce the update cost significantly while
maintaining reasonable search efficiency, by
using an index structure called the ∆-tree. In
addition, we propose a hybrid method to provide
either an approximate result or a precise one to
reduce the overall cost of queries. It is useful for
various applications that need a quick approxi-
mate answer rather than an accurate one, such as
decision support systems.

1. Introduction
On-Line Analytic Processing (OLAP) [Cod93] is a
category of database technology that allows analysts to

gain insight on an aggregation of data through the access
to a variety of possible views of information. It often
needs to summarize data at various levels of detail and on
various combinations of attributes. Typical OLAP appli-
cations include product performance and profitability,
effectiveness of a sales program or a marketing campaign,
sales forecasting, and capacity planning [BS97]. Among
various OLAP application areas, a data model for the
multidimensional database (MDDB), which is also known
as a data cube[HAMS97], becomes increasingly important.

A data cube is constructed from a subset of attributes
in the database. Certain attributes are chosen to be
measure attributes, i.e., the attributes whose values are of
interest. Other attributes are selected as dimensions or
functional attributes [GAES99]. The measure attributes
are aggregated according to the dimensions. Consider a
data cube maintained by a car-sales company. It is
assumed that the data cube has four dimensions
MODEL_NO, YEAR, REGION, COLOR, and one
measure attribute AMOUNT_OF_SALES. Let the
domain of MODEL_NO contain 30 models, of YEAR be
from 1990 to 2001, of REGION contain 40 regions, and
of COLOR be {white, red, yellow, blue, gray, black}.
Then the data cube has 30×12×40×6 cells, and each cell
contains AMOUNT_OF_SALES as a measure attribute
for the corresponding combination of 4 functional
attributes, i.e. MODEL_NO, YEAR, REGION, and
COLOR. A data cube provides a useful analysis tool on
data called a range-sum query that applies an aggregate
operation to the measure attribute within the range of the
query [GAE00]. A Typical example includes “Find the
total amount of sales in Seoul for all models with red
color between 1995 and 2000.” Queries of this form are
very popular and important in OLAP.

It is natural that the response time is very crucial for
the OLAP application which needs user-interaction. The
direct method to process the range-sum query is to access
the data cube itself. But it suffers from the fact that too
many cells need to be accessed to get the range-sum. The
number of cells to be accessed is proportional to the size
of the sub-cube defined by the query. To enhance the

*This work was supported by the Korea Research Foundation Grant
(KRF-2000-041-E00262).
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

search efficiency, the prefix sum approach [HAMS97] has
been proposed, which uses an additional cube called a
prefix sum cube (PC), to store the cumulative sum of data.
This method however focuses on reducing the search cost.
The current enterprise environment forces data elements
in the cube to be dynamically changed. In such an
environment, the response time is affected by the update
cost as well as the search cost of the cube.

Recently, various excellent studies [GAES99, CI99,
LWO00, GAE00] have been made to reduce the update
cost. Those methods use additional data structures such as
the relative prefix sum cube (RPC) to minimize the update
propagation over the prefix sum cube. However, those
approaches have some limitation in the context that they
still have the update propagation problem even though
they have reduced it in some degree, since the RPC is a
slight transformation of the PC. Furthermore, their update
speed-up is accomplished by the sacrifice of the search
efficiency. In many OLAP applications, it becomes an
important issue to improve the update performance while
minimizing the sacrifice of the search efficiency.

In this paper, we propose an efficient algorithm to
make a drastic cut in the update propagation by using an
index structure called the ∆-tree. Various multi-
dimensional index structures [SRF87, BKSS90, BKK96]
have been proposed since the R-trees [Gut84]. The ∆-tree
is a modified version of the R*-tree [BKSS90] to store the
updated values of a data cube and to support the efficient
query processing. Our algorithm takes advantage of the
traditional prefix sum approach to gain considerable
search efficiency with a significant reduction of the
update cost.

Furthermore, in many current enterprise applications
like the decision support system, there are a number of
trial-and-error steps involved in getting the right answer.
It forces range-sum queries to be executed too many times,
which causes severe query cost. Thus it is important to
provide the facility to get a quick approximate result
rather than an accurate one to support the decision making
process timely. We propose a hybrid method to provide
either an approximate result or a precise one in order to
reduce the overall costs of queries for collecting
information for decision making.

1.1 Related work

As we introduced briefly in the previous section, various
approaches that address the query on an OLAP data cube
were proposed. Ho, et el. [HAMS97] have presented an
elegant algorithm for computing range queries in data
cubes which we call the prefix sum approach. The
essential idea of the prefix sum approach is to precompute
many prefix sums of the data cube, which can be used to
answer ad hoc queries at rum-time. This approach turned
out to be very powerful. Range-sum queries were
processed in constant time regardless of the size of the
data cube. But, it is very expensive to maintain the prefix

sum cube when data elements in the cube are frequently
changed.

To reduce the update propagation in the prefix sum
cube, Geffner et el. [GAES99] presented an algorithm for
computing range queries in data cubes which they called
the relative prefix sum approach. They tried to balance the
query-update tradeoff between the direct method and the
prefix sum approach. This approach is however
impractical in the data cube of high dimensions and high
capacity since the update cost increases exponentially.
Chan and Ioannidis [CI99] proposed a new class of cube
representations called Hierarchical Cubes, which was
based on two orthogonal dimensions. They have shown
that a particular cube design called the Hierarchical Band
Cube has a significantly better query and update trade-off
than that of the algorithm proposed[GAES99]. But the
index mapping from a high-level “abstract” cube to a low-
level “concrete” cube is too complicated for implemen-
tation. They did not verify the analytical results of their
method experimentally.

More recently, Geffner et el. [GAE00] proposed the
Dynamic Data Cube which was designed by decomposing
the prefix sum cube recursively. They assumed that each
dimension of a data cube was of the same size, and
constituted a tree structure by a decomposition technique.
But the data cube of a practical environment, like the
example of the car-sales company in the previous section,
has the dimensions of different sizes. (In our example, the
size of each dimension is 30, 12, 40, and 6, respectively.)
Dimensions of different sizes make it difficult to keep the
balance of the tree while decomposing the prefix sum
cube. Besides, if the data cube is of high dimensions and
high capacity, it is difficult to apply their approach since
the tree becomes too large, so the approach incurs a high
computation overhead.

1.2 Contributions

In this paper, we present a new technique called a
dynamic update cube which exploits an index structure,
that is, the ∆-tree. Our contributions are summarized as
follows:
z We have proposed an efficient algorithm to take
advantage of the prefix sum approach and to reduce the
update cost significantly using the ∆-tree. We presented
the comparison on the update complexities of various
methods. The update complexity of our algorithm is O(log
Nu), with respect to Nu, the number of changed cells in the
data cube. We provided an analysis using various sizes of
data cube and experimental evaluation which showed that
our method performed very efficiently on various
dimensionalities, compared to other methods.
z We have proposed a hybrid method to provide
either an approximate result or a precise one with respect
to OLAP range-sum queries, and also proposed the
method to reduce the approximation error considerably.
To our knowledge, the proposed approach is the first
work specifically addressing a hybrid method that gives

both approximate and accurate answers at the same time
on users’ demands. The extensive experiment on the
approximation method demonstrates a remarkable speed-
up in the query processing while preserving a
considerable accuracy

The remainder of the paper is organized as follows:
The preliminary information for the prefix sum approach
is described in Section 2. Section 3 provides a detailed
description of our proposed work. A hybrid method that
provides either an approximate result or a precise one is
given in Section 4. Experimental results with respect to
the performance evaluation of proposed algorithms are
presented in Section 5 and we give conclusions in Section
6.

2. Preliminary
In this section, we introduce the background information
regarding the prefix sum cube which is closely related to
our proposed method. In the prefix sum approach, a prefix
sum cube PC of the same size as the data cube A, stores
various precomputed prefix sums of A. Each cell of PC
contains the sum of all cells up to and including itself in
the data cube A. Figure 1 shows an 6×8 data cube and its
prefix sum cube. Cell PC[4,6] contains the sum of all
cells in the range A[0,0] to A[4,6]. The sum of the entire
cube A is found in the last cell PC[5,7].

Let D = {1, 2, …, d} denote the set of dimensions
and ni denote the number of cells in dimension i. Ho, et el.
[HAMS97] have presented a simple method which needs

∏ =
= d

i inN
1

 additional cells to store certain

precomputed prefix-sums such that any d-dimensional
range-sum can be computed in 2d − 1 computation steps,
based on up to 2d appropriate precomputed prefix sums.
Formally, for all 0≤xi<ni and i∈ D,
PC[x1,x2,…,xd] = Sum(0 : x1, 0 : x2, … , 0 : xd) =

][. . . d2
0 0 0

1

1

1

2

2

i,...,iiA ,
x

i

x

i

x

i

d

d

∑ ∑ ∑
= = =

For example, When d = 2, we precompute, for all 0≤x<n1
and 0≤y<n2,

PC[x,y] = Sum(0:x, 0:y) =],[
0 0

∑ ∑
= =

x

i

y

j

jiA .

Figure 1 shows an example of A[x1,x2] and its
corresponding PC[x1,x2] for d = 2. The prefix sum
approach is very powerful. It provides range-sum queries
in constant time, regardless of the size of the data cube.
The Lemma 2.1 below provides how any range-sum of A
can be computed from up to 2d appropriate elements of
PC. The left hand side of the below equation specifies a
range-sum of A. The right side of the equation consists of
2d additive terms, each of which is from an element of PC
with a sign “+” or “−” determined by the product of all
s(i)’s . For notational convenience, let PC[x1, x2,…, xd] =
0 if xj = −1 for some j ∈ D.

Figure 1. Example of an 6×8 original data cube A and its
prefix sum cube PC
Lemma 2.1 [HAMS97]. For all j ∈ D, let

Then, for all j ∈ D,

Sum(l1: h1, l2: h2,…, ld: hd)

= []
}{

21
1

∑ ∏
−∈∀ =

∗

h,l jjjx
x,...,x,xPCs(i) d

d

1i

��

Example 2.2 When d = 2, the range-sum Sum(l1:h1, l2:h2)
can be obtained by the computation: PC[h1, h2] – PC[h1,
l2–1] – PC[l1–1, h2] + PC[l1–1, l2–1]. As illustrated in
Figure 1, the range-sum Sum(1 : 4, 2 : 6) can be derived
from PC[4,6] – PC[0,6] – PC[4,1] + PC[0,1] = 150 – 34 –
33 + 9 = 102. �
Figure 2 gives a geometrical explanation of the
computation for a two-dimensional case.

 = − − +

Area_E Area_A Area_B Area_C Area_D
Figure 2. A geometric illustration of the two dimensional
case

3. Proposed work

3.1 Motivation

With the advances of the internet technologies such as the
World Wide Web, we are able to use diverse applications
including OLAP servers regardless of time and location.
Users may be widely spread geographically and also a
great number of users may want to use a large scale
OLAP server concurrently. Performance in these environ-

−=
=

=
1.lx if

,hx if
js

jj

jj

1,-

1,
)(

Index WW XX YY ZZ [[\\]] ^̂

0 4 5 2 8 3 7 5 6

1 2 1 5 3 7 2 4 2
2 5 3 9 3 4 7 1 3
3 3 5 6 1 8 5 1 6

4 3 2 1 4 7 8 6 4
5 6 2 2 6 1 9 5 2

(a) data cube A

(b) prefix sum cube PC

Index WW XX YY ZZ [[\\]] ^̂

0 4 9 11 19 22 29 34 40
1 6 12 19 30 40 49 58 66

2 11 20 36 50 64 80 90 101
3 14 28 50 65 87 108 119 136

4 17 33 56 75 104 133 150 171
5 23 41 66 91 121 159 181 204

ments becomes an issue when we support the query
processing and dynamic data updates at the same time.

Furthermore, in the previous methods based on the
prefix sum cube, many queries of users is blocked if the
ranges of these queries include a single cell which must
be changed due to the update process. Otherwise, the
queries produce incorrect answers. Namely, one update
operation can cause many queries to be blocked.
Therefore, It is clear that the blocking will degrade the
overall performance of the OLAP server when the update
cost is high.

The OLAP server is widely used as a system for
supporting the decision making process. A number of
users may want to issue a large number of queries related
to theirs’ concerns until they reach some decision. If all
queries require precise answers, they incur high cost of
their execution and a great load to the OLAP server. On
the other hand, if all queries need approximate answers,
they also make users be confused with inexact answers.
We need some hybrid method that provides approximate
answers during the process of focusing and exact answers
for queries of interest. However, the previous methods
based on the prefixed sum cube do not provide this kind
of hybrid method.

3.2 Idea

In a dynamic OLAP environment, cells of the data cube
are frequently changed. The problem is that the cost of
updating the prefixed sum cube is very high. The basic
idea is that we store and manage changed cells using the
virtual cube, called the ‘dynamic update cube’ instead of
updating the prefixed sum cube directly. When a range-
sum query is processed, the prefixed sum cube and the
dynamic update cube are manipulated simultaneously.

Regardless of being dense or sparse of the data cube,
the prefixed sum cube is always dense. On the other hand,
the dynamic update cube is sparse because it involves
only the changed cell of the data cube.

Example 3.1 As shown in Figure 3, the prefixed sum
cube(PC) is always dense since it stores the cumulative
sums of data cube cells even though the data cube is
sparse. In this Figure, ‘×’ indicates a changed cell and ‘∆’
indicates the difference of the values of a changed cell,
that is, ∆ = ×new − ×old. Since the dynamic update cube
stores ∆ values, it is sparse. ��

The positions of the dynamic update cube cells can
be represented as multidimensional points and so, these
cells are stored into the multidimensional index structure,
called the ‘∆-Tree’. The cells that are spatially close each
other are clustered into a corresponding the minimum
bounding rectangle(MBR). When searching the ∆-Tree,
non-overlapping MBRs of the ∆-Tree are pruned
efficiently. More details are explained in Section 3.4. The
positions and ∆ values of the dynamic update cube cells
are stored into the ∆-Tree.

The idea proposed in this paper are summarized as
follows:
z Since the prefixed sum cube is dense and the
dynamic update cube is sparse, whenever the data cube
changes, we do not update directly to the prefixed sum
cube. Instead we store the changes of the data cube into
the ∆-Tree and then manage it. This reduces the update
cost and resolves the problem of propagating updates in
the prefixed sum approach.
z When processing a range-sum query, we can get
an approximate answer by searching the ∆-tree partially.
That is, searching is performed from the root to an
internal node of the level i instead of a leaf node. The
details of calculating an approximate answer are
explained in Section 4.
z The size of the ∆-tree can increase as the cells of
the data cube are changed. When the ∆-tree is too large,
the cost of search and update becomes high. Thus, all
information stored in the ∆-Tree needs to be reflected on
the prefix sum cube(so-called ‘bulk updates’) periodically,
depending on applications, i.e., weekly, monthly, or at
some threshold.

3.3 The ∆-tree

In this section, we introduce the structure of the ∆-tree, as
shown in Figure 4. The construction process of the ∆-tree
is the same as that of the R*-tree. Initially the ∆-tree has
only a directory node(called the root node). Whenever the
data cube cell is updated, the difference(∆) between the
new and old values of the data cube cell and its spatial
position are stored into the ∆-tree. We define the ∆-tree
formally as follows:
Definition 3.2 (the ∆-tree)
1. A directory node contains (L1, L2,..., Ln), where Li is the
tuple about the i’th child node Ci and has the form (Σ∆, M,
cpi, MBRi). Σ∆ is the sum of all Σ∆ values(∆ values) of Ci
when Ci is a directory node(data node). cpi is the address
of Ci and MBRi is the MBR enclosing all entries in Ci . M

root Σ∆ Σ∆

Σ∆ Σ∆ Σ∆

∆1 ∆2 ∆3 ∆4 ∆5

Figure 4. The structure of ∆-tree

Σ∆ Σ∆

∆6 ∆7 ∆8 ∆9 ∆10 ∆11 ∆12

× : changed cell

Dynamic update cube
:sparse

Prefix sum cube
: dense

Data cube
:sparse or dense

Figure 3. The basic concept of the dynamic update cube

× ×
× ×

×
×

×
×

has the form (µ1, µ2, ... , µd) where d is the dimension and
µj is the mean position of the j’th dimension of MBRi
which is defined as follows:

∑
∑

=

==
j

j

n

m j

n

m j

j
mF

mmF

1

1

)(

)(
µ ,

where ∑
≠
=
==
jh
mk

nk
djj

j

hh kkkfmF ,1
1),...,,...,()(,

),...,,(21 dkkkf is the value of an update position (k1,

k2,..., kd) in MBRi with 1≤kj≤nj, and nj is the number of
partitions of the j’th dimension of MBRi.
2. A data node is at the level 0 and it contains (D1, D2,...,
Dn), where Di is the tuple about i’th data entry and has the
form (Pi, ∆i). Pi is the position index and ∆i is the
difference of the changed cell.

The objective of using Σ∆ is to provide both fast and
approximate answers of the range-sum query and the
objective of using M is to improve the approximation
technique (see example 4.2 in Section 4.2).

3.4 Range-sum query

We use both the prefix sum cube PC and the ∆-tree in
order to answer the range-sum query. As we mentioned
before, PC includes the information which had been most
recently bulk updated while the ∆-tree includes the
information which has been updated from then on. The
update cells which are spatially close each other are
clustered into a corresponding MBR.

Example 3.3 For the example in Figure 5, the cells
marked by the symbol ‘*’ in the data cube A indicate that
they have been updated from the data cube in Figure 1-(a).
In Figure 5-(b), each MBRs in the lowest level of the
dynamic update cube contain these cells which so far have
not been reflected to PC. ��

When a range-sum query Q, where Q is (l1: h1, l2:
h2,…, ld: hd), is given, we use PC and the ∆-tree for
obtaining the answer of Q. Let Sum(Q) be a function that
returns the answer of Q, PC_sum(Q) be a function that
returns the answer which is calculated from PC, and
∆_sum(Q) be a function that return the answer which was
found from the ∆-tree . Then, the answer will be:

Sum(Q) = PC_sum(Q) + ∆_sum(Q)

Example 3.4 For Figure 5, when a range-sum query Q
is given as below, we can obtain the answer of Q using
PC and the ∆-tree.

We have the answer from the above equation. That is,
Sum(2 : 5, 4 : 7) = PC_sum(2 : 5, 4 : 7) + ∆_sum(2 : 5, 4 :
7). The function PC_sum(2 : 5, 4 : 7) can be obtained ‘on-
the fly’ by Lemma 2.1. ��

Definition 3.5 (Disjoint, Inclusive, Intersecting)
Let MBRQ and MBRT be the MBR of a query Q and the
MBR of a node T. The relationship between MBRQ and
MBRT may formally be defined as
(1) Disjoint iff MBRQ @ MBRT = φ.
(2) Inclusive iff MBRQ ⊇ MBRT.
(3) Intersecting iff MBRQ @ MBRT � φ and not inclusive.
Note that MBRQ ⊂ MBRT is defined to be intersecting.

When the ∆-tree is traversed to find the result from the
function ∆_sum(Q), a root node is at first visited, and each
entry of the root node is evaluated with respect to the
spatial relationship between MBRQ and MBRT, as
described in Definition 3.5. The brief algorithm of the
function ∆_sum(Q) is shown as follows:

Algorithm ∆_sum()
input: query Q, ∆-tree
output: answer
procedure:
 1. Visit the nodes in the ∆-tree in the depth first order
starting from the root node. If there is no more node to be
visited, return answer
 2. Each entry of the node is evaluated. There are three
cases of the relationship between MBRQ and MBRT of
each entry, as described in Definition 3.5. Those cases
and the corresponding pruning strategies are as follows:
case 1 (disjoint):
The entry related to MBRT is irrelevant to the query Q.
Thus, the sub-tree under is pruned.
case 2 (inclusive):
Σ∆ of the entry related to MBRT is added to answer. It is
not necessary to traverse the sub-tree under the entry any
more since Σ∆ is an exact answer with respect to this
entry.
case 3 (intersecting):

Range-sum query(Q): Select Sum(A.sales)
 From A
 Where 2 ≤ A.x ≤ 5 and 4 ≤ A.y ≤ 7

Figure 5. Example of a range-sum query in the data cube
and the dynamic update cube

Q

Index WW XX YY ZZ [[\\]] ^̂

0 ^Q \ Y _ Z ^ XYQ]

1 Y \Q \ Z ^ Y [Y

2 \ XQ ` [Q [XZQ X Z

3 Z \ XXQ X _ \ [Q]

4 Z Y X [^ _] XQ

5 \Q Y [Q] X ` ^Q Y

 (a) Data cube A

3
4

-2
5

2 -1

1

2
-3

3

6

7

 (b) Dynamic update cube U

In this case, we have two choices for the range-sum:
precise and approximate. To get a precise answer, we
need to evaluate every child MBR which is included in
MBRT. To get a approximate answer, we compute the
approximate Σ∆ of the entry related to MBRT, and add it
to answer. The detail description on how to get the
approximate answer is discussed in Section 4. The
algorithm ∆_sum() is recursively called with the ∆-tree
replaced by the sub-tree under this entry.

Example 3.6 As shown in Figure 6, when a range-sum
query Q(2:5,4:7) (dotted box) is given, MBR1 is disjoint,
MBR2 is intersecting, and MBR3 is inclusive. Therefore,
we can find that the answer of the function ∆_sum(2:5,
4:7) is 8. Thus, we complete the function Sum(2:5,4:7) as
follow:
Sum(2:5,4:7)=PC[5,7]−PC[1,7]−PC[5,3]+PC[1,3]+
∆_sum(2:5, 4:7)= (204 − 66 − 91 + 30) + (6 + 2) = 85. �

3.5 Updates

When the value of a cell in the data cube is changed, it
does not affect the prefix sum cube directly. Instead, we
only need to change the value of an appropriate location
in the ∆-tree. Let us consider how the update on the value
of a cell affects the ∆-tree. The update request is given in
the form (P, ∆) where P is the position index and ∆ is the
difference from the old ∆ value of the changed cell. The
first step for the update is to identify the sub-tree into
which the update is made. Choosing the target sub-tree for
the update is the same as that for R*-tree. By identifying
the sub-trees repeatedly, the target data node to reflect the
update request is finally chosen. Once the target data node
is identified, our method checks whether the data entry
with the position P exists in the node or not. There are
two cases as follows:

Case 1. (when the position P exists)
In this case, the update is made in the data entry (P, ∆ OLD)
where ∆OLD is the existing ∆ value of P. The ∆ value is
added to ∆OLD. And then, for all ancestors of the data node
in the tree, we set: (Σ∆)ancestor = (Σ∆)ancestor + ∆, where
(Σ∆)ancestor is Σ∆ of an ancestor node of the data node. This
process is repeated up to the root node.

Case 2. (when the position P does not exist)
If the position P does not exist, the data entry (P, ∆) is
inserted in the end of the node. And also, for all ancestors
of the data node in the tree, we set: (Σ∆)ancestor = (Σ∆)ancestor

+ ∆, as described in the case 1. Sometimes, an overflow
occurs in a node during the insertion process when the
number of data entries exceeds a specified threshold. In
this case, the node is split into two nodes. We have
adopted the same splitting strategy as that of the R*-tree.
For more details on insert/split algorithms of the R*-tree,
refer to [BKSS90]. Let us assume that the node S is split
into S1 and S2. Then it needs to recalculate Σ∆’s of the
parent of S1 and S2. Adjusted Σ∆’s of the parent of S1 and
S2 are reflected to all ancestor nodes in the tree, up to the
root node.

Example 3.7 Let us consider the update process when the
value of the cell A[2,3] in Figure 5-(a) is changed from 4
to 6. This process corresponds to the update request ([2,3],
2) into the ∆-tree. As shown in Figure 7, an entry
(<0:5,0:3>, 12) is at first selected in the root node.
Traversing down the tree, an entry (<2:3,1:3>, 4) is
chosen in the intermediate node. Since the data entry with
the position [2,3] is found in the node which is pointed to
by the entry (<2:3,1:3>, 4), the ∆ value 2 is added to the
old value 1, resulting in 3. After changing the data node,
the Σ∆’s of ancestor nodes are changed from (<2:3,1:3>,
4) and (<0:5,0:3>, 12) to (<2:3,1:3>, 6) and (<0:5,0,3>,
14) respectively. �

3.6 Time complexity of the dynamic update cube

The dynamic update cube provides a significant efficiency
compared to the previous methods such as [HAMS97,
GAES99, LWO00, GAE00]. The time complexity of our
method for updating a single cell in the ∆-tree is O(logNu),
where Nu is the number of changed cells. It is usual that
the number of changed cells is very small compared to the
total size of the data cube. The complexity O(logNu)

data node

([5,0],-1),([5,2],2) ([0,0],3),([1,1],4) ([2,1],-2),([2,3],1),([3,2],5)

(<0:1,0:1>,7), (<2:3,1:3>,4), (<5:5,0:2>,1)

(<0:5,0:3>,12), (<0:5,5:7>,15) root
directory node

Figure 7. The detail structure of the ∆-tree in Figure 6-(b).

inclusive

inclusive intersecting

intersecting disjoint

(b) ∆-tree

12 15

7 4 1 13 2

3 4 -2 1 5 -1 2 7 6 3 -3 2

(a) U

3
4

-2
5

2 -1

1

2
-3

3

6

7

MBR1 MBR2 MBR3

Figure 6. Dynamic update cube U and ∆-tree corres-
ponding to U.

corresponds to the complexity of descending a single path
in the tree. Table 1 shows the comparison of complexities
among different methods. Here, we assume that N = nd
and n is the number of cells in each dimension. Thus, it is
clear that our method outperforms other methods since the
size of the dynamic update cube is very small than that of
the original data cube. that is, Nu << N.

Table 1. Time complexities among different methods

Method Update time
Prefix Sum[HAMS97] O(nd)
Relative Prefix Sum[GAES99] O(nd/2)
Dynamic Data Cube[GAE00] O(logd n)
Dynamic Update Cube O(log Nu)

As an example of the comparison of time complexities

shown in Table 1, Table 2 shows the number comparison
of the update costs for various methods when the
dimensionalities (d in Table) are 2, 4, and 8, and the size
(n in Table 1) of each dimension is 101 and 102. For
instance, when d = 4 and n = 102, the total size of a data
cube N = nd is 108. We assume that the fan-out of the ∆-
tree is 10, that is, the base of log in the complexity of our
method is 10. We also used 10 as the base of log for the
dynamic data cube. We consider that generally Nu is
around 1% of N. Therefore, our method is evaluated for
three cases: Nu = 0.1%, 1%, and 10% of N. As we observe
the results in Table 2, our method outperforms other
methods.

Table 2. The number comparison of update costs for
various methods

The previous methods based on the prefix sum cube

compromise the query cost in order to improve the update
cost. Our method has a very efficient update performance
using the ∆- tree, but it requires for processing queries,
therefore, both the previous methods and our method
incur additional overhead compared with the prefix sum
approach. The experiments in Section 5 demonstrate that
the query processing of our method is quite efficient.

4. Hybrid Method
In a real OLAP environment users typically search for
trends, patterns, or unusual data behaviors by issuing
queries interactively. Thus, users may be satisfied with
approximate answers for queries if the response time can
be greatly reduced. In this section, we propose a hybrid
method to provide either an approximate result or a
precise one to reduce the overall cost of queries. It is

highly beneficial for various applications that need quick
approximate answers rather than time consuming accurate
ones, such as decision support systems. We provide the
approxim-ation technique and illustrate how to reduce the
errors of the approximation technique with a little
additional cost.

4.1 Approximation technique

When processing a range-sum query, we can obtain an
approximate answer by searching the ∆-tree partially.
That is, searching is performed from the root to an
internal node of the level i instead of a leaf node. There
exist several MBRs which are participated in answering a
range-sum query. We can classify these MBRs into two
groups as follows:
1. Inclusive MBRs: MBRi (i=1,…,m), where m is the
number of inclusive MBRs.
2. Intersecting MBRs: MBRj (j=m+1,…,n), where n − m
is the number of intersecting MBRs.

Example 4.1 As shown in Figure 8, we can see the level
i-th cross-section of the ∆-tree. That is, MBR 1 and MBR 2

are inclusive MBRs, the other side, MBR 3, MBR 4 and
MBR 5 are intersecting MBRs. �

Figure 8. The shape of query MBR and MBRs in the level
i of the ∆-tree.

Let (Σ∆)i (i=1,…,m) be the Σ∆ value of the i’th
inclusive MBR, and (Σ∆)j (j=m+1,…,n) be the Σ∆ value
of each intersecting MBR. The answer of the range-sum
query at the level i of the ∆-tree can be approximated by
the following equation:
Approx_sum(Q) =

4.2 Improving approximation technique

In this section, we propose to use the list of mean
positions (M in Definition 3.2) for improving the
approximation technique. We resize the area of a range
query for a more accurate approximation and calculate the
difference between the approximation value without
resizing and that with resizing to find nodes for further
searching. Example 4.2 illustrates this.
Example 4.2 As shown in Figure 9, the overlapping
region is (0:x, y:L2) and µ1, µ2 have been calculated. Then

Dynamic Update Cube
n d N= nd

Prefix-
Sum

Relative
PS

Dynamic
Data Cube Nu=

0.001N
Nu=

0.01N
Nu=
0.1N

2 102 102 101 11 - 1 1
4 104 104 102 118 1 2 3 10

8 108 108 104 14064 5 6 7
2 104 104 102 43 1 2 3
4 108 108 104 1897 5 6 7 100

8 1016 1016 108 3600406 13 14 15

query MBR

level-i

(a) MBRs at the level i of ∆-tree

MBR2

MBR4

MBR5

MBR 1

MBR 3

(b) ∆-tree

Cross-section

()
())(

1

)()(QPC_sum
MBRVol

MBRMBRVoln

mj
j

j

Qj

1i
i

m
+

+ ∑ ×∩

∑
+==

Σ∆Σ∆

the region is resized for a more accurate approximation.
Let us consider the vertical side of the node. [0, µ1]
contains a half of the values. We want to find α such that
[0,α] , when values are uniformly distributed, contains the
values contained in [0,x] when µ1 is the mean position.
Then

1

1

11

1

5.0

5.0

L

L

L

x −=
−
− α

µ
µ . That is,

−
−+=

11

11 1
2 µ

µα
L

xL .

Therefore, 0:x is resized to 0:

−
−+

11

11 1
2 µ

µ
L

xL . The

resizing of y:L2 can be similarly calculated to be

2

2

2 µ
yL × :L2 . And, we calculate the difference between

the approximation value with resizing and that without
resizing to find nodes to be searched down in the next
lower level. We select the nodes whose difference values

are bigger than others. v
When searching intersecting nodes in the level i, the

error can be reduced much with a little additional
overhead if we search down to the level i-1 for a few
nodes in the level i having big differences.

5. Experimental Evaluation
In this section, we present the experimental environment
and the performance evaluation of our proposed method.
The method proposed in this paper uses both the prefix
sum cube and the ∆-tree. That is, the update is made in
real-time on the ∆-tree and all updates are reflected in the
prefix sum cube periodically. Therefore we evaluated the
update performance by using the update on the ∆-tree. As
for the query efficiency, we considered the prefix sum
cube as well as the ∆-tree since the query is processed on
both. We evaluated the accuracy of approximate results
by accessing both the prefix sum cube and the ∆-tree.
The ∆-tree was implemented by modifying the R*-tree to
accommodate Σ∆ and M, and its node size was adjusted to
have a reasonable depth (say, 5 or 6) for evaluating
approximate results for the hybrid method. Test data sets
were generated to have two types of distributions:
uniform and Zipf distributions. The z parameter of Zipf
distribution was determined to have a constant value

(z=0.9) regardless of the dimension. The dimensionalities
of the test data are 2, 3, 4, and 5. The cardinality of each
dimension d is 1024 for d = 2, 512 for d = 3, 128 for d = 4,
and 64 for d = 5, respectively. The number of data
elements that are to be inserted into the ∆-tree is 10000
through 50000. Three types of queries are used based on
query size (i.e., query volume / data cube volume) as
follows: large(=0.1), medium(=0.05), small(=0.01).

All experiments have been done on a Sun Ultra II
workstation with 256M main memory and 10G hard disk.
The error rates in the experimental results indicate the
percentage error. Each experimental result has been
obtained by issuing 30 queries and 30 updates for
evaluating the range-sum query and the update process
respectively, and by averaging the results of them.

Figure 10 shows the efficiency of range-sum queries
in the dimensionality of 3 (d = 3) for various query sizes,
i.e. large, medium, and small sizes. Figure 11 illustrates
the results of the query execution for the medium-size
query with respect to the dimensionalities of 3, 4, and 5,
respectively. Those results have been obtained by visiting
nodes of the ∆-tree from the root to the level 0, i.e. the
data node, and thus those results are exact (not
approximate). The efficiency of queries is measured by
the execution time in second. For d = 3, the result shows a
considerable efficiency, that is, the execution time is
below one second.

a

a_b

a_c

a_d

a_e

a_f

a_g

a_h

a_i

baaaa caaaa daaaa eaaaa faaaa

�¦���£ � ��¥� �� ¥�� ���¥�^¥£��

¤
�
�

�� £��

��� �¦�

¤��� �

Figure 10. Exact query performance(=level 0) for uniform
distribution, dim=3 and query sizes = large,medium,small

a

a_c

a_e

a_g

a_i

b

b_c

b_e

b_g

baaaa caaaa daaaa eaaaa faaaa

�¦���£ � ��¥� �� ¥�� ���¥�^¥£��

¤
�
�

��� nd

��� ne

��� nf

Figure 11. Exact query performance (=level 0) for
uniform distribution, dim=3,4,5 and medium size query

Figure 12 shows the performance as the number of

page accesses for inserting the value of a changed cell to
the ∆-tree. For this experiment, we inserted up to 100000
data elements into the ∆-tree. The X-axis represents the

0.5L2

0.5L1

x

µ2
node

query

0

L1
0 L2

µ1

y

Figure 9. Resizing of the query

number of data elements in the ∆-tree while the Y-axis
represents the number of page accesses to insert a single
value into the tree which corresponds to the depth of the
tree. As we observe in the Figure, the number of page
accesses is O(log Nu), where Nu is the number of changed
cells.

a

c

e

g

i

ba

baa baaa baaaa baaaaa

�¦���£ � ��¥� �� ¥�� ���¥�^¥£��

�
¦
�
�
�
£

�
¡
�
�
�

�
�
�
�
¤
¤
�
¤

��� nc

��� nd

��� ne

��� nf

Figure 12. Insert performance

a

ca

ea

ga

ia

baa

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
¤
�
�

��£��

����¦�

¤��� �

a

f

ba

bf

ca

cf

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
££

£

� � £��

� ���¦�

¤� �� �

Figure 13. Performance and error rates for uniform
distribution, dim=4, query sizes=large, medium, small,
and number of data =10000

Figure 13 shows the error rate of approximate query
results by the hybrid method. Experimental parameters
are of the dimensionality 4, uniform data distribution, and
10000 updates stored in the ∆-tree. The X-axis represents
the approximation level of the ∆-tree up to which the
approximate query is performed. The level of data nodes
(i.e. leaf nodes) is 0 and their parents have level 1, and so
on. The approximation level 0 indicates that the query is
evaluated up to the data node, and the approximation level
1 indicates that the query is evaluated up to the level 1.
The approximation level 0.4 (=0.6×0+0.4×1) indicates
that the query is evaluated up to the level 1 for 40% of
nodes at the level 1, and up to the level 0 for 60% of
nodes at the level 1. Similarly, the approximation level
1.7(= 0.3×1+0.7×2) indicates that the query is evaluated

up to the level 2 for 70% of nodes at the level 2, and up to
the level 1 for 30% of nodes at the level 2. For nodes
whose differences of approximation values (see Section
4.2) are bigger, the search goes down to 1 lower level.
As shown in Figure 13, the evaluation time is reduced
rapidly as the approximation level becomes higher, while
the error rate increases slightly. Therefore, we can obtain
the high performance within a reasonable error rate if we
select an appropriate approximation level. Figure 14
shows the case that the ∆-Tree has 50000 data. Compared
to Figure 13 which is the case that the ∆-Tree has 10000
data, the error rate is decreased as more data are stored in
the ∆-Tree, while the query performances are decreased.

Figure 15 shows the experimental results with the
uniformly distributed data. The number of data is 50000,
the query size is large, and the dimensionality is varied
from 2 to 5. Figure 16 shows the experimental results with
the Zipf distributed data. The number of data is 50000 and
the dimensionality is varied from 2 to 4. As shown in
Figure 15 and 16, approximation levels between 1 and 2
are observed to be good points for the hybrid method.

a

baa

caa

daa

eaa

faa

gaa

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
¤
�
�

�� £��

��� �¦�

¤��� �

a

b

c

d

e

f

g

h

i

j

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
££

£

��£��

����¦�

¤��� �

Figure 14. Performance and error rates for uniform
distribution, dim=4, query sizes = large, medium, small,
and number of data in the ∆-tree = 50000.

a

caa

eaa

gaa

iaa

baaa

bcaa

beaa

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
¤
�
�

��� nc

��� nd

��� ne

��� nf

a

b

c

d

e

f

g

h

i

j

ba

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
££

£

��� nc

��� nd

��� ne

��� nf

Figure 15. Performance and error rates for Uniform
distribution, dim=2,3,4,5, query size = large, and
number of data in the ∆-tree = 50000

a

ca

ea

ga

ia

baa

bca

bea

bga

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
¤
�
�

���nc

���nd

���ne

a

f

ba

bf

ca

cf

da

a a_e a_h b b_e b_h c c_e c_h d

r¡¡£ ©���¥� � ��§��

�
££

£

���nc

���nd

���ne

Figure 16. Performance and error rates for Zipf
distribution, dim=2,3,4, query size = large, and number of
data in the ∆-tree = 50000

6. Conclusion

In this paper, we proposed a new technique called a
dynamic update cube which is designed to reduce the
update cost of the data cube significantly, while
maintaining reasonable search efficiency. In the recent
dynamic enterprise environment where data elements in
the data cube are frequently changed, the response time is
affected by the update cost as well as the search cost of
the cube. We exploited a hierarchical data structure, called
the ∆-tree, to store the information of updated cells in the
data cube and thus to minimize the update cost since only
a small fraction of data elements in the data cube is
changed. In addition, by taking advantages of the
hierarchical tree structure of the dynamic update cube, we
proposed a hybrid method to provide either an approxi-
mate result or a precise one to reduce the overall cost of
queries. It is useful for diverse applications that need
quick approximate answers rather than accurate ones,

such as decision support systems.
The update complexity of our method is O(log Nu),

with respect to Nu, the number of changed cells in the data
cube. We have also provided experimental evaluations on
the query and update efficiency and on the approximation
accuracy and efficiency, with respect to various
dimensions and query sizes. Experimental results demon-
strate that our method performs very efficiently for update
and query operations, and show reasonable approximation
error rates with a significant gain in speed when the
hybrid method is used.
 As the future work, we plan to investigate techniques to
further reduce the approximation error of the hybrid
method, and to develop indexing mechanisms for high-
dimensional (e.g, 10 and 20 dimensions) data cubes.

References
[BKK96] S. Berchtold, D. Keim, and H. Kriegel, The X-tree: an

index structure for high dimensional data, Proceedings
of Int’l Conference on Very Large Data Bases, India,
1996, pp. 28-39.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, and B.
Seeger, The R*-tree: an efficient and robust access
method for points and rectangles, Proceedings of
ACM SIGMOD Int’l Conference on Management of
Data, New Jersey, 1990, pp. 322-331.

[BS97] Alex Berson, Stephen J. Smith, Data WareHousing,
Data Mining, & OLAP, McGrawHill, 1997.

[CI99] C.-Y. Chan, Y. E. Ioannidis, Hierarchical cubes for
range-sum queries, Proceedings of Int’l Conference on
Very Large Data Bases, Scotland, 1999, pp. 675-686.

[Cod93] E. F. Codd, Providing OLAP(on-line analytical proce-
ssing) to user-analysts: An IT mandate, Technical
report, E. F. Codd and Associates, 1993.

[GAE00] S. Geffner, D. Agrawal, A. El Abbadi, The Dynamic
Data Cube, Proceedings of Int’l Conference on
Extending Database Technology, Germany, 2000,
pp.237-253.

[GAES99] S. Geffner, D. Agrawal, A. El Abbadi, T. Smith,
Relative prefix sums: an efficient approach for
quering dynamic OLAP Data Cubes, Proceedings of
Int’l Conference on Data Engineering, Australia,1999,
pp. 328-335.

[Gut84] A.Guttman, R-trees: a dynamic index structure for
spatial searching, Proceedings of ACM SIGMOD Int’l
Conference on Management of Data, Massachusetts,
1984, pp. 47-57.

[HAMS97] C. Ho, R. Agrawal, N. Megido, R. Srikant, Range
queries in OLAP Data Cubes, Proceedings of ACM
SIGMOD Int’l Conference on Management of Data,
1997, pp. 73-88.

[LWO00] W. Liang, H. Wang, M. E. Orlowska, Range Queries
in dynamic OLAP data cubes, Data & Knowledge
Engineering 34, 2000, pp. 21-38.

[SRF87] T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+-
tree: a dynamic index for multi-dimensional objects,
Proceedings of Int’l Conference on Very Large Data
Bases, England, 1987, pp. 507-518.

