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Abstract Relevance feedback is commonly incorporated into content-based image retrieval
systems with the objective of improving retrieval accuracy via user feedback. One effective
method for improving retrieval performance is to perform feature re-weighting based on the
obtained feedback. Previous approaches to feature re-weighting via relevance feedback
assume the feature data for images can be represented in fixed-length vectors. However,
many approaches are invalidated with the recent development of features that cannot be
represented in fixed-length vectors. In addition, previous approaches use only the
information from the set of images returned in the latest query result for feature re-
weighting. In this paper, we propose a feature re-weighting approach that places no
restriction on the representation of feature data and utilizes the aggregate set of images
returned over the iterations of retrieval to obtain feature re-weighting information. The
approach analyzes the feature distances calculated between the query image and the
resulting set of images to approximate the feature distances for the entire set of images in
the database. Two-sided confidence intervals are used with the distances to obtain the
information for feature re-weighting. There is no restriction on how the distances are
calculated for each feature. This provides freedom for how the feature representations are
structured. The experimental results show the effectiveness of the proposed approach and in
comparisons with other work, it is shown that our approach outperforms previous work.
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1 Introduction

Content-based image retrieval (CBIR) is regarded as an effective approach to managing
large collections of images. CBIR systems allow users to search for images via query-by-
example, where the user provides a sample image or sketch of the type of images they are
looking for within the collection. In this approach, the similarity between the query image
and the images in a database are determined by a comparison of the features that are used to
describe each image; such features may describe color, texture and/or shape. One inherent
problem with this approach is the semantic gap between the feature descriptions and the
high-level visual perception of an image. In other words, although the feature values of
some images may be similar, their actual visual appearances may not be similar. An
effective methodology for overcoming this semantic gap involves relevance feedback to
perform feature re-weighting. Incorporating relevance feedback into a CBIR system leads to
an image search becoming an interactive session, where the user provides feedback on the
quality of the results. The system uses this feedback to weight higher the features that can
better determine visual similarity, then using the updated feature weights, determine the set
of similar images based on the features. This set of images should contain more relevant
images than the previous result set. Existing approaches for feature re-weighting via
relevance feedback assume that the feature data can be represented in fixed-length vectors,
where the corresponding elements of the vectors of each image are located in the same
vector positions [1, 9, 11, 12, 15, 18, 21]. Following this assumption, feature re-weighting
can be seen to have the effect illustrated in Fig. 1. In (a) we see the initial plot for two
features of image A and image B. From user feedback, the system determines that feature x
is more important than feature y. Since feature x is more important, its axis is compressed.
The opposite occurs for the axis corresponding to feature y. These changes are shown in (b).
With the scaling of the axes, the point corresponding to image B is brought closer to the
query point and, thus, is considered to be more similar to the query image. Also, the
distances are calculated using some Euclidean-type function. This assumption is acceptable
when using features such as colour histograms since the number of histogram bins for each
image is the same. However, this viewpoint is invalidated by features such as the dominant
color descriptor [17], curvature scale space [18], and incomplete contour representations
[6], which have representations that may differ in size between images. High-level features
that are currently being researched, such as 9D-SPA [10], which describe the spatial
relations between objects in an image also invalidate the assumption that features can be
represented in fixed-length vectors since the number of objects may differ between images.

Fig. 1 Effect of feature re-weighting
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Our proposed approach does not directly analyze the feature values to perform feature re-
weighting. Instead, using the result set of images, the feature distances obtained using the
respective distance function of each feature are analyzed to approximate the distances for all the
relevant and non-relevant images in the database via two-sided confidence intervals. By doing
so, information approximated from the whole image database is used for feature re-weighting.
In addition, since the feature values are not directly analyzed, there is no restriction placed on
the structure of the feature representations. Taking this approach leads to the complete freedom
in the feature representations and distance functions used for a given feature.

Figure 2 shows how our feature re-weighting mechanism is incorporated into an image
search session that involves relevance feedback. First the user provides the query image the
system will use to find similar images from the database. The features are extracted from
the image which the query processor then compares to the features of the images in the
database. The most similar images, as determined by the query processor with the feature
weights initially all equal, are then returned to the user. The user identifies the images that
are relevant for the search and then requests a new set of images. The feature re-weighting
mechanism uses this feedback to update the weights, which are then passed onto the query
processor and used for the determination of the next set of similar images. The user
provides feedback on this returned set of images and the cycle continues until the resulting
image set does not change or the user is satisfied with the results.

The contributions of this paper are as follows:

& Effective re-weighting of features. Since our approach is able to use information
approximated from the whole image database, the recall of the proposed approach was
on average better than an existing approach by 144% at the 2nd iteration, 78% by the
fifth iteration, 63% for the 10th iteration, and 53% for the 20th iteration of retrieval.

& A feature re-weighting approach that supports features regardless of whether or not
they can be represented in a fixed-length vector. The combination of features used
for the experiments show that it can effectively handle features regardless of the
structure of the feature representation. When using feature representations of both
fixed and varying lengths, our proposed approach was on average better than an
existing approach by 185% at the second iteration, 51% by the fifth iteration, 36%
for the tenth iteration, and 26% for the 20th iteration of retrieval.

& Simplified user interaction for relevance feedback. The user is not required to judge
the degree of relevance or non-relevance of an image. The user only needs to
identify the relevant images.

The remainder of this paper is organized as follows. In Section 2, we discuss related
work. Section 3 describes our proposed feature re-weighting approach after an explanation

Fig. 2 Feature re-weighting in-
corporated into relevance feed-
back cycle
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of the basis of the approach. Experimental results are presented in Section 4. Finally,
Section 5 provides a summary of our work.

2 Related work

A great deal of research has been focused on content-based image retrieval since the early
1990s. The first commercial CBIR system to be developed is IBM’s Query By Image
Content (QBIC) [5] which allows a user to search for images using colour, texture, shape
and text. VisualSEEk [22] introduced the identification of regions and objects within an
image, which provides significant gains in similarity retrieval compared to the use of global
image features. Since then, systems which demonstrate improved segmentation, feature
extraction, and query processing have been developed. However, many of those systems
cannot overcome the semantic gap without the use of relevance feedback.

The Multimedia Analysis and Retrieval System (MARS) [19–21] introduced the concept
of relevance feedback in content-based image retrieval. The feature model described in the
system is designed to support two levels of feature re-weighting, intra-feature and inter-feature
re-weighting. Intra-feature re-weighting updates the influence each component of a feature
representation has in the feature’s distance calculation, e.g. the influence of each bin in a colour
histogram. Inter-feature re-weighting adjusts the weight a feature’s distance has in the overall
distance calculation when multiple features are used. For intra-feature re-weighting in MARS,
the variance in the values of the corresponding feature components of the relevant images is
analyzed. The weight for the jth feature component of featurei is updated to the inverse of the
standard deviation of the component values from the relevant images. This step of re-
weighting determines the amount the jth component contributes to the featurei distance. The
determination of the significance of each feature (i.e., how much the featurei distance
contributes to the overall distance) is called inter-feature re-weighting. For each iteration of
retrieval, the system calculates the set of most similar images with respect to the overall
distance along with the sets of similar images calculated with respect to each individual
feature. Let S and Si, where i=1…n, where n is the maximum number of features, be the sets
of top-k images determined using the overall distance and distance based on only featurei,
respectively. Scores are assigned to the retrieved images, those in set S, by the user. The
scores correspond to the degree of relevance as judged by the user. To update the weight for
featurei, the score for each feature is initialized to 0. The following steps are then performed.

S={obj1,..., objk}
Si={obj

i
l ,…, objik }

for i=1 to n

for x=1 to k

if (objix exists in S)

Fi=Fi+Scorex

The feature score (Fi) is used to calculate the weight of featurei to determine how much
the featurei distance contributes to the overall distance calculation when retrieving the next
set of top-k similar images. One inherent problem with MARS is that the intra-feature re-
weighting approach cannot support features that cannot be represented in fixed-length
vectors. In addition, the set of possible values for Score in the previous steps is determined
arbitrarily. Most importantly, the information obtained to re-weight a feature is limited to
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the size of the intersection between S and Si in the inter-feature re-weighting procedure. The
inability to use the information of the entire image database leads to the degradation of the
accuracy of the system.

The approach proposed in [25] uses an intra-feature re-weighting technique that includes
the use of non-relevant images. A discriminant ratio drij is used to determine the ability of
component j of featurei to separate non-relevant from relevant images and is calculated by
Eq. 1, where m is the number of non-relevant images and or f non�rel;l

ij

� �
is the value of the

jth component of the lth non-relevant image that is outside the range of values for the jth
component of relevant images, and 0 otherwise.

drij ¼ 1�
Pm
l¼1

or f non�rel;l
ij

� �
Pm
l¼1

f non�rel;l
ij

ð1Þ

The weight wij for the jth component of the ith feature representation is then determined
using Eq. 2, where qrelij is the standard deviation of the jth component of the ith feature
among the relevant images.

wij ¼ drij
qrelij

ð2Þ

The inter-feature re-weighting, or determination of the weight for each featurei, is
performed using Eq. 3, where K is the number of features and δk is the total distance
between the kth feature of the query image and those of the relevant images.

Wi ¼
XK
k¼1

ffiffiffiffiffi
dk
di

r
ð3Þ

Later works on relevance feedback and feature re-weighting [1, 2, 11, 24] also assume that
features can be represented in fixed-length vectors. Following this assumption the components
of the features are all placed into a single vector. The corresponding components of each
image’s feature vector are analyzed to determine how much each element contributes to the
distance between the query image and the images in the database. The distance calculations are
performed using a weighted Euclidean-type function as illustrated with Eq. 4, where q! is the
feature vector for the query image, f

!
is the feature vector for an image in the database, andW

is a matrix that contains the weights for the vector components. Similar to the intra-feature re-
weighting approach of MARS, these feature re-weighting approaches cannot support features
that cannot be represented in fixed-length vectors. The similarity between images using
features such as [6, 10, 17, 18] which have representations of varying length are calculated by
performing a best-fit pair-wise matching approach. Best-fit pair-wise matching algorithms
attempt to find the closest matching of pairs between the components of two feature
representations, then compute a distance metric using a function that measures the quality of
matches. The feature components that were not paired, due to the difference in length of the
feature representation, would be factored in to increase the distance that is calculated.

distance query image; database imageð Þ ¼ q!� f
!� �T

�w � q!� f
!� �

ð4Þ

More recent research, such as that of [7] proposes approaches that support feature
representations of varying length while incorporating the training mechanism of a support
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vector machine (SVM) to improve retrieval quality. While SVMs cannot support feature
representations of varying lengths, [7] utilizes vectors for each image representation where
the vector elements are the distances of a given image to each of the training images. With
such fixed length vectors SVMs can be incorporated in a standard manner. The downside of
using the approach, however, is the possible degradation of performance that coincides with
the increase in the number of training images and images in the dataset.

Feature re-weighting mechanisms obtain feedback information via a graphical user
interface. In some systems [4, 23], one-class feedback is utilized, where a user simply
identifies the relevant images in the result set. However, these approaches lack the ability to
extract as much information from the user feedback as systems with more elaborate user
interfaces. Some systems [1, 3, 21] incorporate multi-class feedback to obtain more
information via user feedback. The drawback in using multi-class feedback is the burden on
the user having to judge the degree of relevance or non-relevance of each returned image.
Another work [8] has extended the interface further so that the user places the most similar
results at the center of the window, and the further an image is from the center, the less
relevant it is considered. However, such an interface is too complex.

3 Obtaining distances and re-weighting features

In this section, we go into detail regarding the proposed relevance feedback mechanism for
feature re-weighting which we introduced in [16]. First, the distance calculation model will
be described to provide insight into how the feature data corresponding to images are
evaluated to determine their similarity to the query image.

3.1 Distance model

Since the distances for different feature representations are not of comparable magnitudes,
the distances are normalized using Eq. 5. fi(query,dbImage) corresponds to the distance
between the query image and the database images with respect to featurei, for i=1…n,
where n is the number of features used. As a result, the distances for each feature will be in
the range [0, 1] and the overall distance between the query image and the database images
will be in the range [0, n].

dfeature i ¼ fi query; dbImageð Þ
max fiðquery; dbImageð ÞÞ ð5Þ

Figure 3 illustrates the model used to determine the distance between a query image and
the images stored in the database. The fi(query, dbImage) represents the distance function
for featurei. Each of these distances is associated with a corresponding weight. As
mentioned before, the better the feature is at identifying the visual similarity between
images, the higher the weight. These feature weights are normalized to sum to one.

Fig. 3 Distance model
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The distances calculated for each feature are multiplied by their associated weight,
and then summed to obtain the overall distance value. In effect, the distance is defined
by

overall distance ¼
Xn
i¼1

wi fi query; dbImageð Þ ð6Þ

where n is the number of features and wi is the feature weight for featurei.
The benefit of this distance model is the freedom it provides in how distances are

calculated and how the re-weighting information is obtained. Unlike the approaches
mentioned in the related work, this model does not restrict the feature data to being
represented in vectors of fixed length. In addition, distances do not need to be calculated
using a matrix of feature weights, which is the case when using a Euclidean-type distance
function. There are no restrictions placed on the data structures used to represent the
features and their associated distance measures.

3.2 User interface

The user interface for this work is designed so that the user simply clicks on the relevant
images that are returned. By appearance it is one-class feedback, but in essence it provides
multi-class feedback since objects that are not identified as relevant are assumed to be non-
relevant. From the user feedback, the system obtains two sets of images, the relevant and
the other non-relevant, which are analyzed to update the feature weights.

3.3 Basis of proposed approach

The data obtained from the two sets determined via user feedback are used to update the
weights for the features by means of two-sided confidence intervals [8]. Two-sided
confidence intervals are used to make inferences on the differences between two population
proportions. The use of two-sided confidence intervals assumes the sample data are
obtained from a population with normal distribution since confidence intervals are based on
the central limit theorem. Certain features may be optimal in a given image search,
however, while others are ineffective. Since each feature is equally weighted for the first
iteration, there is no bias placed on any feature. As a result, this leaves a degree of
randomness in the images retrieved for the initial retrieval.

An example of how two-sided confidence intervals are used is first provided for clearer
understanding. Following that, an explanation of how they are used in the proposed
approach for feature re-weighting will be given.

Suppose there are two drugs, drug A and drug B, that have been developed to treat some
particular symptoms. Two clinical trials will be performed to test their effectiveness. One
group of n patients is given drug A and a separate group of m patients is given drug B.
From the results of the clinical trials, let p

0
A be the success rate for drug A and p

0
B be the

success rate for drug B.
Let pA be the actual success rate for drug A and pB be the actual success rate for drug B.

However, the values for pA and pB cannot be obtained since it is not feasible to test every
patient that exists around the world. What are available are the results from the clinical
trials, thus, two-sided confidence intervals are used to approximate the range for the
difference between pA and pB.
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The bounds of a two-sided confidence are calculated as follows:

pA � pB 2 lb; ubð Þ ð7Þ

lb ¼ p0A � p0B � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0A 1� p0A
� �

n
þ p0B 1� p0Bð Þ

m

s
ð8Þ

ub ¼ p0A � p0B þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0A 1� p0A
� �

n
þ p0B 1� p0Bð Þ

m

s
ð9Þ

In Eqs. 8 and 9, za=2 is the confidence coefficient that is dependent on the confidence
desired. The choice of the confidence coefficient is arbitrary. A 95% confidence interval
does not mean that there is a 95% probability that the interval contains the true difference
between the effectiveness of drug A and drug B. Rather, for a 95% confidence interval, if
many patients are tested and confidence intervals are calculated continuously as more
patients are tested, then in the long run, 95% of these intervals would contain the true
difference in effectiveness between drug A and drug B.

For the difference in the success rates between the two drugs, the confidence interval
must lie somewhere in the range [−1, 1] since the success rate for a drug is 0 if it was
effective for none of the patients, and 1 if it was effective for every patient.

The location of the confidence interval determines the conclusion that can be derived
between the effectiveness of the two drugs.

& If the confidence interval lies completely in the positive range, then with certain
confidence we know that the effectiveness of drug A is approximately (lb×100) to
(ub×100)% greater than drug B.

& If the confidence interval covers both positive and negative values, then we cannot
be sure that drug A is any more effective than drug B.

& If the confidence interval lies completely in the negative range, then with certain
confidence we know that the effectiveness of drug B is approximately (|ub|×100)
to (|lb|×100)% greater than drug A.

3.4 Feature re-weighting via two-sided confidence intervals

The proposed re-weighting technique is based on the use of two-sided confidence intervals
to approximate the difference between the feature distances for the sets of relevant and non-
relevant images.

The user provides a query image for which the system must retrieve the top-k most
similar images in the database. However, the images considered most similar by the system
with regards to the calculated distances may not reflect the user’s perspective of visual
similarity. With respect to each featurei individually, it is not possible to determine the exact
average featurei distance for all relevant images in the database di(r) and the same for non-
relevant images di(nr) since the user cannot be expected to check every image in the
database. By means of the user feedback on the returned images, the system can calculate
values for an approximation of the average feature distance for relevant and non-relevant
images. Let d

0
ibe the average featurei distance for the images marked relevant in the result
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set and d0iðnrÞ be the average featurei distance for the remaining images that are assumed to
be non-relevant. Using the values d0iðrÞ and d0iðnrÞ, the range for the difference between
di(r) and di(nr) can be approximated via two-sided confidence intervals. In other words, we
approximate feature distances for the relevant and non-relevant images in the database
using the returned set as a small sample.

The bounds of a two-sided confidence for feature re-weighting are calculated as follows:

di rð Þ � di nrð Þ 2 lb; ubð Þ ð10Þ

lb ¼ d0i rð Þ � d0i nrð Þ � zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0i rð Þ 1� d0i rð Þð Þ

n
þ d0i nrð Þ 1� d0i nrðð Þ

m

r
ð11Þ

ub ¼ d0i rð Þ � d0i nrð Þ þ zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0i rð Þ 1� d0i rð Þð Þ

n
þ d0i nrð Þ 1� d0i nrðð Þ

m

r
ð12Þ

Similar to the previous scenario, for Eqs. 11 and 12, zα=2 is the confidence coefficient
corresponding to the confidence interval desired. n is the number of images marked relevant
by the user and m is the number of images considered non-relevant (i.e. m=k−n). Again,
for the difference between the average feature distance for relevant images and that for non-
relevant images, the confidence interval must lie somewhere in the range [−1, 1] since the
feature distances have been normalized to a maximum value of 1.

The location of the confidence interval determines how featurei will be re-weighted.
Observing the location of the upper and lower bounds, one of the following cases will arise:

& If both the upper bound and lower bound are greater than 0, then the approximate
average featurei distance for all relevant objects in the database, for the feature
under consideration, is greater than that for the non-relevant images. As a result,
one can infer that this feature does not appropriately capture visual similarities for
this query and its weight is set to 0.

& If the bounds straddle 0, that is, if the upper bound is positive and the lower bound
is negative, one can infer that the feature is somewhat good, but cannot fully
distinguish relevant images from those that are non-relevant. In this case, the
feature weight is set using Eq. 13. As can be seen, the further the confidence
interval slides into the negative range, the better the feature must be at
distinguishing relevant images from non-relevant images. Likewise, Eq. 13 reflects
this, as the weight increases the further the interval slides into the negative region.

& If both the upper bound and lower bound are less than 0, then the approximate
average featurei distance for all relevant images in the database is smaller that that
for the non-relevant images. Thus, one can infer this feature can successfully
distinguish visual similarities and the feature weight is determined using Eq. 14. As
in the previous case, the further negative the confidence interval is, then one can
infer, the better the feature can distinguish the user’s perspective of visual
similarity. Thus, the upper bound is placed in the numerator to reflect this
characteristic. Also, the closer the lower bound approaches −1, again it reflects the
characteristic of the more negative the interval, the better the feature. Thus, 1-|lb| is
placed in the denominator. Finally, the boundary condition where the upper
bound is 0 must be considered. The feature weight must be equal to that when
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using Eq. 13 for when the upper bound is 0. When the upper bound is 0, using Eq.
13, the feature weight is set to 1. Thus, we add the constant 1.

Feature weight ¼length of interval in negative range=total interval length ð13Þ

Feature weight ¼ 1þ ubj j
1� lbj j ð14Þ

An illustration of each of the cases described above is provided in Fig. 4.
From the above three cases, we can observe that the lower in value the midpoint of the

confidence interval, the higher the corresponding feature weight. The following theorem
states that Eqs. 12 and 13 satisfy this requirement.

Theorem 1: Let lb1 and lb2 be the lower bounds for confidence intervals 1 and 2,
respectively, and let ub1 and ub2 be the upper bounds. Then

lb1 þub1
2

<
lb2 þub2

2
, f lb1; ub1ð Þ > f lb2; ub2ð Þ

where f (lbi, ubi) is the function used to determine the feature weight. The proof for
Theorem 1 is provided in Appendix 1.

Having obtained the updated weight for each feature, the feature weights are normalized
by total weight, i.e., the features weights are normalized to sum to 1.

Fig. 4 Possible locations of con-
fidence intervals approximating
di(r)−di(nr)
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From the first iteration of retrieval, the system has only the single set of feedback to
update the weights. When the feature weights are updated, the next iteration of retrieval will
return a different set of images. Then, for the following iterations, instead of using the
distance information obtained from the images in the most recent iteration of retrieval, the
information from the images returned in the previous iterations can be used as well.

The following is a description of the notation that will be used to describe the images
that are used to obtain the distance information for feature re-weighting.

K the number of iterations of retrieval
Rk the set of images returned in the kth iteration
Rrel
k the relevant images from the kth iteration

Rnon�rel
k the non-relevant images from the kth iteration

Runique
k the set of unique images that have been returned up to the kth iteration

Runique;rel
k the set of unique images identified as relevant in the k iterations

Runique;non�rel
k the set of unique images identified as non-relevant in the k iterations

Take note

Rk=Rrel
k [ Rnon�rel

k ,
Runique
k =Runique; rel

k [ Runique; non�rel
k ,

Runique
l =R1,

Runique; rel
l =Rrel

l , and
Runique; non�rel
l =Rnon�rel

l

Then for iterations k+1, where k>0, Runique
kþ1 and Runique; non�rel

kþ1 are defined as follows.

Runique
kþ1 =Rkþ1 [ Runique

k
Runique; rel
kþ1 =Rrel

kþ1 [ Runique; rel
k

Runique; non�rel
kþ1 =Rnon�rel

kþ1 [ Runique; non�rel
k

Thus, to incorporate the information obtained from the previous retrieval iterations for feature
re-weighting, the images in Runique; rel

kþ1 and Runique; non�rel
kþ1 are used to calculate the confidence

intervals at the (k+1)th iteration. More specifically, when using Eqs. 11 and 12 to update the
weights at the (k+1)th iteration, d0iðrelÞ and d0iðnon�relÞ are now obtained using the feature
distances for the images in Runique; rel

kþ1 and Runique; non�rel
kþ1 , respectively. Also, n now corresponds to

the number of images in Runique; rel
kþ1 and m corresponds to the number of images in Runique; non�rel

kþ1 .
Note that as the sets of relevant and non-relevant images are generated through the retrieval

iterations, the number of images used to obtain the sample data for the two-sided confidence
calculation continues to increase. This justifies the assumption of a normal distribution of the
distances of the image features. Also, as the sets of sample data increase with each iteration, the
approximation of the two-sided confidence intervals becomes more accurate. This is a
favourable characteristic as the retrieval performance should improve at each iteration.

4 Experimentation

In this section, the experimental results are presented to validate the effectiveness of the
proposed feature re-weighting technique. In addition, the retrieval accuracy using the
feature re-weighting techniques of MARS, VisiMine [24], and [25] which will be referred
to as DD, are compared with that of the proposed approach.

The experimentation was performed on the Windows platform powered by a Pentium 4
2.6 GHz CPU using 512 MB of RAM. The prototype system is implemented using C++ and
the.NET framework. Images and their associated feature data are stored to an Oracle 10 g
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database located remotely. The image dataset used is based on the shape silhouettes used for the
MPEG-7 Core Experiment CE-Shape-1 part B [14]. The dataset consists of 8,400 images that
are categorized into 70 groups. The filenames identify the group to which an image belongs.
The images are monochrome and consist of a single object and a plain background. As a
result, any challenges with image segmentation are completely avoided. The dataset contains
the original 1,400 images and modifications of this set by scaling to 50% and 200% and
rotating the images by 90°, 180°, and 270°. A subset of the images is illustrated in Appendix 2.

In a CBIR system, multiple features can be extracted from an image to provide a low
level description of the object contained within. The set of features used for each of the
comparison systems in the experimentation is described below. Only a brief description will
be provided for each. Further details can be found in the references.

& Polar Projections [13] capture the details of a shape based on outward projections
from the center. The resolution of the projections is user-definable and has been set
to 120 for this experimentation.

& Curvature Scale Space [18] represents the curvature zero-crossing points of a
contour as it evolves. For CSS extraction, this requires contour evolution (i.e.
applying a filter to a convex shape to gradually morph it into an ellipse). During
this process the curvature is measured and the zero-crossing points are captured.

& Eccentricity is the ratio of the major axis to the minor axis.
& Compactness is defined as the ratio of the squared perimeter to the area, i.e.,

compactness = square perimeter/area
& Perimeter is the length of the outer boundary of the object in the image.
& Circularity is defined as the ratio between the perimeter of the object and the

perimeter of a circle of equivalent area, i.e., circularity=square perimeter/(4π×area)

For the above features, with the exception of curvature scale space which uses a best-fit
pair-wise matching algorithm to determine the distance between two image representations,
the Euclidean distance is used. Note, the VisiMine system cannot support variable length
feature representations and thus is excluded from the experimental comparisons involving
the Curvature Scale Space feature.

Each of the comparison systems is setup for an image retrieval session to be initiated by
providing a single image to be used as the query. Of the 120 images that are returned by
each system per iteration, relevant images are determined based on their groupings.

In each of the experimental comparisons, any images not identified by the user as being
relevant are automatically excluded as candidates for retrieval in the following iterations.
The benefit of this approach is intuitive as there is no reason for the user to see a non-
relevant image more than once. The measures used throughout this section to describe
retrieval accuracy are recall and precision which are defined as follows:

Recall = retrievedrelevant/totalrelevant
Precision = retrievedrelevant/retrieved

where retrievedrelevant represents the number of relevant images retrieved for the given
iteration, totalrelevant represents the number of images in the database that are relevant to the
query, and retrieved represents the number of images retrieved for the given iteration.

As 95% is the most commonly used percentage for two-sided confidence intervals, such
confidence intervals will be used for the remaining experimental results. The results presented
are the average over 50 queries with the top 120 similar images retrieved per iteration.

Figure 5 compares the recall of the proposed approach, which is denoted as CIA for
confidence interval approach, to that of MARS, VisiMine and DD. Existing re-weighting
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techniques assume that feature representations are described in vectors of the same length and
type (e.g. MARS, VisiMine and DD). To allow the use of the intra-feature re-weighting
techniques of MARS, VisiMine and DD there are several changes that were required. Firstly,
the CSS feature is not considered as it cannot be described in a fixed-length vector since the
number of peaks extracted from various images is unlikely to be the same. In addition, the best-
fit pair-wise matching scheme used to calculate distances between CSS feature representations
is not supported by the comparison systems. Secondly, for the polar projections of an image,
the angle offset must be stored so that the rotational orientation of the polar projection
representations for the retrieved images can be matched to that of the query image for which
their minimal distances were calculated (e.g., to ensure the corresponding elements of each
image’s feature vector are in corresponding positions). It can be seen that CIA outperforms the
comparison systems. The performance of VisiMine is substantially lower than CIA since it uses
a weighted-Euclidean type distance function without performing any normalization on the
values of the vector components. Thus, the re-weighting of the feature vector elements is less
effective since the values of the components may not necessarily be of comparable magnitudes.

Fig. 6 Recall-Iteration comparison with MARS and DD

Fig. 5 Recall-Iteration comparison with MARS, VisiMine, and DD
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The poor retrieval performance of DD can be attributed to the small range of values in the
crossings components of the polar project feature representation which affects its intra-feature
re-weighting mechanism. For the scoring scheme used by MARS, the images marked relevant
by the user are assigned 1, while the remainder are assigned 0.

To demonstrate the advantage of our re-weighting approach over existing approaches, we
incorporate the use of the CSS feature which cannot be represented using a fixed length vector
and does not use a Euclidean-type distance. As a result, VisiMine is eliminated from the
comparison, and the use of MARS and DD is restricted to their inter-feature re-weighting
techniques. Figure 6 shows a comparison of the recall performance between CIA, MARS and
DD. Notice how the performance of DD has drastically improved when its intra-feature re-
weighting is not used; showing how its intra-feature re-weighting does not effectively support
the polar projection feature representation. Our proposed approach continues to succeed in
improving retrieval accuracy and continues to outperform the comparison systems.

Table 1 displays the amount of improvement in recall after 2, 5, 10 and 20 iterations of
retrieval in the last comparison. The lower performance of MARS can be attributed to the
fact that it is unable to use information based on the entire image database, but use
information based only on the returned images. Table 2 provides a quantitative value for the
amount of improvement in recall that CIA has over the comparison systems at the second,
fifth, tenth and 20th iterations. The values are calculated using Eq. 15. It is apparent that
CIA provides a significant improvement in retrieval accuracy in the early iterations of an
image search session. This is a desirable characteristic as it is favourable for users to receive
improved results without having to provide much feedback.

Improvement ¼ recall improvementCIA � recall improvementother
Recall improvementother

ð15Þ

Figure 7 provides precision-recall plots for CIA at the first, second, fifth, tenth and 20th
iterations. As each of the top-k images are retrieved in order, the precision and recall values
are plotted. It can be seen that as the iterations progress, the relevant images continue to move
to the front of the retrieved images. Comparisons of the precision-recall plots between CIA,
MARS, and DD for the second, fifth, tenth, and 20th iterations are provided in Fig. 8. In the
precision-recall plots, it shows that CIA outperforms MARS and DD since the precision-
recall plots for CIA lie above the majority of the plotted points for MARS and DD.

Table 2 Improvement over MARS and DD

Iteration 2 Iteration 5 Iteration 10 Iteration 20

Figure 5
Vs MARS 1.5059 (151%) 0.7013 (70%) 0.5595 (56%) 0.4455 (45%)
Figure 6
Vs DD 1.8549 (185%) 0.5097 (51%) 0.3638 (36%) 0.2648 (26%)

Iteration 2 Iteration 5 Iteration 10 Iteration 20

Figure 5
CIA 0.2987 0.3782 0.4538 0.5237
MARS 0.1192 0.2223 0.2910 0.3623
Figure 6
CIA 0.4288 0.5423 0.6407 0.7307
DD 0.1502 0.3592 0.4698 0.5777

Table 1 Improvement in recall

Multimed Tools Appl



Figure 9 provides some insight into the number of unique images Runique
k that are

retrieved over the iterations. Notice that the number of images retrieved for CIA is much
smaller. This illustrates the ability for CIA to provide improved recall performance while
obtaining feedback information from fewer images than the comparison systems.

Fig. 8 Precision-recall comparison between CIA, MARS and DD for a second iteration, b fifth iteration, c
tenth iteration, d 20th iteration

Fig. 7 Precision-Recall plots for CIA
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To evaluate the effect of marking only a subset of the relevant images as feedback per iteration,
we performed additional experimentations. When limiting the number of images marked relevant
to a maximum of 15, 30, and 60 images, the recall after 10 iterations is 12.5%, 25%, and 50%
respectively. Therefore, the usermustmark all relevant images for each iteration for optimal results.

For another experimental environment, 20 images are retrieved per iteration. This
environment may be applied when the total number of relevant images in a database is
smaller or the user opts to view fewer results at a time. The recall and precision results are
listed in Tables 3 and 4. As expected, the recall values are lower since the maximum
achievable recall when retrieving 20 images is 0.167. Conversely, the precision values are
higher since the number of retrieved images is significantly smaller than the previous
experimental environment. Similar to the results of the previous environment, by using all
20 returned images as feedback, CIA outperforms MARS and DD, both of which obtain
data for feature re-weighting from only the images marked relevant.

The time taken by each approach for the process of feature re-weighting was measured.
For all approaches, each iteration of feature re-weighting registered zero time, where the
smallest time unit measurable is 100 ns. Since the scope of this paper is feature re-
weighting, indexing was not incorporated for any of the approaches.

5 Conclusion

This paper proposes a feature re-weighting technique for content-based image retrieval
systems that incorporate relevance feedback. Unlike many earlier works, feature
representations are not required to have a fixed-length representation for each image.
Instead, the feature distances are used with the statistical technique of two-sided confidence

Iteration 1 Iteration 2 Iteration 5 Iteration 10

CIA 0.0353 0.1051 0.1365 0.1404
MARS 0.0970 0.1244 0.1304
DD 0.0590 0.0897 0.0987

Table 3 Recall for top-20
retrieval

Fig. 9 Number of unique images retrieved
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intervals to update the feature weights. In addition, it places no restrictions on the distance
functions used for a feature. Each feature can use the distance function that is specifically
designed for the feature instead of being restricted to a Euclidean-type distance function.

Another advantage of the proposed approach is the simplicity of the user feedback. The
user simply identifies the relevant images to provide feedback. Since two-sided confidence
intervals perform inferences on two populations, we only require the user to identify the
relevant images in the result set, and consider the remainder to be non-relevant.

The experimental results show that the proposed feature re-weighting approach provides
effective feature re-weighting regardless of the structure of the feature representations. One
desirable characteristic that is evident from the results is that the proposed approach provides a
significant improvement in the early iterations of retrieval, which is evident with the on
average 151% improvement over MARS for the 2nd iteration of retrieval. The proposed
approach continued to outperformMARS on average 70% at the 5th iteration, 56% at the 10th
iteration, and 45% at the 20th iteration of retrieval. In the case where a feature representation of
varying length was used, our approach outperformed DD on average by 185% at the second
iteration, 51% by the fifth iteration 36% for the tenth iteration and 26% at the 20th iteration.

Acknowledgments This research was supported by the Defense Acquisition Program Administration and
the Agency for Defense Development, Korea, under the contract UD030000AD, through the Image
Information Research Center at Korea Advanced Institute of Science and Technology.

Appendix

Appendix 1 Proof of Theorem 1

Since the proof for Eq. 12 is straightforward, we will omit the proof for Eq. 12.
Every possible case for the placement of two confidence intervals in the negative range must

be considered. Consider Fig. 10a where both bounds for interval 2 are greater than interval 1.
Then shift the lower bound of interval 2 to be in the range of interval 1 to obtain case (b).
Next, further shift the lower bound of interval 2 so that it is more negative than interval 1 to
obtain case (c). All cases where the upper bound of interval 2 is greater than interval are
covered. Thus, shift the upper bound of interval 2 into the range of interval 1. If the lower
bound of interval 2 is also placed inside the range of interval 1, case (d) is obtained. Then,
shift the lower bound of interval 2 so that it is more negative than interval 1 to obtain case
(e). Finally, shift the upper bound of interval 2 to be more negative than interval 1, and this
leaves only the possibility of the lower bound of interval 2 being more negative than interval
1 as displayed in case (f). As can be seen, case (c) and (d) are the same, as well as case (b)
and (e), and likewise for cases (a) and (f). This leaves three cases that must be checked.

& Case 1: Independent (Fig. 10a and f). Figure 11 illustrates the case where there are
two confidence intervals that do not overlap.

Let

1. lb1+x=lb2,
2. ub1+y=ub2

Iteration 1 Iteration 2 Iteration 5 Iteration 10

CIA 0.2115 0.6308 0.8192 0.8423
MARS 0.5821 0.7464 0.7821
DD 0.3538 0.5385 0.5923

Table 4 Precision for top-20
retrieval
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where

3. −1<lb1<ub1≤0,
4. −1<lb2<ub2≤0,
5. x>0,
6. y>0.

Then
lb1 þ ub1

2
<

lb2 þ ub2
2

, 1þ ub1j j
1� lb1j j > 1þ ub2j j

1� lb2j j
ub1 þlb1 < ub2 þ lb2 , 1þ ub1j j

1� lb1j j > 1þ ub2j j
1� lb2j j

ub1 þlb1 < ub2 þ lb2 , ub1j j
1� lb1j j >

ub2j j
1� lb2j j

ub1 þlb1 < ub2 þ lb2 , ub1j j
1þ lb1

>
ub2j j

1þ lb2

ub1 þlb1 < ub2 þ lb2 , ub1
1þ lb1

<
ub2

1þ lb2

ð16Þ

ub1 þub1lb2 < ub2 þ ub2lb1

Fig. 11 Confidence intervals
with no overlap

Fig. 10 Possible cases for confi-
dence intervals in the negative
range

Multimed Tools Appl



ub1 þub1lb1 þ ub1x < ub2 þub2lb1 by substituting (1) ub1 þub1lb1 þ ub1x < ub1 þyþ
ub1 lb1 þ lb1y by substituting (2) ub1 x < yþ lb1 y

0 < yþ lb1 y� ub1 x

0 < y 1þ lb1ð Þ � ub1 x is true considering (3), (4), (5), (6).

& Case 2: Overlapping (Fig. 10b and e)

Figure 12 illustrates the case where there are two confidence intervals that have partial overlap.
Let

1. lb1+x= lb2,
2. ub1+y=ub2

where

3. −1<lb1<ub1≤0,
4. −1<lb2<ub2≤0,
5. x>0,
6. y>0.

Starting from Eq. 16,

ub1 þub1lb2 < ub2 þ ub2lb1

ub1 þub1lb1 þ ub1x < ub2 þ ub2lb1 by substituting (1)ub1 þub1lb1þ ub1x < ub1 þ yþ
ub1lb1y by substituting (2)

ub1 x < yþ lb1 y

0 < yþ lb1 y� ub1 x

0 < yð1þ lb1Þ � ub1 x is true considering (3), (4), (5), (6).

& Case 3: Contained (Fig. 10c and d)

Figure 13 illustrates the case where one confidence interval is fully contained in another
confidence interval.

Fig. 13 Confidence interval
contained in another

Fig. 12 Overlapping confidence
intervals

Multimed Tools Appl



Let

1. ub1+x=ub2

where

2. −1<lb1<ub1≤0,
3. −1<lb2<ub2≤0,
4. x>0.

Starting from Eq. 16,

ub1 þ ub1 lb2 < ub2 þ ub2lb1

ub1 þub1lb2 < ub1 þ xþ ub1 lb1 þ lb1x by substituting (1)0 < x 1þ lb1ð Þ is true consider-
ing (2), (3), (4).

Appendix 2 MPEG-7 Core Experiment CE-Shape-1 Part B

The following is a subset of the images from the MPEG-7 Core Experiment CE-Shape-1.
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