
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 324–331
Indexing range sum queries in spatio-temporal databases

Hyung-Ju Cho, Chin-Wan Chung *

Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology, 373–1 Kusong-dong, Yusong-gu,

Taejon 305–701, Republic of Korea

Received 4 August 2005; received in revised form 8 May 2006; accepted 25 May 2006
Available online 10 July 2006
Abstract

Although spatio-temporal databases have received considerable attention recently, there has been little work on processing range sum
queries on the historical records of moving objects despite their importance. Since the direct access to a huge amount of data to answer
range sum queries incurs prohibitive computation cost, materialization techniques based on existing index structures are suggested. A
simple but effective solution is to apply the materialization technique to the MVR-tree known as the most efficient structure for window
queries with spatio-temporal conditions. Aggregate structures based on other index structures such as the HR-tree and the 3DR-tree do
not provide satisfactory query performance. In this paper, we propose a new index structure called the Adaptively Partitioned Aggregate
R-Tree (APART) and query processing algorithms to efficiently process range sum queries in many situations. Our experimental results
show that the performance of the APART is typically 1.3 times better than that of its competitor for a wide range of scenarios.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Spatio-temporal database; R-tree; Range sum query; Indexing technique
1. Introduction

With the rapid increase of applications that deal with
moving objects (e.g., intelligent traffic systems and mobile
communication systems), the spatio-temporal aggregation
has become one of the predominant operators for data
analyses. Specifically, spatio-temporal databases (STDB)
record a history of the behaviors of moving objects. In
addition to traditional moving objects such as planes, peo-
ple, and cars, the events that occur in time space can also be
regarded as moving objects since they can be captured and
identified by the combination of spatial and temporal
information. Examples include mobile phone calls and traf-
fic accident records.

Although several researchers addressed indexing and
processing of timestamp queries and time interval queries
0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.05.005

* Corresponding author.
E-mail addresses: hjcho@islab.kaist.ac.kr (H.-J. Cho), chungcw@

islab.kaist.ac.kr (C.-W. Chung).
[8,12,14,17], navigational queries [11], and nearest neighbor
queries [6,13] in STDB, there has been little work on range
sum queries for moving objects [15]. Similar to multi-di-
mensional databases such as OLAP (On-Line Analytical
Processing) systems, range sum queries are also crucial in
many real-life spatio-temporal applications. Let us present
two real-life examples of range sum queries as follows:

• Q1: What is the total number of outgoing phone calls
made from within Central Park during the previous
month?

• Q2: What is the total number of traffic accidents within
a 1 km radius of each school in June 2005?

Such information may be especially useful to estimate
future states and to generate good future plans. For exam-
ple, Q1 allows mobile communication companies to avoid
potential network congestion and determine locations for
new base stations. Such kinds of data include mobile phone
calls and traffic accident records which are significant
enough to be stored in databases.

mailto:hjcho@islab.kaist.ac.kr
mailto:chungcw@ islab.kaist.ac.kr
mailto:chungcw@ islab.kaist.ac.kr


H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331 325
Although range sum queries can be processed simply
using operational databases, their computation is expensive
due to the direct access of potentially huge amounts of
data, rendering online processing inapplicable. To efficient-
ly process these queries, materialization techniques were
suggested. However, the data cube [3,5] employed by tradi-
tional OLAP systems is not suitable for range sum queries
in STDB due to the lack of predefined containment hierar-
chies (e.g., day/week/month) [7,10]. Thus, for the case of
range sum queries in spatial and spatio-temporal applica-
tions, the materialization techniques (i.e., pre-aggregation
techniques) based on index hierarchies are preferable
[7,10]. For the latter, it is reasonable to consider the idea
of materialization to the MVR-tree [14] which is known
as the most efficient index structure for the historical data.
Unfortunately, it cannot provide satisfactory performance
on range sum queries with a long time interval, which are
frequently required. The reason is that multiple R-trees
should be involved to answer them. To overcome this,
the aRB-tree and its modifications (i.e., the aMVRB-tree
and the a3DRB-tree) are proposed in [15]. The intuition
behind them is that, by keeping additional summarized
information inside the index, aggregation queries with arbi-
trary groupings can be answered by the intermediate nodes,
thus saving accesses to detailed data.

Unlike spatial data, spatio-temporal data consist of
spatial and temporal information. Special attention
should be paid to the difference between the spatial
dimension and the time dimension. Since the historical
behaviors of moving objects are recorded chronologically
within a fixed spatial area, the time region to be indexed
increases as time passes while the spatial region does not.
Thus, the time region should be partitioned sophisticated-
ly and the partitioned regions should be indexed by multi-
ple R-trees.

This work is based on our previous work [2] which pre-
sented an adaptive indexing technique using query work-
loads for timestamp queries and time interval queries. In
this work, we extend the adaptive partitioning method to
range sum queries. To efficiently process range sum queries
in a variety of scenarios, we propose an adaptive index
structure, the Adaptively Partitioned Aggregate R-Tree

(APART), which divides the time region dynamically using
the query workload.

The techniques we will present in the paper can be
applied to other aggregate functions such as count and
average. Count is a special case of sum and average can
be obtained by keeping the two columns (sum,count).

The rest of the paper is organized as follows: Section 2
briefly describes the existing spatio-temporal index struc-
tures and considers possible aggregate index structures
for range sum queries in STDB. Section 3 presents the que-
ry-adaptive partitioning method, a range sum query pro-
cessing algorithm, and construction of an auxiliary
aggregate structure. Section 4 offers extensive experimental
results for various query workloads and datasets. Finally,
Section 5 provides conclusions.
2. Related work

For historical records of moving objects, several
access methods have been developed. These include the
3DR-tree [17], the HR-tree [8], the MVR-tree [14], and
the APR-tree [2].

Time interval queries refer to window queries with con-
tinuous timestamps while timestamp queries are window

queries at a single timestamp. The 3DR-tree is a simple
extension of the R-tree [1,4] in order to index spatial and
time information simultaneously. It treats time as another
dimension. Whenever an object moves to another position
or changes its shape, a new MBR is created to represent the
change of the object and the MBR containing both its spa-
tial extent and lifespan is inserted into the 3DR-tree. The
3DR-tree is effective for time interval queries, but very
poor for timestamp queries due to a large search space.

The Historical R-tree (HR-tree) [8] creates an R-tree
whenever objects in the previous R-tree change their
positions or shapes, but common branches of consecutive
R-trees are stored only once in order to save space. The
timestamp query is directed to the corresponding R-tree
and the search is performed inside this tree only. Thus
the timestamp query becomes the ordinary window query
and is handled very efficiently. The time interval query
should search the corresponding R-trees of all the time-
stamps involved.

The Multi-Version 3DR-tree (MV3R-tree) [14] is the
access structure that combines the Multi-Version R-tree
(MVR-tree) and a small auxiliary 3DR-tree built on the
leaf nodes of the MVR-tree. The former is used to answer
timestamp and short interval queries and the latter to
answer long interval queries. Although the size of the aux-
iliary 3DR-tree is very small since it shares the leaf nodes of
the MVR-tree, it improves the performance on interval
queries. Compared with the HR-tree and the 3DR-tree,
the MV3R-tree shows competitive performance on both
timestamp and time interval queries by using multiple log-
ical tree structures, each responsible for a fixed time
interval.

The APR-tree [2] adaptively partitions the time domain
using query workloads which include timestamp queries
and time interval queries. Since the time domain of the
APR-tree is automatically fitted to query workloads, the
APR-tree outperforms the other access methods for vari-
ous query workloads. Unlike the other access methods,
the size and the update cost of the APR-tree are affected
by query workloads. The update cost of the APR-tree is
on the average similar to that of the 3DR-tree which has
the smallest update cost. We extend the idea of the APR-
tree to the APART for processing range sum queries.
Unfortunately, in numerous OLAP applications where
range sum queries are frequently employed, the average
query interval length may not represent the actual query
workload. For example, half of queries are very long inter-
val and half of the queries are very short interval. In
this case, the APART is not good for either kinds of the



326 H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331
queries. To deal with this problem effectively, an auxiliary
aggregate structure is introduced in the APART.

The R-tree is known to be one of the most popular
index structures to efficiently process window queries in
spatial databases. Intuitively, the aggregate R-tree (aR-
tree) [7,10] improves the R-tree’s performance in range
sum queries by storing, in each intermediate entry, pre-ag-
gregated sums of the objects in the subtree. Fig. 1 shows an
example of an aR-tree. Note that in figures of this paper,
numeric values in parentheses denote pre-aggregated sums.
Given a range sum query, represented by the bold rectan-
gle in Fig. 1(a), that corresponds to ‘‘find the sum of
records which intersect qR’’, we do not need to visit node
N2 even if this node is inside qR. The reason is that
r5 = 15 already has the pre-aggregated sum of records cov-
ered by N2. However, node N3 should be searched since it
is partially covered by qR. Consequently, the query answer
is 22.

Similar to the aR-tree, it is quite natural to transform
existing spatio-temporal index structures to aggregate
structures for range sum queries in STDB. The HR-tree
and the 3DR-tree can adopt the pre-aggregation technique
employed in the aR-tree without any difficulty. However,
since the aggregate 3DR-tree (a3DR-tree) and the
aggregate HR-tree (aHR-tree) are generalizations of the
3DR-tree and the HR-tree, respectively, they do not yield
competent query performance.

In [15], Tao and Papadias proposed a unified solution
which is currently regarded as the best approach for histor-
ical spatio-temporal aggregation. Specifically, the proposed
solution consists of two types of indexes: (i) a host index
which is an aggregate spatial or spatio-temporal structure
managing region extents and (ii) numerous measure index-
es (one for each entry of the host index) which are aggre-
gate temporal structures storing the values of measures
during the history. Variations of the R-tree such as the
aR-tree, the aMVR-tree, and the a3DR-tree are employed
as the host index and aggregate B-trees (aB-trees) as mea-
sure indexes. Given a query, the host index is first searched
to identify the set of entries that qualify the spatial condi-
tion. The measure indexes of these entries are then accessed
to retrieve the timestamps qualifying the temporal
conditions.
a

Fig. 1. Example o
3. The adaptively partitioned aggregate R-tree

Section 3.1 presents an adaptive partitioning method
based on query workloads and range sum algorithm of
the APART. In [2], we have provided mathematical ratio-
nale for the impact of the jurisdiction interval length on the
query cost and the index size of the APART. Thus, the
detailed description is omitted. Finally, Section 3.2
describes our space-efficient structure for range sum queries
with a long time interval.

3.1. Query-adaptive partitioning method

Although spatio-temporal data consist of spatial and
temporal information, the time region increases as records
are inserted along with time dimension. Therefore, to avoid
a large search space, the HR-tree and the MVR-tree main-
tain multiple R-trees that are created as objects move,
while the 3DR-tree does not. Thus, the use of the 3DR-tree
and the a3DR-tree suffers from a large search space. To
overcome this deficiency of the a3DR-tree, we propose to
apply the query-adaptive partitioning method to the
a3DR-tree. We call the resultant index structure the Adap-

tively Partitioned Aggregate R-Tree (APART). The
APART consists of a3DR-trees, each of which is responsi-
ble for different fixed time interval derived from query
workload.

Different from the HR-tree and the MVR-tree, the
APART takes advantage of query workloads in order to
adaptively partition the time region [2]. The query-adaptive
partitioning method can significantly improve the perfor-
mance of the APART by reducing the search space.
Fig. 2 shows an example of an APART that consists of
two a3DR-trees (i.e., a3DR-tree [0,5) and a3DR-tree
[5,10)). Let a3DR-tree [tst, ted) denote an a3DR-tree whose
jurisdiction time interval is fixed to [tst, ted), where tst and
ted are start and end timestamps of the jurisdiction time
interval, respectively. A record whose time interval inter-
sects the jurisdiction time interval of an a3DR-tree belongs
to the corresponding a3DR-tree. Sometimes, if a record
intersects two or more a3DR-trees, it belongs to each of
these a3DR-trees simultaneously. Let rd = Æs, [t0, t1),
valueæbe a record of an object’s movement, where s is the
b

f an aR-tree.



Fig. 2. Partitioning the time region of the a3DR-tree.

Fig. 3. Range sum algorithm.

H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331 327
spatial area, [t0, t1) is the time interval, and value is the
measure attribute of interest which is associated with the
spatial area s during the time interval [t0, t1). For example,
rd1 = Æs1, [0,3), 3æbelongs to a3DR-tree [0, 5) while
rd3 = Æs3, [2,7), 7æbelongs to a3DR-tree [0,5) and a3DR-
tree [5, 10) simultaneously. In Fig. 2, the two bold lines in
a3DR-tree [5,10) are called the duplicate pointers meaning
that rd3 and rd4 already belong to previous a3DR-tree
[0,5).

Let L be the jurisdiction time interval length of a3DR-
tree [ti, ti+1). Namely, L = ti+1 � ti. To determine L dynam-
ically, we take advantage of query workload. Let T queries be
the average time interval length of queries and T records be
the average time interval length of records. T queries and
T records are recomputed whenever queries and records are
entered so that they can be adjusted dynamically.

Using T queries and T records, the tuning parameter L is
dynamically determined by Eq. (1).

L ¼ maxðT queries; T recordsÞ ð1Þ
where maxðT queries; T recordsÞ chooses the larger value be-
tween T queries and T records. In Eq. (1), L is automatically
determined by using T queries and T records obtained from the
query workload and the dataset, respectively. In addition,
L ¼ maxðT queries; T recordsÞ can reflect the changing query
workload over time. In [2], we have shown that
L ¼ maxðT queries; T recordsÞ is a good choice in terms of the
query cost and the index size. This is confirmed in our
experiments.

Fig. 3 presents the range sum algorithm of the APART
for computing the sum of values of records that intersect
the query window q = ÆqR,qTæ, where qR and qT are the
spatial and temporal query windows, respectively. An entry
r has the form Ær.MBR, r.lifespan, r.ptr, r.aggr_sumæwhere
r.MBR and r.lifespan are spatial and temporal extents of
the entry, respectively, and r.ptr and r.aggr_sum have the
same semantics as the aR-tree. If the time interval which
a a3DR-tree is responsible for overlaps the time interval
of query, this a3DR-tree is searched to find out records
which actually intersect the query window. In the a3DR-
tree, the algorithm of computing range sum is the same
as that of the aggregate tree structure. (i) If the lifespan
of an entry r is covered by qT and the entry’s spatial extent
is contained in qR, its pre-aggregated sum is used. (ii) The
entry’s spatial extent partially overlaps qR and its temporal
extent also partially overlaps qT. In this case, the algorithm
descends to the next R-tree level and the same process is
applied recursively, and (iii) if none of the previous condi-
tions holds, the entry is ignored. The final answer is calcu-
lated by summing results in each 3DR-tree whose
jurisdiction time interval overlaps qT.

Finally, the APART can be incrementally maintained in
a straightforward way. If the lifespan of a record does not
intersect the boundary, the record is inserted into the
a3DR-tree covering the lifespan of the record. Otherwise,
the record is shared among multiple a3DR-trees whose
jurisdiction intervals intersect the lifespan of the record.
The change propagates upward the a3DR-tree, updating
the affected entries.



Fig. 5. Range sum algorithm of the aST-tree.

328 H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331
3.2. Construction of the auxiliary aggregate structure

An auxiliary aggregation structure is used in the
APART in order to efficiently process range sum queries
with a long time interval. The auxiliary aggregation struc-
ture which we call an aggregate spatial and temporal tree
(aST-tree) is built on leaf nodes of the APART. Since the
number of leaf nodes of the APART is much less than
the actual number of records, the size of the aST-tree is
expected to be fairly small compared to that of the
APART. The aST-tree consists of three kinds of typical
aggregate structures as follows: the a3DR-tree, the aggre-
gate B-tree (aB-tree), and the aR-tree. Like the a3DRB-
tree, the aST-tree adopts an a3DR-tree as the host index.
Specifically, each entry r in the a3DR-tree has the form
Ær.MBR, r.lifespan, r.ptr, r.aggr_sum, r.btree, r.rtreeæ, where
r.MBR, r.lifespan, r.ptr, and r.aggr_sum have the same
meaning as the APART, and r.btree points to an aggregate
B-tree which stores the detailed measure information of r at
concrete timestamps and r.rtree indicates an aggregate
R-tree which keeps the detailed measure information of r

inside its spatial extent during r.lifespan. Note that its con-
struction is similar to that of the a3DRB-tree except that
an additional aR-tree for each entry is utilized to maintain
summarized information of records inside r.MBR during
its lifespan.

Fig. 4 describes possible relationships between an entry
and a query. For convenience, we represent the three
dimensional space as the two dimensional space. In this fig-
ure, assume that the x and y axes represent spatial and tem-
poral dimensions, respectively. In the case of Fig. 4(a)
where the entry is covered by both (qR and qT) query
extents, the pre-aggregated sum of an entry of the a3DR-
tree can answer the range sum query q. In the case of
Fig. 4(b) where the entry’s spatial extent partially overlaps
qR and its temporal extent is covered by qT, the aR-tree
pointed to by the entry can sufficiently answer q. Converse-
ly, in the case of Fig. 4(c) where the entry’s spatial extent is
covered by qR and its temporal extent partially overlaps qT,
the aB-tree pointed to by the entry is sufficient for answer-
ing q. In the case of Fig. 4(d) and (e) where the entry is par-
tially covered by both (qR and qT) query extents, the
algorithm descends to the next a3DR-tree level and the
same process is applied recursively.

As with the a3DR-tree, a range sum query is modeled as
a 3D box which represents the spatial and temporal ranges.
It starts from the root of the 3DR-tree, and each entry r
a b c

Fig. 4. Relations of entry
satisfies one of the following conditions: (i) the entry is cov-
ered by both (qR and qT) query extents. In this case, its pre-
computed aggregate sum r.aggr_sum is simply used. (ii) the
entry’s spatial extent is covered by qR and its temporal
extent partially overlaps qT. The aB-tree indicated by
r.btree is searched to retrieve the range sum for qT. (iii)
the entry’s spatial extent partially overlaps qR and its tem-
poral extent is covered by qT. In this case, the aR-tree indi-
cated by r.rtree is searched to retrieve range sum for qR. (iv)
if the entry is partially covered by both (qR and qT) query
extents, the algorithm descends to the next a3DR-tree level
and the same process is applied recursively, and (v) if none
of the previous conditions holds, the entry is ignored.

Fig. 5 presents the range sum algorithm using the aST-
tree. In general, the aST-tree can accelerate the execution
of queries under various conditions because (i) if both qR

and qT are large, many nodes in the intermediate levels of
the a3DR-tree are contained in q. As a result, the pre-com-
puted aggregate values of the a3DR-tree are used to answer
the range sum query q. (ii) If qR is small but qT is large, aR-
trees are searched instead of the a3DR-tree. In this case,
the pre-computed aggregate values of the aR-trees are used
to answer q. (iii) Conversely, if qR is large but qT is small,
aB-trees are searched instead of the a3DR-tree and the pre-
computed aggregate values of the aB-trees are used to
answer q. (iv) If both of qR and qT are small, the aST-tree
behaves as a typical 3DR-tree. In the aST-tree, the summa-
rized information on the spatial and temporal dimensions
are kept in separated aggregate indexes, aR-trees and
d e

r to query q = ÆqR,qTæ.



Fig. 6. Range sum algorithm of the aB-tree.

Fig. 7. Range sum algorithm of the aR-tree.

H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331 329
aB-trees, respectively for each entry of the a3DR-tree used
as the host index.

Fig. 6 presents an algorithm for computing the range
sum using the aB-tree. The algorithm is straightforward.
If the lifespan of an entry b is covered by the time interval
of the query q, its pre-aggregated sum is used. If b.lifespan
partially overlaps qT, the algorithm descends to the next
aB-tree level and the same process is applied recursively.

Fig. 7 presents an algorithm for computing the range
sum using the aR-tree. The algorithm in Fig. 7 is similar
to that in Fig. 6. If the spatial extent of an entry r is covered
by the spatial window of the query q, its pre-aggregated
sum is used. If r.MBR partially overlaps qR, the algorithm
descends to the next aR-tree level and the same process is
applied recursively.

Specifically, to create an aST-tree, we should first build
the underlying 3DR-tree according to spatial extents and
lifespans of leaf nodes in APART. After that, aR-trees
and aB-trees of the entries are constructed by scanning
the aggregate changes.

4. Experiments

4.1. Experimental environment

In Section 4.2, we experimentally compare our method
and its competitor for range sum queries in terms of I/O
cost using a system running Windows on a 2.7 GHz proces-
sor and 512 MB memory. To represent moving objects, we
use Tiger/Line data which represent LA rivers and railways
containing 128,971 MBRs [18]. A record consists of three
attributes Æs, [tst, ted), valueæ, where s is the 2-dimensional
spatial area, [tst, ted) is the time interval, and value is the
measure attribute associated with spatial area s during time
interval [tst, ted). The spatial region is a unit square, while
the time interval consists of timestamps represented by
integers. Objects change their shapes, positions, or values
randomly along with time. We investigated their changes
for 1000 timestamps. A node corresponds to a page, whose
size is set to 4 KB. Let ams be the ratio of the number of
objects that are randomly selected to change their measures
at each timestamp and aext be the ratio of the number of
objects that change their regions at each timestamp. For
example, aext = 5% means that 6448 (= 128,971 · 5%)
objects change their shapes or positions at each timestamp.
Each query specifies a square spatial region with side length
qS and a temporal interval including qT timestamps. To
investigate the performance of range sum queries, we
execute workloads of 200 queries whose locations are
randomly selected in the whole region.

Note that in this work, the implementation of all the
spatio-temporal aggregate index structures is based on
the algorithms of the R*-tree [1]. In [15], Tao and Papadias
stated that the a3DRB-tree has the best performance for
volatile regions and the smallest size. Therefore, we com-
pared the APART with the a3DRB-tree to prove the supe-
riority of our approach. In these experiments, we fix L to
T records since query workloads are not known a-priori while
building the APART.

4.2. Experimental results

We compare the APART and its competitor a3DRB-
tree in terms of the size and the query costs. Fig. 8(a) shows
the sizes of two aggregation structures as a function of ams

by fixing aext to 5% and Fig. 8(b) plots the sizes as a func-
tion of aext by fixing ams to 10%. Note that a3DRB-trees
are the smallest in all cases because they do not incur
redundancy. The size of an APART is larger than that of
the a3DRB-tree due to the data duplication introduced
by the partitioning method.

Fig. 9 presents query performance of methods for vola-
tile regions. In Fig. 9(a), we measure the query cost as a
function of qS. As expected, the APART performs better
than the a3DRB-tree. The reason is that in the aST-tree,
the summarized information on the spatial and temporal
dimensions are kept in two kinds of separated indexes,
aR-trees and aB-trees, respectively for each entry of the
a3DR-tree. Fig. 9(b) shows the query cost as a function
of qT by fixing qS, ams, and aext to 0.3, 10%, 5%, respective-
ly. The APART outperforms the a3DRB-tree for time
interval queries since aR-trees are visited to answer these
queries. Fig. 9(c) shows the query cost as a function of
ams. The costs of the APART and the a3DRB-tree are
not affected at all since the B-tree height of each entry does
not change. Fig. 9(d) presents the cost as a function of aext.



a b

M R

Fig. 8. Size comparison.

Fig. 9. Comparison of query performance.

330 H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331
The query cost using the APART is reduced because the
APART employs an aR-tree within each entry for keeping
the summarized information on spatial dimension.

5. Conclusions

With a rapid development of mobile, satellite, and wire-
less technologies, numerous real-life applications (e.g., traf-
fic control systems or mobile communication systems) that
require range sum queries have appeared in spatio-tempo-
ral databases. Unlike other aggregate structures, the
APART employs a query-adaptive partitioning method
that plays an important role in achieving the best perfor-
mance for various query workloads and datasets. With
regard to the structure built already, in order to efficiently
process the changed query workload using the past struc-
ture, we add to the APART an auxiliary aggregate index
called the aST-tree, which maintains summarized informa-
tion on the spatial and temporal dimensions in two kinds of
separated indexes, aR-trees and aB-trees, respectively.
Through several experiments that simulate real-life situa-
tions, we showed that the APART is superior to the
a3DRB-tree in a wide range of scenarios.

We believe that the range sum query to moving objects
is a promising and challenging research area from the prac-
tical as well as theoretical point of view. Sometimes,
depending on applications where fast response time is more
crucial than exact query results, approximate query results
with fast response time may be required rather than exact
query results with unacceptable response time. To satisfy



H.-J. Cho, C.-W. Chung / Information and Software Technology 49 (2007) 324–331 331
such requirements, instead of the range sum algorithm pre-
sented in this paper, the progressive approximate algorithm
[7] can be adopted by the APART.

Acknowledgment

This research was supported by the Agency for Defense
Development, Korea, through the Image Information Re-
search Center at Korea Advanced Institute of Science &
Technology.

References

[1] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles, in:
Proceedings of the ACM SIGMOD Conference on Management of
Data, 1990, pp. 322–331.

[2] H. Cho, J. Min, C. Chung, An adaptive indexing technique using
spatio-temporal query workloads, Inform. Software Tech. 46 (4)
(2004) 229–241.

[3] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, Data cube: a
relational aggregation operator generalizing group-by, cross-tab, and
sub-total, in: Proceedings of International Conference on Data
Engineering, 1996, pp. 152–159.

[4] A. Guttman, R-Trees: a dynamic index structure for spatial searching,
in: Proceedings of the ACM SIGMOD Conference on Management
of Data, 1984, pp. 47–57.

[5] V. Harinarayan, A. Rajaraman, J. Ullman, Implementing data cubes
efficiently, in: Proceedings of the ACM SIGMOD Conference on
Management of Data, 1996, pp. 205–216.

[6] M. Kolahdouzan, C. Shahabi, Voronoi-based K nearest neighbor
search for spatial network databases, in: Proceedings of the Interna-
tional Conference on Very Large Data Bases, 2004, pp. 840–851.

[7] I. Lazaridis, S. Mehrotra, Progressive approximate aggregate queries
with a multi-resolution tree structure, in: Proceedings of the ACM
SIGMOD Conference on Management of Data, 2001, pp. 401–412.
[8] M. Nascimento, J. Silva, Towards historical R-trees, in: Proceedings
of the ACM Symposium on Applied Computing, 1998, pp. 235–240.

[10] D. Papadias, P. Kalnis, J. Zhang, Y. Tao, Efficient OLAP operations
in spatial data warehouses, in: Proceedings of International Sym-
posium on Spatial and Temporal Databases, 2001, pp. 443–459.

[11] D. Pfoser, C. Jensen, Y. Theodoridis, Novel approaches in query
processing for moving object trajectories, in: Proceedings of the
International Conference on Very Large Data Bases, 2000, pp. 395–
406.

[12] S. Saltenis, C. Jensen, S. Leutenegger, M. Lopez, Indexing the
positions of continuously moving objects, in: Proceedings of the
ACM SIGMOD Conference on Management of Data, 2000, pp. 331–
342.

[13] Z. Song, N. Roussopoulos, k-nearest neighbor search for moving
query point, in: Proceedings of International Symposium on Spatial
and Temporal Databases, 2001, pp. 79–96.

[14] Y. Tao, D. Papadias, The MV3R-Tree: a spatio-temporal access
method for timestamp and interval queries, in: Proceedings of the
International Conference on Very Large Data Bases, 2001, pp. 431–
440.

[15] Y. Tao, D. Papadias, Historical spatio-temporal aggregation, ACM
Trans. Inform. Syst. 23 (1) (2005) 61–102.

[17] M. Vazirgiannis, Y. Theodoridis, T. Sellis, Spatio-temporal compo-
sition and indexing for large multimedia applications, Multimedia
Syst. 6 (4) (1998) 284–298.

[18] US Bureau of the Census: Technical Documentation, TIGER/Line
Files, 1995.
Further reading

[1] M. Nascimento, J. Silva, Y. Theodoridis, Evaluation of access
structures for discretely moving points, in: Proceedings of Interna-
tional Workshop on Spatio-Temporal Database Management, 1999,
pp. 171–188.

[2] Y. Theodoridis, J. Silva, M. Nascimento, On the generation of spatio-
temporal datasets, in: Proceedings of International Symposium on
Large Spatial Databases, 1999, pp. 147–164.


	Indexing range sum queries in spatio-temporal databases
	Introduction
	Related work
	The adaptively partitioned aggregate R-tree
	Query-adaptive partitioning method
	Construction of the auxiliary aggregate structure

	Experiments
	Experimental environment
	Experimental results

	Conclusions
	Acknowledgment
	References
	Further reading


