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ABSTRACT
This paper deals with a novel research work about a new
efficient approximation algorithm for influence maximiza-
tion, which was introduced to maximize the benefit of viral
marketing. For efficiency, we devise two ways of exploiting
the 2-hop influence spread which is the influence spread on
nodes within 2-hops away from nodes in a seed set. Firstly,
we propose a new greedy method for the influence maximiza-
tion problem using the 2-hop influence spread. Secondly, to
speed up the new greedy method, we devise an effective way
of removing unnecessary nodes for influence maximization
based on optimal seed’s local influence heuristics. In our ex-
periments, we evaluate our method with real-life datasets,
and compare it with recent existing methods. From exper-
imental results, the proposed method is at least an order
of magnitude faster than the existing methods in all cases
while achieving similar accuracy.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
Influence Maximization; Independent Cascade; Social Net-
works

1. INTRODUCTION
Influence maximization, which is one of famous research

problems related to viral marketing, has received great at-
tention in recent years. In influence maximization, we want
to find a k-seed set which maximizes the spread of influence
in a social network for a given parameter k. A social net-
work is represented by a graph where a node represents an
individual and an edge represents a relationship between two
individuals. In this work, influence propagation is modeled
using the Independent Cascade (IC) model which is one of
famous information diffusion models. In the IC model, if
user u is influenced at time t, u has one-time chance to in-
dependently influence every uninfluenced neighbor v with
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some probability at time t + 1. If u fails to influence v at
time t + 1, there is no further chance for u to influence v
anymore. However, when user w is influenced at t + 1 and
there is the edge from w to v, w also has one-time chance
to independently influence v at time t + 2. Under the IC
model, the influence spread is represented as the expected
number of influenced users on a social network, and it is
usually approximated by Monte-Carlo simulations, because
it is #P hard to exactly compute the expected number of
the influenced users[2].

Even if many methods are proposed for influence maxi-
mization, there are two critical obstacles to be overcome.
The first obstacle is the expensive cost in calculating the
influence spread of a seed set, and the second obstacle is
a large number of users in a social network. In this pa-
per, we focus on exploiting the 2-hop influence spread of a
seed set to overcome the two obstacles. One may wonder
whether considering only the 2-hop influence spread for in-
fluence maximization is valid. There is a line of research
showing an interesting observation that an item is generally
diffused from a seed within a very small number of hops in
online social network services[1, 12, 10]. For example, [1]
shows an observation that if a photo is uploaded in Flickr,
more than 81% of users who participate in its diffusion are
within 2-hops away from a seed. It means that even if we
consider only users who are within 2-hops away from seeds
to estimate the influence spread of the seeds, the estimated
influence spread of the seeds is experimentally expected to
be at least 81% of the exact influence spread. Therefore,
exploiting the 2-hop influence spread is sufficiently valid to
estimate the influence spread effectively.

Based on the concept of the 2-hop influence spread, we
propose a fast greedy approximation method, for influence
maximization, and a candidate extraction method filtering
out uninfluential users from the entire users effectively. In
the new greedy method, by exploiting the 2-hop influence
spread, we work out efficient incremental updating of the
marginal gain of our objective function. We address the first
obstacle through the 2-hop influence spread and the incre-
mental updating in the new greedy method. The candidate
extraction method removes unnecessary users that are likely
to be uninfluential by devising the Optimal Seed’s Local In-
fluence (OSLI) model. The OSLI model is motivated by the
following idea:if a user can influence many other users in a
network, the user is more likely to influence its neighbors.
In other words, if a user is not likely to influence its neigh-
bors with a high chance, we can consider that the user is



uninfluential and filter the user out because the user cannot
influence many other users. Based on the OSLI model, the
proposed method addresses the second obstacle in solving
influence maximization. By handling the two obstacles ef-
ficiently, the proposed method, which contains the greedy
method and the candidate extraction method, requires only
a linear running time with respect to the number of users.
The contributions of our work are as follows:

• We propose an efficient Greedy method based on the 2-
hop Influence Spread (GIS). GIS does not need any addi-
tional parameter.

• We propose an effective candidate extraction method fil-
tering out unnecessary users. For influence maximiza-
tion, the candidate extraction is the first approach that
filters unnecessary users, to the best of our knowledge.
We experimentally show that the candidate extraction ef-
fectively filters out unnecessary users and that it helps to
greatly reduce the running time of GIS.

• We demonstrate that the proposed method is very effi-
cient while achieving high accuracy using various real-life
datasets. Compared to PMIA and IRIE, which are recent
methods presented in [2] and [7], the proposed method is
at least an order of magnitude faster in all cases.

The rest of this paper is organized as follows. In Section
2, we review the related works. We introduce influence
maximization and the IC model in Section 3. In Section
4, the proposed method, which consists of the new greedy
approximation and the candidate extraction, is developed.
We demonstrate the effectiveness and efficiency of the pro-
posed method through various experiments in Section 5. We
make conclusions and outline future works in Section 6.

2. RELATED WORKS
Maximizing the profit of viral marketing is studied as an

algorithmic problem by Domingos et al. [4] with a social
network modeled as a Markov random field. Kempe et al.
formulate the influence maximization problem as a discrete
optimization problem and propose the basic greedy method
[8]. However, the basic greedy method is not scalable for
large social networks. To address the scalability issue of the
basic greedy algorithm, many methods have been proposed.
Leskovec et al. [11] improve the basic greedy method with
a lazy-forward optimization in selecting new seeds. By ex-
ploiting submodularity, Goyal et al. [5] propose an improved
greedy method, called CELF++. Chen et al. [3] propose a
new greedy method based on generating random graphs to
reduce the cost in computing influence spread. They also
present degree discount heuristics based on the effective de-
gree of a node given a seed set. The degree discount heuristic
method is scalable for large social networks, but the accuracy
of the algorithm is relatively low. Chen et al. [2] propose a
greedy method, called PMIA, using the maximum influence
arborescence model assuming that a seed node influences
another through the maximum influence path from the seed
node to the node. Wang et al. [13] propose a community-
based greedy method using a heuristic that members in a
community are more likely to influence each other. Jiang
et al. [6] present the simulated annealing-based methods
to overcome the confinement problem of greedy methods.
Jung et al. [7] propose a new method for influence ranking
using a system of linear equations, and introduce a method

of utilizing their ranking method for influence maximization,
called IRIE. Kim et al. [9] propose a parallel algorithm for
influence maximization exploiting the concept of the inde-
pendent influence path. We compare the proposed method
with CELF++, PMIA, and IRIE, because they are suffi-
ciently efficient or accurate to be compared with the pro-
posed method.

3. PROBLEM DEFINITION
In this paper, a social network is represented as a directed

graphG = (V,E) where V is the set of nodes which represent
users and E is the set of directed edges which represent
relationships between users. For every pair (i, j) ∈ V × V ,
we define the influence from i to j as the probability that
i influences j through paths from i to j. For every pair
(u, v) ∈ V ×V , we define p(u, v) as the direct influence that is
the probability that u influences v through edge (u, v) ∈ E.
If edge (u, v) does not exist, then p(u, v) = 0. p(u, v) does
not contain any influence through another path from u to
v. Since a path consists of multiple edges, the influence on
a path can be considered as a series of the direct influences
of edges in the path. Given path P, the influence on path
P, denoted p(P), is calculated as p(P) =

∏
(u,v)∈P p(u, v).

In addition, we assume that the direct influences are given.

IC model and influence maximization. For every node
i ∈ V , let nout(i) denote the set of the out-degree neighbors
of i and nin(i) denote the set of the in-degree neighbors of i.
To describe influence spread under the IC model, let S ⊆ V
denote the seed set. For every seed s ∈ S, s is initially
influenced at time 0. For t ≥ 0, let St ⊆ V denote the set
of nodes which are influenced at time t. In the IC model,
for every node u ∈ St, u may independently influence every
uninfluenced neighbor v ∈ nout(u) with p(u, v) at time t+1.
If v is influenced at time t+ 1, we insert v into St+1. After
a node is influenced, the node stays as an influenced node.
From the initial time 0 with S0 = S, this spreading process
runs iteratively until St′ = ∅ for t′ ≥ 0. Given seed set S,
the influence spread of S is the expected number of nodes
influenced in the spread process including S.

The influence maximization problem under the IC model
asks, for parameter k, seed set S ⊆ V (|S| = k) which max-
imizes the influence spread of S. Kempe et al. prove that
influence maximization under the IC model is NP-hard [8].

4. 2-HOP INFLUENCE SPREAD-BASED AP-
PROXIMATION

4.1 Computing 2-hop Influence Spread
It is worth taking note that if a path from a seed node

s to a node u has another seed s′, s cannot influence u
through the path because s′ is already influenced. Thus,
given seed set S, let ΦS(s, u, d) denote the set of all paths P
of length d from seed s to node u such that P does not have
any seed as an intermediate node. Let Φ∗

S(s, u, d) denote⋃
1≤i≤d ΦS(s, u, i). For any seed set S and any node u ∈ V ,

we define the d-hop influence from S to u as the probability
that at least one of the seeds in S influences u along paths
in
⋃

s∈S Φ∗
S(s, u, d). We define the d-hop influence spread of

S as the sum of the d-hop influences from S to nodes in V .
In this work, we are interested in the case that 0 < d ≤ 2.
Thus, let us denote the 2-hop influence spread of seed set
S as σS . Specially, for every node u ∈ V , let us denote



the 1-hop influence spread of node u (i.e., single node set)
as σ1

u. By definition, σ1
u = 1 +

∑
c∈Cu

p(u, c). In addition,
for every node u ∈ V , we define the 1-hop influenced cover
of u, denoted as Cu, as the set of the out-degree neighbors
of u. We define also the 2-hop influenced cover C∗

u of u as
C∗

u =
⋃

c∈Cu
Cc−{u}. C∗

u specifies the region defined by the
set of all nodes that are directly influenced by the nodes in
Cu and indirectly influenced by u. Let us define the 2-hop
influenced region of u, denoted as V ∗

u = C∗
u ∪ Cu ∪ {u}, as

the region influenced by u within 2-hops.

The 2-hop influence spread of a seed set. To estimate
the 2-hop influence spread of a seed set, we exploit an in-
teresting relationship between two paths in a graph, which
is the independence between paths. If two paths have the
same destination node and there is no overlapping interme-
diate node except for the source and the destination, we say
that they are independent of each other. Note that for every
pair (u, v) ∈ V ×V such that all paths from u to v are inde-
pendent of each other, the influence from u to v is calculated
to be 1 −∏P∈Φ(u,v)(1 − p(P)), where Φ(u, v) is the set of
all paths from u to v. Using this relationship, we estimate
the 2-hop influence spread as follows.
Given seed set S ⊆ V , for every node u ∈ V , let pd(S, u)

denote the d-hop influence from S to u. In addition, let
p2(S, u, c) denote the 2-hop influence from S to u via node
c, which is one of the immediate predecessors of u. By defi-
nition, p2(S, u, c)(= p1(S, c)p(c, u)) is computed as,

p2(S, u, c) =

(
1−

∏
s∈S

(1− p(s, c))

)
p(c, u). (1)

Since we consider the 2-hop influence spread, by assuming
that all 2-hop paths from the seeds in S to u via c are inde-
pendent of each other, p2(S, u, c) is estimated to be,

p̂2(S, u, c) = 1−
∏
s∈S

(1− p(s, c)p(c, u)). (2)

Let us verify our estimate for p2(S, u, c). Let ωs denote
p(s, c) and β denote p(c, u) for abbreviation. The error
of p̂2(S, u, c) is close to 0 when direct influences between
nodes are small, because, limωs,β→0

(
1−∏s∈S(1− ωs)

)
β−(

1−∏s∈S(1− ωsβ)
)
= 0. Direct influences are usually very

small in social networks, so the error of p̂2(S, u, c) must be
very small.
By exploiting the concept of the independence between

paths and p̂2(S, u, c), we can get a good estimate for p2(S, u).
If all paths in

⋃
s∈S Φ∗

S(s, u, 2) are independent of each other,
we can easily compute the exact value of p2(S, u) using the
independence between paths. It is easy to see that all 1-hop
paths in

⋃
s∈S Φ∗

S(s, u, 2) are independent of any 2-hop path
in
⋃

s∈S Φ∗
S(s, u, 2). As we verified for (2), it is reasonable to

suppose that paths in
⋃

s∈S ΦS(s, u, 2) sharing an intermedi-
ate node are independent of each other. The other paths, in⋃

s∈S ΦS(s, u, 2), which do not share any intermediate node
are independent of each other by definition. Thus, we can
suppose that all paths in

⋃
s∈S Φ∗

S(s, u, 2) are independent
of each other with a very small error. The error caused by
this assumption is close to 0 when direct influences are very
small. Therefore, p2(S, u) is estimated to be,

p̂2(S, u) = 1−
∏
s∈S

⎛
⎝1−

⎛
⎝1−

∏
P∈Φ∗

S
(s,u,2)

(1− p(P))

⎞
⎠
⎞
⎠ .

p̂2(S, u) is a reasonable estimate for p2(S, u), but all paths
in
⋃

s∈S Φ∗
S(s, u, 2) should be enumerated to compute p̂2(S, u).

Thus, we need to estimate p̂2(S, u) again for efficiency. Let
us consider seed set S, seed node s ∈ S, and any node
u ∈ V . For any path P ∈ ⋃

s∈S Φ∗
S(s, u, 2), p(P) is esti-

mated to be θu which is the average of the influences on
paths in

⋃
s∈S Φ∗

S(s, u, 2). Since direct influences are usu-
ally very small in social networks[1, 10, 12], the error of our
estimate for p(P) should be small. Therefore, our estimate
for p̂2(S, u) is provided by changing p(P) in p̂2(S, u) to θu.

For seed set S ⊆ V , our estimate for p2(S, u) directly
provides a good estimate for σS =

∑
u∈V p2(S, u), which is,

σ̂S = k +
∑

u∈V \S

(
1− (1− θu)

du
)
, (3)

where du is the number of paths in
⋃

s∈S Φ∗
S(s, u, 2). For

efficiency, we use a linear approximation for (3) according
to Taylor’s theorem. The linear approximation states that
f(x) ≈ f(a) + f ′(a)(x − a) (if x is close to a), where ≈ is
a binary operator that the right operand goes to the left
operand as a variable shared by the two operands goes to
some value. Then, for 0 ≤ θ′u ≤ 1, if θu is close to θ′u,

σ̂S ≈ k +
∑

u∈V \S
f(θu, θ

′
u), (4)

where f(θu, θ
′
u) = 1− (1− θ′u)

du + du(1− θ′u)
du−1(θu − θ′u),

= k +
∑

u∈V \S
duθu(by setting θ′u = 0) (5)

= k +
∑
s∈S

∑
u∈V \S

∑
P∈Φ∗

S
(s,u,2)

p(P) (6)

= k +
∑
s∈S

∑
c∈Cs\S

p(s, c)

⎛
⎝1 +

∑
d∈Cc\S

p(c, d)

⎞
⎠ (7)

= k +

⎛
⎝∑

s∈S

∑
c∈Cs\S

p(s, c)(σ1
c − p(c, s))

⎞
⎠− χ, (8)

where χ =
∑

s∈S

∑
c∈Cs\S

∑
d∈Cc∩S\{s} p(s, c)p(c, d),

=
∑
s∈S

σ̂{s} −
(∑

s∈S

∑
c∈Cs∩S

p(s, c)(σ1
c − p(c, s))

)
− χ.

(9)

In (5), we set θ′u = 0 according to the linear approximation.
It means that (5) is close to (3) by the linear approximation
when θu is close to 0. In social networks, θu is close to 0,
so our linear approximation is valid. (6) is derived, because

θu =

∑
s∈S

∑
P∈Φ∗

S
(s,u,2) p(P)

du
. Since we consider the 2-hop

influence spread, we only need to take nodes within 2-hops
from each seed s, which are in C∗

s . Thus, (9) is derived from
(6). In (9), the case that a seed is an out-degree neighbor of
another seed is considered in the second term, and the case
that a seed is 2-hops away from another seed is considered
in the third term.

4.2 Greedy Efficient Approximation
The bottleneck of the basic greedy algorithm is to com-

pute the marginal gain of a new seed with respect to influ-
ence spread. To address the bottleneck, we use the 2-hop



influence spread of a seed set as an objective function and
devise a novel way of incrementally updating the objective
function. Let us denote S ∪ {u} as Su. For any seed set
S ⊆ V and any node u ∈ V such that u 	∈ S, we estimate
σS,u = σSu − σS as,

σ̂S,u = σ̂Su − σ̂S = σ̂{u} −
∑

c∈Cu∩Su

p(u, c)(σ1
c − p(c, u))

−
∑
i∈S

p(i, u)(σ1
u − p(u, i))−

∑
c∈Cu\Su

∑
d∈Cc∩S

p(u, c)p(c, d)

−
∑
i∈S

∑
c∈Ci\Su

p(i, c)p(c, u) +
∑
i∈S

∑
d∈Cu∩S\{i}

p(i, u)p(u, d).

In our expression for σ̂S,u, there are five terms each of which
consists of one or multiple summations. The first and second
terms come from the second term in (9). The third, fourth,
and fifth terms come from the third term in (9). However,
it is too expensive to compute σ̂S,u for every node u ∈ V
whenever new seed s is inserted into S in a greedy method.
Thus, we use σ̂S,u,s = σ̂Ss,u − σ̂S,u to incrementally update
σ̂S,u.

σ̂S,u,s = σ̂Ss,u − σ̂S,u

= −p(u, s)(σ1
s − p(s, u))− p(s, u)(σ1

u − p(u, s))

−
∑

c∈Cu\(Su∪{s})
p(u, c)p(c, s) +

∑
d∈Cs∩S

p(u, s)p(s, d)

−
∑

c∈Cs\(Su∪{s})
p(s, c)p(c, u) +

∑
i∈S

p(i, s)p(s, u)

+
∑

d∈Cu∩Ss\{s}
p(s, u)p(u, d) +

∑
i∈S

p(i, u)p(u, s).

Based on the incremental update of σ̂S,u using σ̂S,u,s, we
build a greedy method, denoted as GIS, which is described
in Algorithm 1. In Line 2, S is initialized, and in Lines 3-6,
the 1-hop influence spread of every node and the 2-hop influ-
ence spread of every node set of size 1 in V are computed. It
is easy to see that Lines 3-6 can be efficiently implemented
with two scans on the node set V . In Lines 7-24, we pick
k seeds greedily to maximize σ̂Su − σ̂S per iteration. After
picking node s as a seed in Line 8, we need to update σ̂S,u for
each u ∈ V because S has been changed. In Lines 14,16,22,
and 24, we update σ̂S,u with σ̂S,u,s, for every node u such
that u is within 2-hops away from s in inbound or outbound
direction. In Lines 13,15,21, and 23, the commented num-
bers indicate the terms of σ̂S,u,s involved in each update.

Analysis for time complexity. GIS requires only O(nd)
time, where n = |V | and d is the average out-degree, to
compute the 1-hop influence spread of every node and the 2-
hop influence spread of every node set of size 1 in V . In GIS,
picking k seeds greedily requires O(kd2 log n) time with a
priority queue. The total time complexity for GIS is O(nd+
kd2 log n), and it is better than that of PMIA and IRIE.

4.3 Effective Candidate Extraction
Optimal Seed’s Local Influence (OSLI) heuristics.
For every node u ∈ V , we define the Most Influential (MI)
node, denoted as MI(u), as the node in V ∗

u that is included
in Cu and that has the strongest 1-hop influence spread, on
nodes in V ∗

u , which is larger than σ{u}. If there is no node
in Cu that has 1-hop influence spread larger than σ{u}, let
MI(u) be u. For any node c ∈ C∗

u such that c 	∈ Cu, since

Algorithm 1: 2-hop Greedy Algorithm (G = (V,E), k)

input : G: An input graph, k:size of a seed set
output : S : Output seed set

1 begin
2 S = ∅;
3 for u ∈ V do
4 compute σ1

u;

5 for u ∈ V do
6 compute σ̂{u};

7 for i = 1 to k do
8 s = argmaxu∈V σ̂S,u, S = S ∪ {s} ;
9 for u ∈ nin(s) do

10 if u �∈ S then
11 for v ∈ nin(u) do
12 if v �∈ S then
13 //(3)
14 σ̂S,v = σ̂S,v − p(v, u)p(u, s);

15 // (1,4,8)

16 σ̂S,u = σ̂S,u − p(u, s)(σ1
s − p(s, u)) +∑

d∈Cs∩S\{s} p(u, s)p(s, d) +∑
i∈S\{s} p(i, u)p(u, s);

17 for u ∈ nout(s) do
18 if u �∈ S then
19 for v ∈ nout(u) do
20 if v �∈ S then
21 //(5)
22 σ̂S,v = σ̂S,v − p(s, u)p(u, v);

23 //(2,6,7)

24 σ̂S,u = σ̂S,u − p(s, u)(σ1
u − p(u, s)) +∑

i∈S\{s} p(i, s)p(s, u) +
∑

d∈Cu∩S\{s} p(s, u)p(u, d);

25 return S ;

σ1
c can include direct influences from c to nodes that are not

in V ∗
u , c is ignored when finding MI(u).

Let α∗ denote the maximum number of out-degree neigh-
bors of all the nodes in V . When the 1-hop influence spread
of a node is larger than or equal to α where 1 ≤ α ≤ α∗ +1,
the 2-hop influenced region of the node is called the effective
2-hop influenced region. Then, for any seed s in the optimal
seed set, the Optimal Seed’s Local Influence (OSLI) heuris-
tics are as follows. Firstly, σ1

s , which represents the degree
to which s influences the nodes in Cs, is likely to be larger
than or equal to α. Secondly, seed node s is likely to be
the MI node in at least one of the effective 2-hop influenced
regions in which s participates.

By definition, s should influence the nodes in Cs first in
order to influence many other nodes in the network. If none
of the nodes in Cs is influenced, there is no further chance
for s to influence the other nodes in the network. That is
the motivation of the first OSLI heuristic.

Let us see how the second heuristic works. For every node
u ∈ V , when we find MI(u), we compare σ{u} and all σ1

c

such that c ∈ Cu. As a result, there are the two cases for
MI(u).

• case 1 (MI(u) = u) In this case, u is the MI node in
V ∗
u . It means that there is no node c in V ∗

u such that
σ{u} < σ1

c , so nothing has been determined.

• case 2 (MI(u) 	= u) In this case, u is not the MI node
in V ∗

u , but there is another node MI(u). It means that



there is node c in V ∗
u such that c = MI(u) and σ{u} <

σ1
c ≤ σ{c}.

Let degin(u) denote the in-degree of u. If u satisfies the
first heuristic, there is one chance for u to be the MI node in
V ∗
u . There are degin(u) chances for u to be a MI node in the

effective 2-hop influenced regions in which u participates,
except V ∗

u . The reason we additionally give u the degin(u)
chances is that even if u is not the MI node in V ∗

u , u can be
a MI node in another effective 2-hop influenced region. If
u misses all the chances, we filter out u from our candidate
list for optimal seeds, because there is always another node
v in the candidate list such that σ1

v > σ1
u, or even σ1

v > σ{u}.
The meaning of σ1

v > σ{u} is that v is likely to have more
influence to nodes which are connected from u. Thus, it is
reasonable to exclude u when u misses all the chances to be
a MI node. That is why the second OSLI heuristic works.

Candidate Extraction. Based on the OSLI heuristics, the
proposed method extracts candidates that are not likely to
be uninfluential. This candidate extraction procedure con-
sists of the following two steps. The first step is to filter out
unnecessary nodes that have 1-hop influence spread smaller
than α. It is based on the first OSLI heuristic. Next, the
second step is to filter out nodes which miss all the chances
to be a MI node based on the second OSLI heuristic.
It is easy to implement this procedure in O(nd) time with

looking all nodes in V two times, because the candidate
extraction is accomplished with the 1-hop influence spread
of every node and the 2-hop influence spread of every node
set of size 1, and they can be computed in O(nd) time as we
mentioned.

5. EXPERIMENTS
In these experiments, we run the experiments on an In-

tel(R) i7-990X 3.46 GHz CPU machine with 24GB RAM.

5.1 Experimental Environment
Comparison methods. In the experiments, let us denote
the final proposed method including GIS and the candidate
extraction as OGIS. In addition, comparison methods are
as follows. CELF++ is an improved greedy algorithm pro-
posed in [5]. For CELF++, the number of Monte-carlo sim-
ulations is set to 10000. OCELF++ is CELF++ using the
candidate extraction. PMIA is a greedy method using max-
imum influence paths between nodes[2]. IRIE is one of re-
cent algorithms for influence maximization [7]. In PMIA
and IRIE, θ determines the maximum length of maximum
influence paths. We use the setting of [7] for θ. For datasets
that are not introduced in [7], we determine θ experimen-
tally. For IRIE, as the authors in [7] did, we set α = 0.7
which is a damping factor, but α in this paper is used as a
parameter tin the first OLSI heuristic. Finally, Random is
a method which picks seeds randomly.

Table 1: Statistics of our datasets
Dataset Wiki-Vote Epinions LiveJournal
Node 7.1K 75.8K 4,847.6K
Edge 103.6K 508.8K 68,993.8K

Avg. Degree 29.1 13.4 28.5

Datasets. We use three real datasets:Wiki-Vote, Epin-
ions, and LiveJournal. They are published online by Jure
Leskovec (http://snap.stanford.edu/data/). Wiki-Vote is a

Table 2: α along datasets and influence models
Dataset Wiki-Vote Epinions LiveJournal
WC 1.5 3.4 5.0
UP 1.4 1.2 5.0
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Figure 1: Running time of the algorithms with k = 50

social network based on the elections for promoting admin-
ship, in which a directed edge from u to v represents user
u voted for user v. Epinions is a who-trust-whom online
social network. LiveJournal is a free-online social network
and allows members to maintain journals and blogs. Table 1
shows the statistics of the three datasets.

Direct influence model. To model direct influences, we
use the uniform probability model and the weighted cascade
model. The uniform probability model states that all direct
influences are equal to p (0 ≤ p ≤ 1). In our experiments,
we set p = 0.01. The weighted cascade model states that for
every node v ∈ V , the direct influence from an in-edge neigh-
bor of node v to v is equal to 1/(|nin(v)|) [8]. In these ex-
periments, the uniform probability model and the weighted
cascade model are denoted as UP and WC, respectively.

5.2 Experiment Results
Table 2 illustrates the values of α used in these experi-

ments. We experimentally determine the values. For PMIA
and IRIE, we set θ as 0.00999 for all datasets in UP, 0.00665
for Wiki-Vote and 0.00625 for the other datasets in WC. In
addition, we compare OGIS and GIS with CELF++ and
OCELF++ in only Wiki-Vote, because they are too slow in
the other datasets.

Running time. Figure 1 illustrates the running time of
each method when k = 50. In this experiment, we ob-
serve that OGIS and GIS are much faster than PMIA, IRIE,
CELF++, and OCELF++. Especially, OGIS is at least an
orders of magnitude faster than PMIA and IRIE in all cases.
In addition, OGIS and OCELF++ are much faster than GIS
and CELF++, respectively. These results clearly show the
effect of the candidate extraction on running time. The run-
ning time of Random is negligible.

Influence Spread. Figure 2 shows the results about in-
fluence spread achieved by each method. In this experi-
ment, all the comparison methods achieve similar influence
spread over all datasets except Random. Recall that OGIS
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Figure 2: Influence spreads on the three datasets

is much faster than the other comparisons. Despite the ef-
ficiency of OGIS, OGIS achieves influence spread similar to
those of CELF++, PMIA and IRIE. Meanwhile, the influ-
ence spreads of IRIE are very low for k = 10 to k = 40 in
LiveJournal. One possible explanation is that IRIE may find
poor seeds, in a single dense community, each of which has a
big influence spread but shares many out-degree neighbors
with the other seeds.
Based on these results, we demonstrate that OGIS is much

more efficient than PMIA and IRIE while achieving the sim-
ilar influence spread. In addition, we show that GIS and
the candidate extraction successfully address the obstacles
which we mentioned in Section 1.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, based on the 2-hop influence spreads, we

propose a new efficient greedy method and an effective can-
didate extraction method for influence maximization. For
the new greedy method, we exploit our estimate for the 2-
hop influence spread of a seed set to update the marginal
gains of the objective function efficiently. The candidate
extraction is the first approach filtering unnecessary nodes
for influence maximization. We experimentally demonstrate
that the candidate extraction can effectively filter out unnec-
essary nodes and the proposed method is at least an order
of magnitude faster than PMIA and IRIE while achieving
similar accuracy.
We will apply that the techniques proposed in this pa-

per can be applied to other influence models for influence
maximization. In addition, we will devise new variations
of influence maximization for more effective viral marketing
and apply the proposed techniques to the new variations.
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