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Recently, graph data has been increasingly used in many areas such as bio-informatics and
social networks, and a large amount of graph data is generated in those areas. As such, we
need to manage such data efficiently. A basic, common problem in graph-related applica-
tions is to find graph data that contains a query (Graph Query Problem). However, since
examining graph data sequentially incurs a prohibitive cost due to subgraph isomorphism
testing, a novel indexing scheme is needed.

A feature-based approach is generally used as a graph indexing scheme. A path structure,
a tree structure, or a graph structure can be extracted from a graph database as a feature.
The path feature and the tree feature can be easily managed, but have lower pruning power
than the graph feature. Although the graph feature has the best pruning power, it takes too
much time to match the graph feature with the query. In this paper, we propose a graph
feature-based approach called a CF-Framework (Cross Filtering-Framework) to solve the
graph query problem efficiently. To select the graph features that correspond to the query
with a low cost, the CF-Framework makes two feature groups according to the query and
filters out each group crossly (i.e., alternately) based on set properties. We then validate the
efficiency of the CF-Framework through experimental results.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Graph data has been used for a long time in computer science in order to represent various structures; many techniques
related to graphs have been developed and utilized. Recently, due to technological advances, a large amount of graph data
has been generated in broader areas. For example, in a social network environment, a very large social network is produced.
In addition, in the bio-informatics area [12], various protein structures are modeled by a labeled graph. However, since the
previous research related to graphs focuses on a small amount of data, this cannot be applied to a large amount of graph data.
In the case of XML data similar to graph data, research on large-scale XML data management has been studied very actively
[4,9,24,19,6,16,18]. However, XML data is primarily represented by a tree structure and XML’s abundant technologies cannot
be applied to graph data directly. Therefore, database communities are trying to overcome the scalability issue of graph data.

Data retrieval is a basic and common technique among the graph data management techniques. An important graph data
retrieval problem is to find graph data that contains a graph query. We call this the graph query problem. The graph query
problem is formally defined as follows:
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Fig. 1. Example for the graph query problem.
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� Given a graph database D ¼ fg1; g2; . . . ; gng and a graph query q, find all graphs d in D such that q � d.1
Example 1. Suppose D ¼ fg1; g2; g3; g4g and that the graph query is q as shown in Fig. 1. The answer of the query q is g1 since
g1 is a supergraph of q. In this example, we omit edge labels.

It is not possible to scan the whole data in D since subgraph isomorphism testing is an NP-complete problem [5]. To solve
the graph query problem, a feature-based approach is generally used. In the feature-based approach, to find the graph data d
that contains the query q (i.e., d � q), we make the feature index and compute the candidate result using the index. hf ;Df i is
used as an index structure, where f is some feature extracted from D and Df ¼ fd 2 Djf � dg. Then, given a query q, the can-
didate answer set (Cq) is computed using the precomputed list of hfi;Dfi i. If fi � q, then Dfi � Dq. Thus, the intersection of the
Dfi

’s is a superset of Dq, where fi is a feature and fi � q. Therefore, we can compute Cq by the formula Cq ¼ \fi�q and f i2FDfi ,
where F is a set of features. Finally, we get real answers by directly checking whether d 2 Cq is a real answer. In the
feature-based approach, the query processing cost is mainly affected by two kinds of costs; the index probing cost and
the verification cost. The index probing cost is the cost of finding the list of features that match the query and the verification
cost is the cost of checking whether a candidate answer is a real answer.

In the GraphGrep [21,8], a path is used as a feature. Although we can extract paths easily and compare two path sets
extracted from the query and the graph data with a low cost, the pruning power for paths is low. This means that the index
probing cost for the path feature is low, but the verification cost is very high due to the big size of the candidate answer set.

To reduce the verification cost, we can use a graph feature instead of a path feature. In the gIndex [29], a frequent and
discriminative subgraph is selected as a feature. However, the index probing cost is high in the gIndex since the gIndex
has to find the graph features that are contained in the query and it requires subgraph isomorphism testing.

In the FG-index [2], to remove the verification cost, the exact answer set corresponding to query q is retrieved in the index
probing step. If the same feature f as the query q is found, the precomputed Df is returned as a result. Then, query processing
can be performed without the verification step of checking the candidate answer since the exact answers are matched. How-
ever, in order to compute an answer of the query without verification, the query should be in the feature set. In case the
query is not in the feature set, it is not efficient to process the query. To avoid such a case, the FG-index should make the
feature index for a very large number of subgraphs, which will increase the index probing cost.

In summary, in the case of using a path feature, we have the problem of low pruning power. Therefore, we have a high
verification cost. In case of using a graph feature, we should find the graph features that match with the graph query. There-
fore, we have a high index probing cost. To solve this dilemma, we propose the CF-Framework (Cross Filtering-Framework).
Since graph features are used in the CF-Framework, we can get a low verification cost. In addition, to efficiently find the
graph features contained in the query, we propose a filtering method called Cross Filtering. Using Cross Filtering, we can
achieve a low index probing cost. In Cross Filtering, to find the graph features contained in the query, we make two different
feature groups for the query. Then, using set properties, each group is filtered out crossly (i.e., alternately). We then perform
the filtering iteratively until we search all features. During this process, we can select the graph features that correspond to
the query efficiently and therefore reduce the index probing cost.

In addition, to process the graph query more effectively, the CF-Framework provides a two-step architecture to compute
candidate answers. In the first candidate answer computation, we evaluate a loose candidate answer set with a small cost
using features that are easy to compute; we call them simple features. In the second candidate answer computation, we
compute a tight candidate answer set using graph features and the result of the first candidate answer computation. In this
step, we perform Cross Filtering.
1 Formally, for graph data g1 and g2; g1 � g2 means that g1 and g2 have a subgraph isomorphism from g1 to g2. For convenience, we say that g1 is a subgraph
of g2 if g1 � g2. We will define the subgraph isomorphism formally in Section 3. Also, note that we use the symbol � instead of the symbol # to indicate
‘‘subset’’ (i.e., A is a subset of B: A � B).
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1.1. Contributions

Our contributions are as follows:

� Efficient graph feature filtering method (Cross Filtering). Although a graph feature has a high pruning power, it is hard
to find the graph features contained in a query. To overcome the problem, we propose Cross Filtering. By filtering out
graph features crossly and iteratively based on the derived set properties, Cross Filtering can select graph features
efficiently.
� CF-Framework to process a graph query. We propose an effective framework to process a graph query using simple fea-

tures and graph features. We first compute a loose candidate answer set very efficiently using simple features, and then
we compute a tight candidate answer set using graph features and the above candidate answer set.
� Experimentation to validate our proposed approach. Through an experimental study using a real dataset, we show that

the CF-Framework can process graph queries efficiently. For various types of queries, the CF-Framework outperforms the
previous approach in most cases in terms of the query processing time.

1.2. Organization

The rest of the paper is organized as follows. We discuss related work in Section 2 and explain the preliminary concepts
and the overall procedure in Sections 3 and 4, respectively. We describe the first candidate answer computation using simple
features in Section 5, then we present the second candidate answer computation using graph features in Section 6. Finally,
we show experimental results in Section 7 and conclude the paper in Section 8.
2. Related work

XML data is similar to graph data. We can generally express XML data as a tree, a subset of a graph, and if we use IDREF,
the XML data will become a graph. To process XML data, various indexing and query processing techniques have been pro-
posed [4,9,24,19,6,16,18,13,28]. However, they focus on XML data that has a tree structure. Thus, the techniques studied in
the XML area cannot be easily adapted to graph data. Therefore, many approaches are proposed in order to deal with graph
data [21,8,29,2,3,38,14,11,27,37,7,15].

To process graph data efficiently, Shasha et al. [21,8] proposed a path-based approach. All paths within the maximum
path length are extracted from a database and indexed. Given a query, the paths corresponding to it are retrieved and a can-
didate answer set is computed using the paths. However, in the path-based approach, the filtering capability of the paths will
be degraded compared to that of the graph since the path loses the structural information of the graph.

As an alternative to paths, frequent subgraphs can be used as a good feature set. Subgraphs can preserve the structural
information of the original graph data. However, the number of subgraphs can be very large. In the gIndex [29], to reduce the
size of the feature set, frequent and discriminative subgraphs are selected among many subgraphs. The key idea in the gIn-
dex is that if two features f1 and f2 have a subgraph relationship (f1 � f2) and similar frequencies, we do not have to keep both
f1 and f2. Using this idea, the gIndex can reduce the size of the feature set. However, the gIndex has difficulty finding the
feature list contained in query q.

We have the high verification cost to process the graph query due to the subgraph isomorphism testing. The FG-index [2]
can avoid the verification cost if the index contains the graph query. For a non-FG-query that is not contained in the index,
the query performance of the FG-index is not efficient. To process many types of queries without verification, the FG-index
should construct the index with a very large number of subgraphs. However, since the number of possible subgraphs is
incredibly large, there may still be many non-FG queries. The FG⁄-index [3] proposes an FAQ-index to solve the problem.
If the non-FG-query is in the FAQ-index which is dynamically built from the set of frequently asked non-FG-queries, then
the FG⁄-index returns the result of the non-FG-query without verification. However, the essential problem of the FG-index
cannot be avoided.

In GCoding [38], a novel encoding method for graph indexing is proposed. In GCoding, graph data is encoded into graph
code by combining all the vertex signatures that represent the local structure around a vertex. For effective encoding of the
local structure around a vertex, the interlacing theorem for eigenvalues is utilized. However, GCoding has the limitation of
representing an intrinsic property of a graph, since structural information may be lost during the encoding. Therefore, its
filtering capability may be degraded compared to approaches that use frequent subgraphs.

In addition, many kinds of graph search techniques that are in contexts different from ours have been studied. Similar
graph search techniques are proposed in [10,26,30,25,17,23]. The containment search technique [1] is devised using a con-
trast subgraph. Yuan et al. dealt with the subgraph search problem and a similar subgraph search problem in an uncertain
graph database [33,34]. In [36,35,22], the subgraph search in a single large graph instead of a collection of graph data is pro-
posed. GraphREL [20] provides a framework to store and query graph data in an RDBMS. In addition, a method to update a
graph index incrementally is proposed in [32,31] while many approaches do not consider the environment in which a graph
index is updated. In particular, Yang and Jin [31] consider the graph search problem for a single large graph in a dynamic
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Fig. 2. Graph feature example for g1; g2; g3 and g4 in Fig. 1.
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environment where nodes or edges are inserted or deleted over time. They partition the graph into core regions and extend
these core regions to index regions in order to reduce the update time of the indices.

3. Preliminary

In this section, we describe notations and the basic lemma. A graph consists of vertices and edges. We can represent the
graph by G ¼ hV ; E; L; li, where V is the set of vertices, E is the set of edges, L is the set of vertex and edge labels and l is a
function from a vertex or an edge to a label in L. In this paper, we consider an undirected, labeled graph. In addition, we
assume that both the nodes and edges have labels.

Definition 1. For any two graphs g1 ¼ hV ; E; L; li and g2 ¼ hV 0; E0; L0; l
0i, we say that g1 � g2 if there exists an injective function

f : V ! V 0 such that (1) for all v 2 V ; f ðvÞ 2 V 0 and lðvÞ ¼ l0ðf ðvÞÞ, and (2) for all hv1;v2i 2 E; hf ðv1Þ; f ðv2Þi 2 E0 and
lðhv1;v2iÞ ¼ l0ðhf ðv1Þ; f ðv2ÞiÞ. We call f the subgraph isomorphism from g1 to g2.

As mentioned previously, since the subgraph isomorphism testing is an NP-complete problem [5], we construct the index
to reduce the computation of query processing. Given query q, feature f, and graph database D, we define Df and df as
follows:

� Df ¼ fg 2 Djg � fg
� df ¼ fg 2 Djg � fg

We can evaluate a candidate answer set basically by using Df . In addition, to compute a tighter candidate answer set, we
can use df as well which will be explained in Section 6.3.

The following lemma can be derived easily from the definition of Df .

Lemma 1. For any two graphs g1 and g2, if g1 � g2, Dg1
� Dg2

.

By Lemma 1, we can compute a candidate answer set Cq by intersecting Df ’s for f � q, where q is a query. For example,
suppose that f1; f2, and f3 in Fig. 2 are the graph features extracted from g1, g2; g3, and g4 in Fig. 1 and the query q in Fig. 1 is
given. Then, f1 and f2 are contained in q. Therefore, Cq ¼ Df1

T
Df2 ¼ fg1; g3g.

4. Overall procedure

In this section, we describe the overall procedure. In a graph feature-based approach, there are two major steps in pro-
cessing the graph query problem, the first of which is the index construction step. In this step, it is important to extract use-
ful graph features from a graph database. Many papers deal with a method of extracting effective graph features [29,37];
therefore, in this paper we do not focus on extracting graph features. Instead, we assume that the graph features are given.

The second step is a query processing step. Query processing consists of the first candidate answer computation, the sec-
ond candidate answer computation and the verification. In the first candidate answer computation, we evaluate a loose can-
didate answer set in a very short time using simple features. In the second candidate answer computation, we evaluate a
tight candidate answer set using graph features and the above result.

However, since we need much time to find the graph features contained in the query in the second candidate answer
computation, we propose Cross Filtering. To find the graph features efficiently in Cross Filtering, we compute Group1 and
Group2 using simple features2 and the computation cost is low. Group1 and Group2 are defined as follows:
2 Sim
Group1 � Fsub ¼ ff jf 2 F; f � qg; where F ¼ graph feature set; q ¼ query
Group2 � Fsup ¼ ff jf 2 F; f � qg; where F ¼ graph feature set; q ¼ query
By crossly filtering out the graph features from Group1 and Group2, we can get the graph features contained in the query
efficiently. In the verification, which is the final process of query processing, we verify the candidate answers to get the real
answers. The detailed algorithm is shown in Fig. 5, which will be explained in Sections 5 and 6.
ple features are used in the second candidate answer computation as well as the first candidate answer computation.
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Although we have proposed simple features in this paper, these are only some of simple feature examples. In fact, we can
use various graph-theoretical properties as simple features that have been proposed in graph theory communities. However,
our focus is not on finding a good simple feature. In this paper, we will concentrate on the second candidate answer
computation.

5. First candidate answer computation using simple features

In this section, we will explain the first candidate answer computation (Lines 2–8 of Fig. 5).

5.1. Simple features

To evaluate a candidate answer set with a small cost, we use simple features that are easy to compute. A simple feature
has the following characteristics:

� Small extraction time. The feature extraction time from a graph should be small. If the time is long, the index construc-
tion and query processing will be performed badly.
� Small space. We should store the value of the simple feature with a small amount of space. If the space size of storing the

simple feature is large, the index size will be large.
� Subgraph property. The simple feature should satisfy the subgraph property below; if the simple feature does not have

this property, we cannot compute candidates through simple features. This property is the most important property for
simple features.
Definition 2 (Subgraph Property). Let sfi be a function from the graph data to some values (i.e., real numbers). If
sfiðg1Þ � sfiðg2Þ for any two graph data g1 and g2 such that g1 � g2, we say that sfi has the subgraph property. The operator
� is a user-defined operator for comparing the two values. In general, the relation 6 is used.

Many simple features satisfy the above three properties. As a typical example, we use the number of vertices (nV ) and the
number of edges (nE). For any two graphs g1 and g2, if g1 � g2;nV ðg1Þ 6 nV ðg2Þ and nEðg1Þ 6 nEðg2Þ. Furthermore, nV and nE

have a small extraction time and the values of those take a small space; therefore, nV and nE are simple features. According
to the properties of the graph data, various kinds of good simple features exist. A good simple feature means a feature with
high discriminative power. However, it is difficult to find good simple features for all kinds of graph data sets. Therefore, we
can determine the simple features with the help of a domain expert.

In this paper, we do not focus on finding good simple features. Instead, we describe simple feature examples that can be
used in a general environment in Appendix A.

5.2. Candidate answer computation using simple features

As explained in the overall procedure, we first compute a loose candidate answer set using simple features. We will
explain Lines 2–8 of Fig. 5 in detail.

Given a query q, we first extract the values of the simple features of q; sf ðqÞ (Line 2 of Fig. 5). The function sf ðxÞ is defined
by ½sf1ðxÞ; sf2ðxÞ; . . . ; sfkðxÞ�, where k is the number of simple features. Then, we evaluate the candidate answer set using the
formula Cq ¼ fg 2 Djsf ðqÞ � sf ðgÞg (Line 3 of Fig. 5). Since sf ðqÞ is a vector, we define � in a vector. If sf ðgÞ ¼ ðv1;v2; . . . ;vkÞ
and sf ðg0Þ ¼ v 01;v 02; . . . ;v 0k

� �
, then sf ðgÞ � sf ðg0Þmeans v1 � v 01 AND v2 � v 02 AND � � � AND vk � v 0k, where � is defined in each

simple feature.3 We are sure that Cq is a superset of Dq because simple features have the subgraph property that states that for
any two graphs g1 and g2, if g1 � g2, then sf ðg1Þ � sf ðg2Þ. If the size of Cq is small, we do not proceed with the second answer set
computation (Lines 4–8 of Fig. 5). If we design simple features well, we can process graph queries easily with only simple fea-
tures. However, in general cases, since the discriminative power of simple features is low, we need to use graph features.

6. Second candidate answer computation using graph features

In this section, we will explain the second candidate answer computation (Lines 10–18 of Fig. 5) including the verification
(Lines 19–21 of Fig. 5).

6.1. Graph features

Although simple features are easy to manage, the discriminative power of simple features may be low. Then we cannot
effectively filter out graph data. It may be impossible to find simple features with high discriminative power for all kinds of
3 In our experimental setting, we use 5 simple features (i.e., the number of nodes, the number of edges, maximum degree, vertex encoding of Appendix, and
edge encoding of Appendix).
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graph data sets. Therefore, we use frequent subgraphs as a good feature additionally. However, we have difficulty managing
graph data. Thus, an efficient graph feature filtering method should be devised.
6.2. Candidate answer computation using graph features

To compute a tight candidate answer set Cq, we use graph features that are a set of special subgraphs. However, we have
difficulty dealing with graph features while simple features are easy to handle. We propose a method called Cross Filtering to
find the graph features contained in the query efficiently and integrate it with query processing. In the Cross Filtering, we
compute the candidate answer set as well as the partial answer set. The partial answer set Pq is defined by
Pq ¼ [fi�q and f i2F Dfi

, where F is the feature set. Fig. 3(a) shows the relationship among Cq, Pq and Dq. We do not have to verify
Pq because all elements in Pq are in the real answer set. Therefore, we only have to check whether the elements in Cq � Pq are
in the real answer set. As the final result, we return (the result of verification) [ Pq. The FG⁄-index [3] also uses a partial
answer set. If the query is not in the FG⁄-index, the FG⁄-index uses the FAQ-index which is dynamically built from the set
of FAQs (Frequently Asked non-FG-Queries). If the query does not match with the FAQ-index, the FG⁄-index finds q’s sub-
graphs and supergraphs, then computes a candidate answer set and a partial answer set. However, it is inefficient to find
graph features fsð� qÞ and ftð� qÞ for computing the candidate answer and the partial answer in the FG⁄-index. In Cross Fil-
tering, we devised a smart method to find fs and ft simultaneously.

Consider a graph feature f and Df ¼ fd 2 Djf � dg ¼ fgi1 ; gi2 ; . . . ; ging. Although Df consists of graph data, we store a set of
graph identifiers instead of a set of graph data. That is, we store Df ¼ fi1; i2; . . . ; ing, where ik is the identifier for graph gik
(1 6 k 6 n). Therefore, it is easier to deal with Df than f since Df is a set of numbers and f is a graph. Furthermore, Df exploits
the characteristics of f well. Thus, to avoid the high computation for graph comparison, we use Df instead of f and derive
some formulas related to Df .

In Cross Filtering, we first compute the initial Group1 and Group2 using simple features. Since we use simple features,
the computation cost to get the initial Group1 and Group2 is ignorable. This example will be shown in detail in Step 1 of
Example 2.
Real Answer Set Dq

Candidate Answer Set Cq

Partial Answer Set Pq

Pq

Dq

Cq

(a) Relationship

(b) Iteration

Fig. 3. Cq ;Dq and Pq .
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� Initial Group1 ¼ ff jf 2 F; sf ðf Þ � sf ðqÞg. Group1 contains subgraphs of q in F. That is, all elements f 2 F such that f � q are
contained in Group1.4

� Initial Group2 ¼ ff jf 2 F; sf ðqÞ 	 sf ðf Þg. Group2 contains supergraphs of q in F. Therefore, all elements f 2 F such that
f � q are contained in Group2.

In each group, to find a set of fsð� qÞ and a set of ftð� qÞ efficiently, we derive Lemma 3 and Lemma 4.

Lemma 2. For any two graphs g1 and g2, if Dg1
6� Dg2

then g1 å g2.
Proof. Lemma 2 is the contraposition of Lemma 1. h

Based on Lemma 2, we are sure that if Df1 6� Df2 ; f1 is not a subset of f2. For example, suppose that Df1 ¼ f1;2;3;4;5g and
Df2 ¼ f1;2;3;6g. Since Df1 6� Df2 , it is true that f1 å f 2.

Consider fs such that fs � q. For f 2 F (F: graph feature set), if Dfs 6� Df , we can say that fs å f . Then, what relationship do q
and f have?

Lemma 3. If fs � q and Dfs
6� Df , then q å f .
Proof. By Lemma 2, fs å f . Since fs å f , there exists a 2 fs such that a R f as shown in Fig. 4(a). Since fs � q; a 2 q. By a 2 q
and a R f ; q å f .5 h

In the same way, we can consider ft such that ft � q. For f 2 F, if Dft å Df ; ft 6� f . What relationship do q and f have in this
case?

Lemma 4. If ft � q and Dft å Df , then q 6� f .
Proof. By Lemma 2, ft 6� f . Since ft 6� f , there exists a 2 f such that a R f t as shown in Fig. 4(b). Since ft � q; a R q. By a 2 f
and a R q; q 6� f . h

By Lemma 3, if Dfs 6� Df , where fs � q, then q å f . Furthermore, by Lemma 4, if Dft å Df , where ft � q, then q 6� f . By
using the concepts, we devise an efficient graph feature filtering algorithm which can be integrated with the query process-
ing algorithm.

In order to perform filtering for graph features, we choose one feature fsð� qÞ from Group1. We compute candidates using
Cq ¼ Cq \ Dfs , then we reevaluate Group1 and Group2 as follows: Given fsð� qÞ,

� Group1 :¼ ff 2 Group1jDf 6� Dfsg.
� Group2 :¼ ff 2 Group2jDf � Dfsg.

We filter out a feature f 2 Group1 such that Df � Dfs , because Df cannot reduce the size of Cq in that case (See Group1 in
Step 2 of Example 2). In addition, since if Dfs 6� Df then q å f (by Lemma 3), we can filter out a feature f in Group2 such that
Df å Dfs (See Group2 in Step 2 of Example 2).
4 For convenience, feature f with the same simple feature values as the query is contained in Group1.
5 Strictly speaking, we cannot use the notation a 2 g for graph g since graph g is not a set. However, since a graph consists of a set of vertices and a set of

edges, it can be used in our mathematical proof.
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Next, we choose one feature ftð� qÞ from Group2. Dft is a partial answer of Dq since if ft � q then Dft � Dq (by Lemma 1).
We compute the partial answer set Pq with ft by computing Pq ¼ Pq [ Dft . Then, using ft , we reevaluate two groups as follows:

� Group1 :¼ ff 2 Group1jDf � Dftg.
� Group2 :¼ ff 2 Group2jDf å Dftg.

We remove f 2 Group1 such that Df 6� Dft since if Dft å Df then q 6� f by Lemma 4 (See Group1 in Step 3 of Example 2). In
a similar way to that of fs, we compute Group2. If Df � Dft ;Df cannot increase the size of Pq. Therefore, we add the condition
Df å Dft when evaluating Group2 (See Group2 in Step 3 of Example 2).

We perform the above two procedures iteratively until we have searched all features. The subset selection (fs) and the
superset selection (ft) are performed in turn while effectively reducing the size of each group. Through the subset selection
(fs), Cq is reduced iteratively and through the superset selection (ft), Pq is increased iteratively as shown in Fig. 3(b).

The second candidate answer computation with Cross Filtering is summarized in Lines 10–18 of Fig. 5. In Line 10, the
partial answer set is initialized. Two groups, Group1 and Group2, are made using the simple features in Line 11, we then
perform the two steps iteratively until we have searched all the features in Lines 12–18. In Lines 13–15, filtering and Cq com-
putation are performed with fs. In Lines 16–18, filtering and Pq computation are performed with ft . Finally, we do the veri-
fication on only Cq � Pq and return the result (Lines 20–21).

In the algorithm of Fig. 5, we choose a seed subgraph feature (fs) or a seed supergraph feature (ft) of the graph query using
a sequential selection and subgraph isomorphism checking (Lines 13 and 16). We choose one element in Group1 (or Group2)
and check the subgraph isomorphism between the element and the graph query. If they do not have a subgraph relationship,
we choose another element. At this time, we may not abandon the information that they do not have a subgraph relation-
ship. Using additional filtering that will be explained in Section 6.3, we can further reduce Group1 and Group2. In addition,
Fig. 5. Query processing algorithm.



C.-H. Lee, C.-W. Chung / Information Sciences 286 (2014) 1–18 9
during the iteration of Cross Filtering, the sizes of Group1 and Group2 are continuously being reduced by filtering out unnec-
essary graph features.

However, we can use a heuristic selection method to reduce the time spent selecting a seed subgraph feature (fs) or a seed
supergraph feature (ft) of the graph query. For example, we can sort graph features by the number of nodes and choose a
graph feature in ascending or descending order. An elegant heuristic selection method will be our future work.

Example 2. Fig. 6 shows 12 graph features and their properties. In this example, we use the number of vertices and the
number of edges as simple features. Df is the precomputed index and Relationship shows the relationship between the
feature and the query. df is used in Example 3. We assume that the initial Cq ¼ fg1; g2; g3; g4; g5; g6; g7; g8; g9; g10g.

Step 1 : We make two groups, Group1 and Group2, using two simple features. Since the simple features of the query are
(10,12), Group1 ¼ ff1; f2; f3; f4g and Group2 ¼ ff7; f8; f9; f10; f11g. f5; f6 and f12 are filtered out.

Step 2: We select f1ð� qÞ from Group1 as fs. Then, Cq ¼ Cq \ Df1 ¼ fg1; g2; g3; g4; g5; g6; g7; g10g, then we filter out Group1 and
Group2 using f1. Since Df4 in Group1 is a superset of Df1 ; f4 is filtered out and f7 is filtered out due to the fact that
Df7 å Df1 . Therefore, Group1 ¼ ff2; f3g and Group2 ¼ ff8; f9; f10; f11g.

Step 3: We check f8 from Group2 in order to choose ft . However, we remove f8 from Group2 since f8 6� q. Next, we select
f9ð� qÞ from Group2. We compute Pq ¼ Pq [ Df9 ¼ fg1; g3; g4g. Using f9, we reevaluate Group1 and Group2. Df2 and
Df3 do not include Df9 ; therefore, they are removed from Group1. In addition, Df10 � Df9 ; therefore, Df10 is removed
from Group2. Then, Group1 ¼ fg and Group2 ¼ ff11g.

Step 4: We check f11 and remove it. Then, Group1 ¼ fg and Group2 ¼ fg.
Step 5: Since Group1 ¼ fg and Group2 ¼ fg, we stop filtering. Cq ¼ fg1; g2; g3; g4; g5; g6; g7; g10g and Pq ¼ fg1; g3; g4g. There-

fore, we verify Cq � Pq ¼ fg2; g5; g6; g7; g10g. We get the fg2; g5g from the verification and return fg2; g5g [ fg1; g3; g4g.

6.3. Additional filtering

In this subsection, we will provide tighter formulas for evaluating Group1 and Group2 than those in Line 18 of Fig. 5.
Therefore, we can filter out Group1 and Group2 more effectively. In Line 16, to choose one feature ft , we should check ele-
ments in Group2 sequentially until we find ft � q. Then, we can get a list of features hfii such that fi 6� q during the execution
of Line 16. To provide tighter formulas, we use this information. Assume that NAq is a non-answer set such that d 6� q for all
d 2 NAq. Then, we can derive the following two lemmas with respect to NAq.
Feature
id

The 
number
of nodes

The 
number 
of edges

Df df Relationship

f1 6 7 {1,2,3,4,5,6, 7,10} {} f q

f2 7 9 {10,11,12} {18,20} NOT(f q)

f3 7 10 {10,11,12} {20,25} NOT(f q)

f4 6 9 {1,2,3,4,5,6,7,8,10} {15} f q

f5 11 10 {5,6,7,8} {11,16}
f6 9 15 {2,3,4,5,8,10,} {15,17}
f7 11 15 {2,4,6,9} {11,15} NOT(f q)

f8 13 20 {1,6} {10,11,12,14} NOT(f q)

f9 13 16 {1,3,4} {1,11,13} f q

f10 15 20 {1,4} {2,11,15} NOT(f q)

f11 14 16 {1,2,4,10} {12,13,14,15} NOT(f q)

f12 9 16 {5,10,13} {12,15}

Query (q) Information:
sf(q): (10, 12)
answer Dq = {1,2,3,4,5}

Fig. 6. Example of the second candidate answer computation.
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Lemma 5. If Df \ NAq – /; q å f .

Proof. Consider the contraposition of this lemma. That is, if q � f , then Df \ NAq ¼ /. If q � f ;Dq � Df . Since Df is a subset of
the answer set Dq, all elements in Df are not in NAq. h
Lemma 6. If Df � NAq and jDqj– 0, then f å q.
Proof. Consider the contraposition of this lemma. That is, we prove if f � q, then Df å NAq or jDqj ¼ 0. There are two cases.

Case 1: jDqj ¼ 0. In this case, it is trivial.
Case 2: jDqj– 0. If jDqj– 0, then Dq has at least one element (i.e., one answer).

If f � q, then Df � Dq. Therefore, Df contains all answers for q. Therefore, Df has at least one answer. This means that
Df å NAq. h

Using the above two lemmas, we can revise the computation of Group1 and Group2 in Line 18 of Fig. 5 as follows:

� Group1 :¼ ff 2 Group1jDf � Dft and ðDf å NAq or jDqj ¼ 0Þg.
� Group2 :¼ ff 2 Group2jDf å Dft and Df

T
NAq ¼ /g.

If a partial answer set is not null, then jDj is not zero. Therefore, instead of the condition jDqj ¼ 0, we can use the condition
jPqj ¼ 0 since checking the condition jDqj ¼ 0 is not straightforward. We can filter out graph features further. However, com-
puting a non-answer set is not straightforward since we keep only Df . To get NAq, we compute df ¼ fg 2 Djg � fg
additionally.

Lemma 7. If q å f , then, for all x 2 df ; x: � q. That is, df � NAq.
Proof. When f 6� q, there exists a 2 q such that a R f . Therefore, a subset of f does not contain element a. Thus, we conclude
that x 6� q for all x 2 df . This means that df is included in NAq. h

By Lemma 7, we can calculate a non-answer set using the list of features hfii such that fi 6� q. Therefore, we can replace
Lines 16–18 in Fig. 5 by the algorithm in Fig. 7. While the loop from Line 16 to 18 of Fig. 7 is being performed, NAq gradually
increases.

Example 3. We show the process of the algorithm of Fig. 5 with the additional filtering. The graph features in Fig. 6 are used.

Step 1: We make two groups, Group1 and Group2. Group1 ¼ ff1; f2; f3; f4g and Group2 ¼ ff7; f8; f9; f10; f11g.
Step 2: We select f1ð� qÞ from Group1 as fs. Therefore, Cq ¼ fg1; g2; g3; g4; g5; g6; g7; g10g, and we filter out Group1 and

Group2 using f1. Therefore, Group1 ¼ ff2; f3g and Group2 ¼ ff8; f9; f10; f11g.
Step 3: we select f8 from Group2 as ft . However, since f8 6� q, we remove f8 and update NAq which was originally the null set.

NAq ¼ NAq [ df8 ¼ fg10; g11; g12; g14g. Then, we select f9ð� qÞ from Group2 as ft . We compute Pq ¼ Pq [ fg1; g3; g4g.
Then, we reevaluate Group1 and Group2 using both NAq and f9. f11; f2 and f3 are filtered out since
Df11 \ NAq – /;Df2 � NAq and Df3 � NAq, respectively, and f2 and f3 are filtered out since Df2 6� Df9 and Df3 6� Df9 . Note
that f2 and f3 can be filtered out in the case of both NAq and f9. f10 is filtered out since Df10

� Df9
. Therefore, Group1

¼ fg AND Group2 ¼ fg.

7. Experiments

In this section, we conduct experimental evaluations to show the efficiency of the CF-Framework.

7.1. Experimental environment

To evaluate the efficiency of the CF-Framework, we implement the CF-Framework and the FG-index using JAVA and we
conduct experiments with an Intel Core 2 Duo 2.00 GHz CPU and 3.0 GB RAM. We adapt the FG-index to our environment
and since the main factor of the query performance in the graph indexing is the number of subgraph isomorphism checkings,
we implement two systems on memory. In addition, to compute frequent subgraphs, we use gSpan software.6 We use the FG-
index instead of the FG⁄-index because the FG⁄-index is based on the FG-index and the FG⁄-index assumes the knowledge of
query workload. The approach utilizing the query workload can be applied only in the limited environment and is not in the
scope of our research. Therefore, we compare our approach with the FG-index which does not use the query workload. In
6 gSpan can be downloaded at http://www.cs.ucsb.edu/xyan/software/gSpan.htm.



Fig. 7. Additional filtering algorithm.

The size of data 10000

The number of distinct labels 51

The number of vertices in
each graph

Average: 25.4
Min: 2
Max: 214

The number of edges in each
graph

Average: 27.4
Min: 1
Max: 217

The number of distinct edges
in each graph

Average: 6.0
Min: 1
Max: 14

Fig. 8. Description for the data set.
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addition, we do not use the best subgraph isomorphism algorithm since the subgraph isomorphism test is beyond the scope of
this paper and we assume that it needs much time.

As an experimental data set, we use the data set used in gIndex [40,29]. The description of the data set is shown in Fig. 8.
The size of data is 10,000 and the number of distinct labels is 51. The average number of vertices is 25.4 and the average
number of edges is 27.4. The data is extracted from AIDS Antiviral Screen Dataset [39] containing chemical compounds. Also,
graph data in the data set has vertex labels as well as edge labels.

Furthermore, we use query sets Q4, Q8, Q12, Q16, Q20, and Q24 used in the gIndex. The number following Q rep-
resents the number of edges. Each query set Q-m is generated by extracting a connected m-sized subgraph from data
sets. Each query set Q-m has many queries with m-edges. We use the first ten queries in each Q-m and average their
results.
7.2. Experimental results

We measure the query response time with six types of queries (Q4, Q8, Q12, Q16, Q20 and Q24) when the size of the data
is 10000. The query response time means the time to get the final answer Dq given the query q. Fig. 9 shows the query
response time according to the size of the query; the size of the query is the number of edges in the query (i.e., graph).
We use the minimum frequency threshold r which is the parameter used for extracting frequent subgraphs. If
jDf jP rjDj; f is a frequent subgraph. Fig. 9(a) shows experiments when r is 0.1 and Fig. 9(b) shows the experiments when
r is 0.05. When r is large, the number of features becomes small. We average the execution time for ten queries in each
query set (Q-m).

In Fig. 9 and Fig. 9(b), in most cases, the CF-Framework shows a better performance than the FG-index in terms of the
response time. The CF-Framework filters out the unnecessary graph data through two steps. Loose candidates are computed
with a small cost using simple features while compact candidates are efficiently evaluated using graph features. Therefore,
the CF-Framework can process various kinds of queries efficiently and shows a good performance in most cases as shown in
Fig. 9. However, in the case of Q4, the CF-Framework has a worse performance than the FG-index. We will explain the reason
for this in the following experiments. The query response time does not depend on only the size of the query as shown in
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Query FG-Query Size of
Result

Q4 4 1930.5

Q8 0 194.4

Q12 0 23.1

Q16 0 7.8

Q20 0 1.9

Q24 0 0.4

Fig. 11. Characteristics of query sets.
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Fig. 9. The FG-index shows a much worse performance in Q16 than that in other queries when compared to the CF-
Framework.

In addition, we show the query response time in Fig. 10 when the size of data is small (the size of data = 2000, r ¼ 0:1).
The result of Fig. 10 shows a tendency similar to that of Fig. 9; therefore, we do not mention it in detail.

Figs. 12–14 show experiments according to the size of the data when r is 0.1. We conducted experiments on 2000, 4000,
6000, 8000, and 10,000 graph data. As we expected, the query response time increases for both the CF-Framework and the
FG-index as the size of the data increases. Except for Q4 (Fig. 12(a)), the CF-Framework is superior to the FG-index.

In the case of Q4, the number of edges in the query is small. Therefore, queries in Query Set Q4 may be contained in the
index (i.e., FG-query). In the FG-index, if a query is an FG-query, the answer is returned without the candidate verification
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and the FG-index shows a good performance in terms of the execution time. Fig. 11 shows the number of FG-queries and the
average size of results for each query set when the size of data is 10,000 and r is 0.1.

Query Set Q4 contains four FG-queries (40%) and the resultant size is large compared to the other query sets. While the
FG-index returns the result for the FG-queries in Query Set Q4 without verification, the CF-Framework should check whether
a candidate is a real answer. Thus, for Q4, the CF-Framework has a worse performance than the FG-index. However, in most
cases, queries are not FG-queries. Therefore, the CF-Framework can generally process various types of queries efficiently in
comparison to the FG-index. It is not possible to index all subgraphs in order to return Dq without verification in the FG-
index.

Fig. 15 shows the query response time with respect to r. As r increases, the number of features becomes smaller. There-
fore, the feature search time will be reduced. On the other hand, the size of the candidate answer will be larger since a small
number of features are included in the query. There exists a trade-off between the feature search time and the time for the
candidate verification. Thus, in Fig. 15, the query processing time is not significantly affected by r, and a particular tendency
on r is not shown.

In addition, in order to compare the benefit for the first candidate set computation (using simple features) and the benefit
for the second candidate set computation (using graph features), we conducted three experiments. One using only the first
candidate set computation (‘‘First’’), one that only used the second candidate set computation (‘‘Second’’), and on that used
both (‘‘First + Second’’) in Fig. 16. Fig. 16 shows the number of candidate answers for ‘‘First’’, ‘‘Second’’ and ‘‘First + Second’’.
For ‘‘Second’’ and ‘‘First + Second’’, the number of candidate answers means the size of Cq � Pq (Cq is the candidate answer set
and Pq is the partial answer set) since we do not need to check the subgraph isomorphism for the partial answer set. ‘‘Sec-
ond’’ is much more effective than ‘‘First’’ as shown in Fig. 16 since the second candidate set computation uses graph features.
However, the second candidate set computation can be improved if it is integrated with the first candidate set computation.
Therefore, ‘‘First + Second’’ shows the best performance in terms of the size of the candidate answer set. As the size of the
query increases, the size of the candidate answer set decreases in both ‘‘First’’ and ‘‘Second’’. This is because the simple fea-
ture value for a large-sized query is large and a large-sized query contains many graph features.
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Fig. 13. Experiments according to the size of data (Q12, Q16).
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8. Conclusion

Recently, the large amount of graph data used in areas such as bio-informatics and social networks has been increasing. In
those areas, the graph query problem is one of the most important, but subgraph isomorphism testing is an NP-complete
problem. Therefore, to process a graph query efficiently, we propose a CF-Framework to retrieve graph data that contains
the query. In the CF-Framework, we use two kinds of features: Simple features and graph features. Since simple features
are easy to manage, the candidate set of the query is first retrieved using simple features. Then, using the graph features,
which are difficult to manage but have better pruning power than the simple features, we can effectively reduce the size
of the candidate set. Since it spends much time to find the graph features corresponding to the query, we propose an efficient
graph-feature filtering algorithm called Cross Filtering, based on set properties. In Cross Filtering, by making two groups and
filtering each group crossly, we can efficiently choose graph features that correspond to the query. The experimental results
show that the CF-Framework can process various types of graph queries efficiently.
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Appendix A. Examples for simple features

A.1. Vertex count, edge count and max degree

We can use Vertex Count, Edge Count, Max Degree as basics. The Vertex Count is the number of vertices, Edge Count is the
number of edges and Max Degree is the maximum degree among all vertices. For example, the Max Degrees for g1; g2; g3 and
g4 in Fig. 1 are 3, 2, 3, and 2, respectively. The values of the basic simple features are highly skewed. Therefore, the discrim-
inative power is low.

A.2. Vertex encoding and edge encoding

To exploit the property of the vertex and edge labels well, we use Vertex Encoding fV and Edge Encoding fE as simple fea-
tures. Given graph data g ¼ hVi; Ei; Li; lii, we encode the set of vertices (Vi) or edges (Ei) into the k-bit array. Assume two func-
tions f v : L! f0;1; . . . ; k� 1g and fe : hL; L; Li ! f0;1; . . . ; k� 1g, where L ¼ [iLi. Since the label of edge e ¼ hv1;v2i can be
represented by hlðv1Þ; lðeÞ; lðv2Þi, in this section, we use lðeÞ as the meaning of hlðv1Þ; lðeÞ; lðv2Þi. Using fv and fe, we compute
the vertex encoding value and the edge encoding value for Vi and Ei, respectively. We assume that Mg and M0

g are k-bit arrays
to store vertex encoding value and edge encoding value for graph g, respectively, and are initialized as zero. For all a 2 V , we
set Mg ½f vðlðaÞÞ� to 1. Then, fV returns Mg , which consists of the k bit array. In the same way, for all a 2 E, we set M0

g ½feðlðaÞÞ� to
1. The time complexity of computing the vertex encoding value is OðjV jÞ and that of computing the edge encoding value is
OðjEjÞ. Therefore, Vertex Encoding and Edge Encoding both have a small extraction time. In addition, to save the vertex
encoding value and the edge encoding value, only k bits are required for each encoding value. Finally, we should check
the subgraph property of fV and fE. We can define � as follows:
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� For the two-bit arrays Ma and Mb;Ma � Mb iff Ma&Mb ¼ Ma, where & is a bitwise AND operator.

Then, fV and fE satisfy the subgraph property.

Proof. Prove that for any two graph data g1 ¼ hV1; E1; L1; l1i and g2 ¼ hV2; E2; L2; l2i, if g1 � g2, then fV ðg1Þ � fV ðg2Þ and
fEðg1Þ � fEðg2Þ.

First, consider fV ðg1Þ � fV ðg2Þ. We assume that Mg1
and Mg2

are k-bit arrays returned by the function fV for g1 and g2,
respectively.

There are only two values in Mg1
½i�.

� Case 1: Mg1 ½i� ¼ 1.
If Mg1

½i� ¼ 1, then Mg2
½i� ¼ 1 (Since V1 � V2).

Therefore, Mg1 ½i�&Mg2 ½i� ¼ 1.
� Case 2: Mg1

½i� ¼ 0.
If Mg1 ½i� ¼ 0, then Mg1 ½i�&Mg2 ½i� ¼ 0 regardless of Mg2 ½i� value.

Therefore, by Case 1 and Case 2, Mg1
½i�&Mg2

½i� ¼ Mg1
½i� for any i. That is, fV ðg1Þ � fV ðg2Þ.

In the same way, we can prove that fEðg1Þ � fEðg2Þ. h
Example 4. We can extract the vertex encoding value for g1; g2; g3; g4 and q using fV as shown in Fig. A.17. We extract the
vertex set from graph data and encode it by the function. We assume that k is 4 and the function is
A?0, B?1, C?2, D?3, E?0 and F?1. Since fV ðqÞ&fV ðg1Þ ¼ fV ðqÞ; fV ðqÞ � fV ðg1Þ. In the same way, fV ðqÞ � fV ðg3Þ. Therefore,
g1 and g3 are candidates. Edge Encoding is processed like Vertex Encoding.
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