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Recently there is a growing interest in the data model and query processing for probabilis-
tic XML data. There are many potential applications of probabilistic data, and the XML data
model is suitable to represent hierarchical information and data uncertainty of different
levels naturally. However, the previously proposed probabilistic XML data models and
query processing techniques separate finding data matches with evaluating the probabili-
ties of results. Therefore, they should repeatedly access the data and need to get full data of
paths given in queries to calculate the probabilities of results.

In this paper, we propose an extended interval-based labeling scheme for the probabilis-
tic XML data tree and an efficient query processing procedure using the labeling scheme.
Against previous researches, our method accesses only the labels of data specified in que-
ries and finds data matches simultaneously with evaluating the probability of each data
match. Also, we present an extended probabilistic XML query model with the predicates
for the values of probabilities and a lightweight index for those probabilities in order to
eliminate unnecessary access to data that will not be included in results.

Experimental results show that our approach is efficient in probabilistic XML query pro-
cessing and our index scheme significantly improves the performance of query processing
when the predicates for the values of probabilities are given.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Probabilistic data has been widely investigated due to many potential applications such as information extraction, natural
language processing and scientific experimental data management. These applications can generate and treat uncertain data,
and require the management and query processing of these uncertain data efficiently. Therefore, it is necessary to insert data
into a database, along with a proper indication of the level of certainty associated with it. For the query processing, these
certainty levels should be returned with the query results. In most cases, the indication of the level of certainty can be a
probability, and uncertain data can be represented by probabilistic data.

For the information extraction application, traditional information retrieval can retrieve documents containing specified
keywords. Afterwards, it is extended to automatically extract information from retrieved text documents. This extracted
information may have some form of certainty or probability associated with it. This information is probabilistic data and
can be represented by probabilistic XML data. Especially, if the extracted information is unstructured or hierarchical, then
the probabilistic XML data is more suitable for that. For example, when extracting some information about John from a text
document which describes the information about John, the result of the retrieval for the age of John can be 35 with 0.3, 37
. All rights reserved.
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with 0.3 and 39 with 0.4 in probabilities due to the characteristics of the processing method of the engine or the uncertainty
of the document itself. Similarly, the name of John’s mother can be Julia with 0.5 and Jane with 0.5 in probabilities. This could
be represented in probabilistic relational data as in existing researches. However, it is more natural to represent this infor-
mation using the probabilistic XML data in Fig. 1. The representation of the data can be different according to the probabi-
listic XML data model. Probabilistic queries about John can be processed on the given probabilistic XML data. The efficiency
of query processing will depend on the probabilistic XML data model and probabilistic query processing method. This exam-
ple data look simple, but the extracted data could be more structured and complex. Additionally, for the scientific data, the
uncertainty of data is inevitable because of the reliability of experiments.

To manage probabilistic data, there has been a lot of work on supporting probabilistic data in relational databases (Deay
and Sarkar, 1996; Eiter et al., 2000; Fuhr and Rölleke, 1997; Lakshmanan et al., 1997). They considered the modeling of
uncertain data in the relational database, and there have been some issues such as the unit with which probabilities will
be associated and whether the resulting database is to remain in the first normal form. Several methods proposed to solve
these issues generated some drawbacks such as a large amount of redundant storage and the loss of information. One of the
reasons for these drawbacks is the flat structure of relational databases, and it seems that XML is more flexible and allows
greater heterogeneity of structure and incompleteness of information compared with relational data. These considerations
make researches about probabilistic XML data.

The probabilistic XML data is XML data with uncertainty that may be represented by probabilities on elements, attributes
or text data in the XML document. Recent studies (Abiteboul and Senellart, 2006; Cohen et al., 2009; Hung et al., 2003a, 2003b;
Kimelfeld et al., 2008; Li et al., 2006; Nierman and Jagadish, 2002) reveal that XML data model is proper not only to represent
hierarchical information but also to represent data uncertainty of different levels naturally because of the tree-like structure
and flexibility. Therefore, there is a growing interest in the data model and query processing for probabilistic XML data.

The researches about probabilistic XML data include data modeling and query processing of probabilistic XML data. The
issues about probabilistic XML data are the expressiveness of the model, and the efficiency for the query processing which
should generate the query results with the probability.

Several researches (Abiteboul and Senellart, 2006; Cohen et al., 2009; Hung et al., 2003a, 2003b; Kimelfeld et al., 2008;
Li et al., 2006; Nierman and Jagadish, 2002) studied the data modeling of probabilistic XML data. These studies proposed
several data models for the representation of probabilistic XML data, such as the DTD adaptation method (Nierman and
Jagadish, 2002), possible worlds model (Abiteboul and Senellart, 2006), a simple probabilistic tree model (Abiteboul and
Senellart, 2006), fuzzy tree model (Abiteboul and Senellart, 2006), and p-documents model (Abiteboul et al., 2009; Kimelfeld
et al., 2008, 2009). Each model has a different expressiveness, but most of them assume that a node is given the conditional
probability on the existence of its parent node. Most of them proposed the query processing methods, which found data
matches and calculated the possibility of the matches.

Query evaluation over probabilistic XML data needs not only to find data matches but also to compute the probability of
each match. To find data matches, the previously proposed various methods such as indexing or labeling scheme (Bruno
et al., 2002; Chen et al., 2004; Chien et al., 2002; Li and Moon, 2001; Srivastava et al., 2002; Tatarinov et al., 2002; Wu
et al., 2004; Zhang et al., 2001) can be applied, but to evaluate the probability of each answer, an additional process is
needed. Some existing techniques for finding data matches lose their efficiencies and advantages by the additional process-
ing for computing the probability of each result when they are applied to the query processing for probabilistic XML data.
(a) (b)
Fig. 1. Examples of probabilistic XML data.
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The interval-based labeling scheme has advantages in the size of labels. The sizes of labels in the interval-based labeling
scheme are the same for all nodes because the label is composed of two integers for the start position and the end position.
However, the sizes of labels in the path-based labeling scheme could be large if nodes are in the deeper level, and the size of
delimiters cannot be ignored. In other words, the interval-based labeling schemes have good efficiency in the perspective of
the size of labels, whereas in the path-based labeling schemes, the size of labels is large and incurs high storage overhead. In
order to keep the probability information, we should extend the labels from previous labeling schemes. Therefore, in the
terms of the size of labels, we choose the interval-based labeling scheme. In addition, the interval-based labeling scheme
has advantages in processing queries including ancestor–descendant relationships.

In addition to the storage overhead, path-based method has another disadvantage in efficiency in the comparison be-
tween labels. For path-based method, the comparison between labels is not simple such as the substring comparison,
whereas for the interval-based method, the comparison is the integer comparison. This is another advantage of query pro-
cessing in the interval-based method.

Previous XML query processing techniques based on interval-based labeling schemes (Chien et al., 2002; Li and Moon,
2001; Srivastava et al., 2002; Zhang et al., 2001) have strong advantages in processing queries including ancestor–descen-
dant relationships. They need not to know the full path information of the ancestor–descendant relationships for query pro-
cessing. However, when they are adapted to the probabilistic XML query processing, it is necessary to access all the nodes in
the path from ancestor to descendant in order to compute the probability of the result. For example, when considering a
query /country//name, to calculate the probability of a query result using existing techniques, we need to traverse the
data tree from the node matching country, retrieve the probabilities all the nodes in the path to the node matching name.
Therefore, the techniques in Srivastava et al. (2002), Li and Moon (2001), Chien et al. (2002), and Zhang et al. (2001), which
efficiently handles descendant axis traversal via a labeling scheme without accessing intermediate data nodes, cannot be
fully utilized to achieve the efficiency.

Our data model for probabilistic XML data is a probabilistic XML tree which has two types of nodes, ordinary and distri-
butional. The ordinary node indicates elements, attributes or texts and the distributional node presents the distribution over
the subsets of its children.

In this paper, we present an extended interval-based labeling scheme for probabilistic XML tree. The proposed labeling
scheme extends the previous interval-based labeling scheme in order to manage not only ordinary nodes but also distribu-
tional nodes, and it includes two values of conditional and existence probabilities. The conditional probability represents the
probability value of a node to be present assuming its parent exists and the existence probability is the probability value of a
node to exist in possible XML trees. This labeling scheme makes it possible to combine the evaluation of query result prob-
ability with finding data matches of the query. In addition, the evaluation of query result’s probability is possible without
accessing all ancestors of nodes in the query result. Accordingly we can accomplish the improvement in the performance
of probabilistic XML query processing.

Moreover, we propose an extended probabilistic XML query model with the predicates for the values of conditional or
existence probabilities and a lightweight index for those probabilities. The index uses the characteristics of the probability
value, which is at least zero and at most one. Using the proposed index for probability, we improve the performance of query
processing which has the conditions on probabilities.

The contributions of this paper are the following:

� We propose an extended interval-based labeling scheme, which extends the previous interval-based labeling scheme to
manage not only ordinary nodes but also distributional nodes, and includes the values of conditional and existence
probabilities.
� We present procedures to process probabilistic XML queries efficiently using the extended interval-based labeling

scheme. Our method accesses only the labels of data specified in queries and finds data matches simultaneously with
evaluating the probability of results.
� We present an extended probabilistic XML query model and a lightweight index for probabilities. This index makes it pos-

sible to eliminate unnecessary accesses to data that will not be included in results.

The rest of the paper is organized as follows. Section 2 reviews related works. Section 3 gives basic preliminaries including
probabilistic XML tree and probabilistic XML query tree, while Section 4 discusses the extended interval-based labeling
scheme. We describe the method of query processing in Section 5. Section 6 reports experimental results and then Section
7 concludes the paper.

2. Related works

2.1. Probabilistic XML data processing

Several probabilistic XML data models have been proposed in Nierman and Jagadish (2002), Hung et al. (2003a, 2003b),
Abiteboul and Senellart (2006), Li et al. (2006), Kimelfeld et al. (2008), and Cohen et al. (2009). The DTD adaptation method
was presented in Nierman and Jagadish (2002) as the probabilistic XML data representation model. Each element could have
the Prob attribute to represent the value of probability, and a new element type Dist is added in order to express the
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distribution among sibling elements which is either independent or mutual-exclusive. This model is similar to that of Kimel-
feld and Sagiv (2007). Moreover, Nierman and Jagadish (2002) describes a method to compute the result probabilities for
queries in which child axes and branches are supported.

The probabilistic representation for semi-structured data expressed by acyclic directed graphs was proposed in Hung
et al. (2003a, 2003b). The probabilities or intervals of probabilities are defined over sets of children to support arbitrary dis-
tributions over the relationships between an object and its children. In Hung et al. (2003b), an algebra is proposed to express
queries with child axes.

A possible worlds model, a simple probabilistic tree model and a fuzzy tree model were considered in Abiteboul and
Senellart (2006). The possible worlds model represents the probabilistic information as a possible worlds set which is a finite
set of a data tree and a probability value pairs. In the simple probabilistic tree model, each node in the tree can be attached
the probability value of that node to be present assuming its parent is. In the fuzzy tree model, a probabilistic condition
which is a conjunction of atomic events is assigned to each node, and each atomic event has probability. However, query
processing method and query performance are not mentioned in Abiteboul and Senellart (2006).

A query-friendly probabilistic XML database, presented as PEPX (Probability Encoded Probabilistic XML), was described in
Li et al. (2006). It represents a model for probabilistic XML data, which is similar to the model in Nierman and Jagadish
(2002) except that the stored probability of each node is the chain probability. The chain probability is the existence prob-
ability of a node that is computed by the product of all conditional probabilities from root to the node. In PEPX, query trees
are evaluated by two phases, query decomposition and P-joins. In the first phase, a query tree is decomposed to a set of sub-
queries, such that each subquery does not have branch nodes. Then, the intermediate results of subqueries are stitched using
P-joins to compute the final query result.

Recently, Kimelfeld et al. (2008, 2009) and Abiteboul et al. (2009) provide an abstract model for representing probabilistic
XML data as p-documents that are trees with two kinds of nodes, ordinary and distributional. They consider several types of
distributional nodes: deterministic (det), independent (ind), mutually exclusive (mux), explicit (exp) and conjunction of inde-
pendent events (cie). The distributional node specifies the probability distribution of choosing a subset of the children of the
distributional node. The det means that each child is chosen with probability 1, the ind means that the choices of distinct
children are independent, the mux means that at most one child can be chosen, the exp means that the probability of choosing
each subset of children is explicitly given unless it is zero, and the cie means that each child is chosen according to a con-
junction of probabilistically independent events, which can be used globally throughout the document. This model can rep-
resent different families of p-documents in terms of the types of distributional nodes that are allowed which are denoted in
the form of PrXMLftype1 ;type2 ;...g. For example, the model in Kimelfeld et al. (2008) is the same as that using the ind and mux

types, and the model in Hung et al. (2003a, 2003b) is using the exp type if the data is tree-structured. Moreover, Kimelfeld
et al. (2008) and Abiteboul et al. (2009) consider the expressive power of the families of p-documents. They study the pos-
sibility of translating p-documents between families. In Cohen et al. (2009), this model is extended to represent a probabi-
listic XML data as a p-document and a set of constraints.

2.2. Interval-based labeling scheme

In the interval-based labeling scheme, such as Li and Moon (2001) and Zhang et al. (2001), the label of any node in an XML
data tree is represented as the tuple (DocID, StartPos, EndPos, LevelNum), where (i) DocID is the identifier of the docu-
ment; (ii) StartPos and EndPos can be generated by counting the number of words from the beginning of the document with
identifier DocID to the start of the element and end of the element, respectively, or by the sequential assignment of positive
integers during the depth first traversal of the XML data tree; and (iii) LevelNum is the depth of the element in the document.

The ancestor–descendant or parent–child relationship between two tree nodes N1 and N2 whose positions are recorded in
this fashion, such as (D1, S1, E1, L1) and (D2, S2, E2, L2), can be determined easily: (i) ancestor–descendant: N2 is a descendant of
N1 iff D1 = D2, S1 < S2 and E2 < E1; (ii) parent–child: N2 is a child of N1 iff D1 = D2, S1 < S2, E2 < E1 and L1 + 1 = L2.

There are major indications about efficiency of labeling schemes: the efficiency of the query processing using labels, the
size of labels and the easiness of update processing. Firstly, if a labeling scheme can be used to identify relationships among
nodes, then it increases the efficiency of the query processing using labels. For example, the interval-based labeling schemes
have strong advantages in processing queries including ancestor–descendant relationships. Secondly, if the size of labels is
smaller than others, then the labeling scheme has the efficiency for the size of labels. For example, the interval-based label-
ing schemes have good efficiency in the perspective of the size of labels, whereas in the prefix labeling schemes, the size of
labels is large and incurs high storage overhead. Lastly, when there are insertions and deletions of nodes, if they do not
change the labels of many existing nodes, then it is efficient in the perspective of the easiness of update processing.

3. Preliminaries

3.1. Probabilistic XML tree

Generally, the data model for probabilistic XML should present a probabilistic distribution over a set of ordinary XML doc-
uments. A specific model provides a mechanism for defining that distribution in terms of probabilistic process that generates
possible XML trees with probabilities.
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In this paper, we present the probabilistic XML tree as the data model to represent the probabilistic XML data. The prob-
abilistic XML tree is defined as a node-labeled tree with two types of nodes, ordinary and distributional. The ordinary node
indicates elements, attributes or texts in probabilistic XML data, and the labels of ordinary nodes are element names, attri-
bute names or text values. For the distributional node, the label of a node is the type of the distributional node such as ind,
mux or exp. A distributional node specifies a distribution over the subsets of its children. In the case of ind or mux, each child of
the distributional node has one probability. Specially for the mux, the sum of all children’s probabilities cannot be over one
and at most one child can be chosen. In the case of exp, a probability is given to each subset in the finite subsets of the exp

distributional node’s children and the sum of all subset’s probabilities equals one. Moreover, a node of type exp can choose
exactly one subset. Surely a distributional node is neither the root nor a leaf.

The probabilistic XML tree in this paper is the family PrXML{ind,mux,exp} in Kimelfeld et al. (2008) which can be efficiently
translated into the family PrXML{exp} that is the most expressive family with efficient evaluation algorithms for query trees.
Therefore we consider the probabilistic XML data model which is the most expressive among the previously proposed ones
which could have efficient query evaluation algorithms. Even though the family PrXML{ind,mux,exp} can be translated into the
family PrXML{exp}, we treat the family PrXML{ind,mux,exp} because the data represented by the family PrXML{exp} has more dis-
tributional nodes and is more hierarchical than the data represented by the family PrXML{ind,mux,exp}.

Definition 1. The probabilistic XML tree is the node labeled tree T = (V, E), where V is the set of nodes and E # V � V is the
set of edges. V = Vord [ Vdist, where Vord and Vdist are the disjoint sets of ordinary and distributional nodes, respectively. Each
node v has the label l(v). Especially the label l(v) of the distributional node v is ind, mux or exp, and a distributional node v has
the probabilistic distribution dist over its children v1, v2, . . . , vn as follows:

1. ind type: dist = {(vk, pk)j1 6 k 6 n}, v chooses vk with probability pk.
2. mux type: dist ¼ fðvk; pkÞj1 6 k 6 n and

P
pk 6 1g;v chooses at most one child vi with the probability pi.

3. exp type: dist ¼ fðsk; pkÞj1 6 k 6 m 6 2n and
P

pk ¼ 1g;v chooses exactly one subset si with the probability pi among
the m subsets which are given probabilities.

The probabilistic XML tree is similar to the model used in previous works (Kimelfeld et al., 2008), and we used the notions
from Kimelfeld et al. (2008) such as PrXML, ind, mux and exp. However, the representation of the probabilistic distribution is
different from that in Kimelfeld et al. (2008). While only the requirements of a distributional node for the distribution over
the subsets of its children are given in Kimelfeld et al. (2008), in this paper, we give specific definition for each distributional
node as a set of pairs each of which is composed of (1) a children node and the probability of the node for ind and mux and (2)
a subset of children and the probability of the subset for exp.

As the previous researches (Abiteboul and Senellart, 2006; Cohen et al., 2009; Hung et al., 2003a, 2003b; Kimelfeld et al.,
2008; Li et al., 2006; Nierman and Jagadish, 2002), each probability in the source XML data is assigned conditioned on the
fact that the parent element exists and we call it conditional probability. For the probabilistic distribution dis-

t = {(vk, pk)j1 6 k 6 n} of each distributional node v with the type ind or mux, pk is the probability Prob(vkjp(v)), where
p(v) is the parent node of v. When the type of distributional node is exp, the pk is the probability that all nodes in a subset
sk simultaneously exist given that the parent exists.

Actually, the probability that each node exists in possible XML trees could be computed by multiplying the
conditional probabilities along the path from the node to the root by the Bayes’ formula as shown in Nierman and Jaga-
dish (2002) and Li et al. (2006), and we call it existence probability. Therefore, to compute the probability of a query
result, it is inevitable to access all the ancestors of the nodes in a query result to get the conditional probabilities
of ancestors.

An example for the probabilistic XML tree is shown in Fig. 2. Each node has an identifier that is marked inside the node.
The ordinary node is represented by a circle and the label is marked at the side of that circle. And the distributional node is
represented by a rectangle inside which the type is marked. Each distributional node has the probabilistic distribution dist

over its children which is represented under the tree.
In order to get possible XML trees from a given probabilistic XML tree, firstly one subset of each distributional node is

chosen and the remaining children and their descendants are deleted. And then all the distributional nodes are removed.
At this time, if an ordinary node loses the parent, then the proper ancestor becomes the new parent of that.
3.2. Probabilistic XML query tree

Generally, an XML query tree is the node-labeled tree with parent–child edges depicted using a single line and ancestor–
descendant edges depicted using a double line. The label of node could be an element name, an attribute name, a text value
or �, where � is satisfied by every label. Fig. 3 shows examples of the XML query tree.

A match of an XML query tree to an XML document is a mapping from the nodes of the query tree to those of the doc-
ument, such that query node value predicates are satisfied by the corresponding data node, and the axes (/ or //) between
query nodes are satisfied by the structural relationships between the corresponding data nodes. The XML query result is
a set or a list of matches.
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For example, the answer of the query tree in Fig. 3b can be a list of matches. In this case, there is a match
(1, 3, 6, 4, 15, 17, 16, 18) identified by node ID’s for (book, title, author, XML, fn, ln, Jane, Doe). Therefore, the answer for this
example is a list which is composed with a match (1, 3, 6, 4, 15, 17, 16, 18). The hierarchical structure of the answer can be
rebuilt by referencing the query tree. The query tree has the hierarchical structure. One element of the list is matched to the
query tree and we know that XML is the title of the book and that Jane Doe is the name of the author according to the query
tree.

The XML query tree can be used in order to issue a query over probabilistic XML data without recognizing the represen-
tation format or the storage method for probability information. In this case, the XML query tree can be adopted without
modifications. However, the user can require the restrictions on the values of probabilities as followings: (i) restrictions
on the probabilities of matches in the query result such as ranking or a threshold and (ii) restrictions on probabilities of
elements, attributes or values given in the query.
(a) (b)
Fig. 3. XML query trees.
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To support the case (ii), the syntax of XML query tree should be modified to represent the conditions for probabilities of
elements, attributes or values.

In this paper, we define probabilistic XML query tree that attaches the conditions for probabilities.

Definition 2. The probabilistic XML query tree is the node-labeled tree with parent–child edges depicted using a single line
and ancestor–descendant edges depicted using a double line. Each node v has the label l(v) which could be an element name,
an attribute name, a text value or �. Also each node can have the probability conditions, which use an equality or an
inequality operator. The probability can be either conditional probability pc or existence probability pe.

Fig. 4 shows an example of the probabilistic XML query tree which limits the title element with existence probability
more than 0.2 and the author element with conditional probability greater than 0.3 and less than 0.7.

4. Extended interval-based labeling scheme

Given a probabilistic XML tree t and a probabilistic XML query tree q, the evaluation of q over t is finding all matches of q
over all possible XML trees with probabilities that represent the certainty of obtaining a match when querying a possible
XML tree. If some nodes in q have probability conditions, all matches should satisfy them. However, it is not efficient to eval-
uate a query over the whole possible XML trees because the number of possible XML trees is huge. Therefore, it is necessary
to evaluate the query over a probabilistic XML tree without enumerating all possible XML trees.

The previous techniques for probabilistic XML query processing mostly take an approach that firstly matches data over a
given probabilistic XML tree without considering the distributional nodes and probabilities, and then evaluates the proba-
bility of each match. At the first step, the data matches can be a superset of the result. The distributional nodes and prob-
abilities are considered when evaluating the probability of each match.

Several methods have been proposed for efficient XML query processing. Especially the interval-based labeling scheme
can decide the ancestor–descendant relationships easily only with integer comparisons and it can be used to find matches
in probabilistic XML query processing. However, the set of resulting matches is a superset of the exact result, and the cal-
culation of the probability of a match in the result requires the navigation from the root to the nodes in the match. Therefore,
additional data access is needed to treat the distributional nodes and probabilities.

In this paper, we propose an extended interval-based labeling scheme which makes it possible to avoid the additional
data access and to process probabilistic XML queries only by accessing the labels of nodes in the query. By the extended
interval-based labeling scheme, the label of each node in a probabilistic XML tree can be represented as (DocID, Start-
Pos, EndPos, Level, Cprob, Eprob) for an ordinary node and (DocID, StartPos, EndPos, Level, ChildList) for a distri-
butional node, where (i) DocID is the identifier of the document; (ii) StartPos and EndPos can be generated by the
sequential assignment of positive integers during the depth first traversal of the probabilistic XML tree; (iii) Level is the
depth of the node; (iv) Cprob and Eprob are the values of conditional probability and existence probability of the node,
respectively; and (v) ChildList is the list of StartPos’s of the children. In the case of exp, the conditional probability
Cprob of each node is the sum of all probabilities each of which is the probability of the subset that includes the node.

Fig. 5 shows the probabilistic XML tree in Fig. 2 with node labels which are generated by the extended interval-based
labeling scheme. According to presentation convenience, Cprob’s of a distributional node’s children are marked at the edges
between the distributional node and children, and DocID, Level and Cprob are omitted in the labels. Each distributional
node’s probabilistic distribution dist over its children is substituted to the one in which each node’s identifier is converted
to the StartPos of that, and is represented under the tree. The exp node with the identifier 31 appears to have the proba-
bilistic distribution that is composed of three subsets with probabilities 0.4, 0.2 and 0.3. However, the probabilistic distribu-
tion implies that an empty set with probability 0.1 is included.

When using the extended interval-based labeling scheme, the parent–child or ancestor–descendant relationship between
two tree nodes can be determined easily the same as the original interval-based labeling scheme. Moreover, the label of
Fig. 4. Probabilistic XML query tree.
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distributional node can remove needless matches, and the value of Eprob in the label of each ordinary node can prevent the
additional data access for evaluating the probability of the result.

When data updates occur, the extended interval-based labeling scheme has to re-compute the existence probabilities and
change the values in the labels which are included in the subtree rooted by the node updated. We consider it as future works
to efficiently handle this issue.

5. Probabilistic XML query processing

The probabilistic XML query tree can be considered in two cases, without or with probability conditions in nodes. The first
case is similar to the previous XML query processing, but we should treat the distributional nodes and evaluate the proba-
bilities of results because the data is given by a probabilistic XML tree. The second case requires not only the same processes
in the first case, but also checking the probability conditions of nodes. In the next two subsections, we describe the proba-
bilistic XML query processing in the two cases.

5.1. Without probability conditions in nodes

In this subsection, we describe a method to process a probabilistic XML query tree without probability conditions in
nodes. The data is a probabilistic XML tree labeled by the extended interval-based labeling scheme. Each node in the prob-
abilistic XML tree has the label by the extended interval-based labeling scheme and these labels are managed by lists. A
distinct node name is associated with a list of labels each of which is given to a node with the name.

The parent–child or ancestor–descendant relationship between two nodes in an XML query tree such as book/author or
book//name can be processed by using two lists of nodes’ labels in the given probabilistic XML tree. For example, if consid-
ering the relationship book/author, we must process the structural join between the list of labels for book and that for
author sorted in StartPos.

However, to consider an XML query tree with more than two nodes, we should split the XML query tree into several bin-
ary structural relationships which are XML queries with two nodes such as book/author. And then we process all binary
structural relationships and join the results of them in order to get the result of the XML query tree.
Fig. 5. Extended interval-based labeling.
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When joining the results of binary structural relationships, we should consider mutually exclusive or explicit relation-
ships which can be considered by mux or exp distributional nodes in the probabilistic XML tree.

For example, when we process the XML query tree in Fig. 6c over the probabilistic XML tree in Fig. 5, if we do not consider
the distributional nodes, the result includes (12, 15), (12, 24), (12, 32), (21, 15), (21, 24), . . . , (29, 32) as the pairs of (fn, ln).
However, if we consider the mux distributional node, the result should include only (21, 24), (29, 32) as the pairs of (fn, ln).
At this time, each node is identified by the StartPos value.

Accordingly, when we do not consider distributional nodes, the result of query processing can be a superset of the result
when considering distributional nodes. In other words, it means that unnecessary processing is done for joining the results of
binary structural relationships. This cannot occur in simple path queries, but can occur in query trees with branch nodes.

A distributional node such as mux or exp can restrict the existence of descendants of the distributional node. In the case of
mux, at most one child can exist. Therefore, the children of a node, in a probabilistic XML tree which has the same label as a
branch node of a query tree, cannot exist at the same time if a mux node exists under the node. In Fig. 6a, fn and ln are chil-
dren of the branch node name. If this query is processed over the data in Fig. 5, the name with startPos 10 has mux under it
and there are fn and ln under the mux. But these fn and ln cannot exist at the same time because of the mux and cannot be
included in the result. Therefore, we can improve the cost of joining process by removing these not-possible answers. This
feature can be considered for exp node similarly.

As the above, when we consider the distributional node in query processing, the branch node in the query tree should be
treated properly and it is better to consider all the children of the branch node together than to consider each root-to-leaf
path separately.

Definition 3. For any two nodes n1 and n2 in a probabilistic XML tree, n1 ¿ n2 denotes that n1 cannot exist simultaneously
with n2. n1 ¿ n2 means that the probability that n1 and n2 exist simultaneously is zero. Otherwise, n1 and n2 can exist
simultaneously, denoted by n1 � n2.
Lemma 1. Let node a be the ancestor of node d. If d exists, then a exists.
Proof. This lemma holds by the property of the tree structure. h
Theorem 1. For any two nodes n1 and n2 in a probabilistic XML tree, if n1 ¿ n2, then n1 or any descendant of n1 cannot exist
simultaneously with n2 or any descendant of n2.
Proof. Suppose that n1 or a descendant of n1, denoted by d1, can exist simultaneously with n2 or a descendant of n2, denoted
by d2. If d1 and d2 exist simultaneously, then, n1 exists and n2 exists by Lemma 1. Therefore n1 and n2 can exist simulta-
neously. h

In a probabilistic XML tree, two nodes n1 and n2 such that n1 ¿ n2 can occur by mux or exp distributional nodes. The fol-
lowing shows how n1 ¿ n2 occurs by mux or exp, and Fig. 7 shows the case of mux.

� In the case of mux

– By Definition 1 of mux, for the children c1, c2, . . . , cn of mux node, ci ¿ cj holds if ci and cj are two different children of
the mux.

– By Theorem 1, for any two different children ci and cj of mux node, n1 ¿ n2 holds if n1 is included in the ci-rooted
subtree and n2 is included in the cj-rooted subtree.

� In the case of exp

– By Definition 1 of exp, for the children c1, c2, . . . , cn of exp node, ci ¿ cj hold if ci and cj are not included in the same
probability subset of the exp.
(a) (b) (c)
Fig. 6. Three cases of XML query.
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– By Theorem 1, for any two different children ci and cj of exp node which are not included in the same probability subset
of the exp, n1 ¿ n2 holds if n1 is included in the ci-rooted subtree and n2 is included in the cj-rooted subtree.

By checking cannot exist simultaneously relationships between data nodes, we can find not-possible answers before join-
ing the results of binary structural relationships. In order to find not-possible answers, we examine an instance of matched
data nodes for a branch node and all its children in a query tree.

Consider the branch node qr and its all children q1, q2, . . . , qn in a part of probabilistic XML query tree in Fig. 8a. Each
of the edges between qr and q1, . . . , qn can be a single line or a double line. Let the matched data nodes be r, d1, . . . , dn

as in Fig. 8b. Then for all i (i = 1, . . . , n), r.startPos < di.startPos and di.endPos < r.endPos hold. At this time, if there is
neither mux nor exp distributional node which is descendant of r, then these data nodes can be a possible answer.
Otherwise, that is if there is mux or exp distributional node, we can find not-possible answers by checking cannot
exist simultaneously relationships occurred by mux or exp. The distributional node mux or exp can include all di(1 6 i 6 n)
as in Fig. 8c or only a part of di(1 6 i 6 n) as in Fig. 8d. Therefore, we should check cannot exist simultaneously
relationships for the di’s whose startPos and endPos are included in the startPos and endPos of the distributional
node.

The mux or exp distributional nodes which are descendants of r can be found by checking whether distributional node’s
position is included in the r’s position (r.startPos, r.endPos). That is checking the ancestor–descendant relationship between r
and mux or exp. For those mux or exp nodes, we can find not-possible answers by checking the following conditions. At this
time, mux or exp node has a ChildList such as (s1; s2; . . . ; sm) and let sm+1 be the endPos of the distributional node. Note
that exp node has probability subsets.

� In the case of mux

– If there are di and dj (di – dj, mux.startPos < di.startPos, di.endPos < mux.endPos, mux.startPos < dj.startPos and dj.end-
Pos < mux.endPos) such that sk 6 di.startPos, di.endPos 6 sk+1 and sl 6 dj.startPos, dj.endPos6 sl+1 and
sk – sl(1 6 k, l 6m), then (r, d1, . . . , dn) is not a possible answer.

– If there is only one j(1 6 j 6m) such that for all di (mux.startPos < di.startPos and di.endPos < mux.endPos),
sj 6 di.startPos and di.endPos 6 sj+1, then (r, d1, . . . , dn) is a possible answer.

� In the case of exp

– If there are di and dj (di – dj, exp.startPos < di.startPos, di.endPos < exp.endPos, exp.startPos < dj.startPos, dj.endPos
< exp.endPos) such that sk 6 di.startPos, di.endPos 6 sk+1 and sl 6 dj.startPos, dj.endPos 6 sl+1(1 6 k,l 6m) and sk and
sl are not included commonly in any probability subset, then (r,d1, . . . , dn) is not a possible answer.

– If there is a probability subset setp such that for all di (exp.startPos < di.startPos and di.endPos < exp.endPos), there is sk

in setp such that sk 6 di.startPos and di.endPos 6 sk+1, then (r, d1, . . . , dn) is a possible answer.

After checking cannot exist simultaneously relationships, we should evaluate the probability of each data match. If a query
is a simple path query, then the result probability is the existence probability in the label of the result’s leaf node. However, a
query tree with branch nodes is different. Consider the matched data nodes in Fig. 8b. If d1, . . . , dn are leaf nodes in the
matched data tree and there is neither mux nor exp distributional node which is descendant of r, then the result probability
is the product of the existence probabilities of d1, . . . , dn divided by (n � 1) times of the existence probability of r. This means
that the repeatedly multiplied part is eliminated by the division.
Fig. 7. mux node and descendants.



Fig. 8. mux’s position in matched data nodes.
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However, if there is a mux or exp distributional node which is a descendant of r and an ancestor of some di’s, then we con-
sider the distributional node in the result probability calculation. The following are the methods to evaluate the result prob-
ability in these cases. At this time, the mux or exp node has a ChildList such as (s1: s2: . . . : sm), sm+1 is the endPos of the
distributional node, d1, . . . , dk are included in (r.startPos, r.endPos) and dk+1, . . . , dn are not included in it as in Fig. 8d.

� In the case of mux

– Let sj be the one among s1, . . . , sm such that for all di (1 6 i 6 k), sj 6 di.startPos and di.endPos6 sj+1.
P ¼ d1:eprob� � � � � dn:eprob

sj:eprobk�1 � r:eprobn�k
� In the case of exp

– Let S be a set {e1, . . . , ep} such that for all di(1 6 i 6 k), there is sl in S such that sl 6 di.startPos and di.endPos 6 sl+1, and
let sdi

¼ sl for each di.
P ¼ d1:eprob� � � � � dn:eprob� eprobðfe1; . . . ; epgÞ
sd1
:eprob� � � � � sdk

:eprob� r:eprobn�k
For an example of the case in which there is a mux distributional node between the branch node and its children, if the
query in Fig. 6c is applied to the data in Fig. 5, the probability of an instance (1, 8, 21, 24), where numbers are the startPos,
in the result of (book, author, fn, ln) is 0.28. This is calculated by 0.28 � 0.28/0.28 = 0.28 which means that the product of
the existence probability of the fn with startPos 21 and the existence probability of the ln with startPos 24 is divided
by the existence probability of the name with startPos 20. This is the case in which there is a mux distributional node be-
tween the branch node and its children.

For an example of the other case in which there is an exp distributional node between the branch node and its children, if a
query //chapter/section[/title]/author is applied to the data in Fig. 5, the probability of an instance (42, 47, 49, 52), where
numbers are the startPos, in the result of (chapter, section, title, author) is 0.28. This is calculated by (0.63 � 0.49/
(0.63 � 0.49)) � 0.28 which means that the product of the existence probability of the title with startPos 49 and the exis-
tence probability of the author with startPos 52 is divided by the product of the existence probability of the title with
startPos 49 as the exp’s child including the title and the existence probability of the author with startPos 52 as the exp’s
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child including the author, and then multiplied by the existence probability 0.28(0.7 � 0.4) of the subset that includes the
title and the author.

Fig. 9 shows the procedure for probabilistic XML query processing. The QueryProcessing procedure calls the subQuery-
Processing procedure in line 2 which has two parameters, the list of data nodes’ labels for the root node of the query tree
and the query tree itself. After calling the subQueryProcessing procedure, the QueryProcessing procedure evaluates the prob-
ability of each data match in the result in lines 3 and 4. In lines 7–20, for each label in the list, the subQueryProcessing pro-
cedure finds a list of combinations of data nodes’ labels matched for the root node’s children in the given query tree. At this
time, the procedure finds possible answers among the list of data nodes’ labels combinations by calling the getPossibleAn-
swer procedure in line 18 and appends them to the output. Then, in lines 22–26, the subQueryProcessing is recursively called
for each child of the root node of the query tree. After all nodes in the query tree are traversed, the result of the query is in the
output parameter.

Fig. 10 shows the procedure to get possible answers. This procedure is called by the subQueryProcessing procedure in
order to get the set of combinations (r, d1, . . . , dn) which can be the result. In lines 5–12, the getPossibleAnswer procedure
shows the case when both mux nodes and exp nodes exist. Also, lines 13–17 show the case when only mux nodes exist
and lines 18–22 show the case when only exp nodes exist. The procedure calls the getDistList procedure in Fig. 10 and
the checkPossibleAnswer procedure in Fig. 11. The first is to get the list of distributional nodes’ labels which are descendants
of the given node r, and the second is to check the distributional nodes to determine whether the given combination can be
included in the result. The checkPossibleAnswer procedure also evaluates the values necessary to calculate the probability of
Fig. 9. Query processing procedure.
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the result. In the checkPossibleAnswer procedure, the case where the type of d is mux is in lines 7–13 and the case where the
type of d is exp is in lines 14–28. The bprob for each di is the value that is used for calculating the probability of the result.

Our query processing procedure in Fig. 9 uses the algorithm Tree-Merge-Anc (Srivastava et al., 2002) to find ancestor–
descendant or parent–child relationships. According to Srivastava et al. (2002), the time and space complexities of the algo-
rithm Tree-Merge-Anc are both O(jAListj + jDListj + jOutputListj), where jAListj is the size of the ancestor or parent list, jDListj is
the size of the descendant or child list and jOutputListj is the size of the output. Our query processing procedure processes a
unit of query tree at a time, where a unit is composed of a node qr and all children q1, qn of the node qr as (a) in Fig. 8. The time
complexity of a unit is Oð

P
for all nodes in a unit jinputListj þ joutputListjÞ, where jinputListj is the size of the input list for a node in

the query tree and joutputListj is the size of the result for the unit. The output list will be used for the input lists of the nodes
which are the roots of units in the next level. Therefore, the time complexity of our query processing is
Oð
P

for all nodes in the query treejinputListj þ
P

for all units in the query treejoutputListj þ jOutputListjÞ, where jOutputListj is the size of the
query result, that is derived by

P
for all units in the query treeð

P
for all nodes in a unit jinputListj þ joutputListjÞ þ jOutputListj. This means

that the time complexity depends on the size of all the intermediate results including the sum of all input lists’ sizes and
the size of the result of the query. This derived time complexity is consistent to the results of experiments shown in Section
6. For the space complexity, the space for the output list of each unit can be reused. Therefore, the space complexity is
Oð
P

for all nodes in the query treejinputListj þmax joutputListj þ jOutputListjÞ.

5.2. With probability conditions in nodes

Each node in a probabilistic XML query tree can have a condition on the value of its conditional or existence probability.
This probability condition can be applied to a list of labels which is accessed by a node in the query tree. However, a part of
the list of labels which does not satisfy the probability condition is not necessary to be considered. Therefore, it can lead to
the reduction of the time for data loading to access only the part of data that satisfies the probability condition instead of
accessing the whole list of labels for the node. In order to achieve this objective, we could consider the index on the prob-
ability. Firstly, we considered the B+-tree index. The list of labels is sorted in startPos, not in the probability, so the index has
Fig. 10. Get possible answer procedure.



Fig. 11. Check possible answer procedure.
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no choice but to be a unclustering index. Therefore, with the B+-tree index on the probability, the data access cannot be effi-
cient because the index is not clustered, and additionally, we should sort the list in startPos after accessing the part of the list
by the B+-tree index.

Secondly, we consider a new lightweight index which partitions (0, 1] into several blocks and keeps the information of
each block to access the labels having the probability value within the interval of the block. This method can access any part
of labels in the list while keeping them sorted in startPos. To apply this new index, we should derive the method to partition
(0, 1] into several blocks and the method to access the proper data in the list.

In partitioning (0, 1], we could consider a method which uses the distribution of probabilities and queries. However, in
order to calculate the distribution of probabilities, we should access the whole list of labels and need to do additional tasks
such as sorting the whole list of probabilities, which can be a significant overhead. Therefore, we assume that the distribu-
tion of probabilities and queries are not given, and we take the method that partitions (0, 1] into blocks with the same
interval.

To access the labels in the list whose probabilities are in a probability interval of the index, we consider two methods. The
first is keeping the start position and the end position for each partition, and the second is keeping the start position and
the linked list for each partition. In the first method, the start position and the end position are the links to the first label
and the last one whose probabilities are included in the interval of the partition. In this case, when we consider the
data of one partition, we should access all the labels from the start position to the end position which can include unneces-
sary labels not included in the interval. Therefore, if the data is distributed uniformly and the size of the list is large, we are
apt to access a wide range of the list. Also, in the worst case, one partition has pointers which result in accessing the whole
list.

In the second one, keeping the start position and the linked list for each partition, the items of the linked list are the labels
whose probabilities are included in the interval of the partition. Using this method, although we should manage the linked
list for each partition, we can access only the proper data. In this paper, taking the second one, we propose a lightweight
index for the probability and call it the p-index.

In the p-index, the values of the probability are partitioned into eleven blocks such as (0.0, 0.1), [0.1, 0.2),
[0.2, 0.3), . . . , [0.9, 1.0), [1.0) and the start pointer and count are managed for each block. And a linked list is kept to link
all data included in one block. The common feature of all data in one block is that the first number under the decimal point
is the same. The start pointer of a block b is the pointer to the first label whose probability is included in the interval of the
block b and the count of a block b has the number of all data nodes whose labels are included in the block b. Fig. 12 shows the
p-index constructed for the list of labels of name. For each distinct node name, the p-index for conditional probability and the
p-index for existence probability can be constructed. The data in Fig. 12 is not matched to the data in Fig. 5. In Fig. 12, we add
more data to represent the characteristics of the p-index sufficiently.
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An insertion in the p-index occurs when a new data node is inserted in a list of labels, and the position of the inserted data
node is inserted in the linked list of the p-index. The insert processing of the p-index is almost the same as the insert pro-
cessing of the linked list. Similarly, a deletion in the p-index occurs when a data node corresponding to a label is deleted. This
is almost the same as the delete processing of the linked list.

When nodes in a query tree have probability conditions, we can reduce the time of data access by using the p-index. To
get the list of labels for each node in a query tree, we can access some part of the whole list by accessing the p-index with the
probability condition. For example, for the data in Fig. 12, when the probability condition of name is pc = 0.5, we can access
only three data nodes (10, 23, 74) by using the p-index. Otherwise, we should access the whole eleven data nodes. If the
probability condition is a range, several linked lists should be considered such that they are combined by a merge sort in
startPos. After data accessing, the query processing is similar to that in the previous subsection. Fig. 13 shows the proce-
dure to get the list of data nodes’ labels which satisfy the given probability condition.

When data updates occur, the efficient update of p-indexes should be considered because the re-computation of existence
probabilities needs the update of the p-indexes which are the p-indexes for the existence probabilities. We consider it as
another future work.

6. Experimental results

Our experiments were carried out on an Intel Pentium 1.7 GHz with 1 GB memory, running Windows XP. All experiments
were repeated 10 times independently and the average processing time was calculated disregarding the maximum and min-
imum values. We implemented all procedures in Java and used the file system to store the list of labels and p-index.

The experiments described in this section use three sets of test data. They are XMark 50%, XMark 100% (XMark, 2001) and
Mondial (1999). The two XMark data sets contain information about auctions and they are synthetic benchmark data sets
generated by the XML Generator from XMark (2001). XMark 50% is generated with parameter 0.5 which means that 50%
XMark data is generated. And XMark 100% is the full XMark data generated with parameter 1. The Mondial data set repre-
sents geographical web data in the XML format. Characteristics of these data sets are summarized in Table 1. The size in
Table 1 is the disk space used to store the original XML file, the nodes is the number of nodes, and the depth is the length
of the longest simple path.

In order to perform the probabilistic XML query processing, we need probabilistic XML documents. Therefore, we imple-
mented a procedure that generates a probabilistic XML document from an ordinary one. The procedure traverses the original
XML document in the depth-first order. At each node v in the original XML document, it randomly chooses the number of
distributional nodes which become children of v. Then it randomly chooses the new parent of each original children of v
which is chosen among v and the newly created distributional nodes. And it determines probability distributions of new
created distributional nodes randomly such that the distributions satisfy the constraints of the distributional nodes.

After generating a probabilistic XML document, we apply the extended interval-based labeling scheme to the created
probabilistic XML document along with evaluating the existence probability of each node. Also we construct the p-index
for each list of labels that is given to each distinct node name. By one traversing of the probabilistic XML document, we
can apply node labeling scheme, evaluate existence probabilities of each node, and construct the p-index simultaneously.
Fig. 12. Lightweight index for probability.



Fig. 13. Get data using p-index procedure.

Table 1
Experimental data.

Mondial XMark 50% XMark 100%

Size 1.4 MB 57.6 MB 115,7 MB
Nodes 124,763 833,157 1,666,315
Depth 5 12 12

Table 2
Query set for the comparison of extended and EvalDP.

Data set Query Query expression Results

Mondial Q1 mondial//mountain[.//height]//name 65
Q2 mondial//country [.//government]//name 4829
Q3 //country//city[.//name]//population 2477
Q4 mondial//country[.//border]//population 26,022

XMark 50% Q5 //categories//category [.//name]//text 743
Q6 //closed-auctions//closed-auction[.//price]//date 3830
Q7 //people//person[.//name]//address 5518
Q8 //site//person[.//profile]//watch 10,612

Fig. 14. Query processing for Mondial (1).
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Each list of labels is stored in one distinct file, and we can access the list of labels for each distinct node name from the file. All
p-indexes are stored in two files, one is for p-indexes for conditional probabilities and the other is for p-indexes for existence
probabilities. We construct B+-tree index for each list of labels.



Fig. 15. Query processing for XMark 50% (1).
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The size of a p-index is about 140 bytes, and it is not changed by the size of the data set because the structure of the p-
index is always the same. However, the total size of all p-indexes for one XML document can be changed by the number of
distinct element names, distinct attribute names and distinct text values. In our experiments, the total size of all p-indexes
for the Mondial data set with 1.4 MB in size and 44 distinct nodes is about 14 KB (�140 � 44 � 2). It is about 24 KB (�140
� 78 � 2) for the XMark 100% data set with 115.7 MB in size and 78 distinct nodes.

6.1. Query processing without the p-index

In order to analyze the efficiency of the proposed node labeling scheme and query processing, we compare ours, which is
called Extended from now, with the query processing in Kimelfeld et al. (2008), which is called EvalDP.

Since Kimelfeld et al. (2008) does not provide the query set, we create queries such that they cover different query types,
various elements, diverse probability conditions, and various result sizes. We use several query trees under the two data sets,
Mondial and XMark 50%, to analyze the query performance. Table 2 shows the information about experimental queries. For
the Mondial data set, we use four queries from Q1 to Q4, and for the XMark 50% data set, we use four queries from Q5 to Q8.
Table 3
Query Set for the Comparison of Extended and EvalDP (Mondial data).

Query Query expression Results

M6-1 /mo ndial/country/province[city][name=‘‘Alsace’’] 1
M6-2 /mondial/country [province/city/name]/border 263
M6-3 /mo ndial/country/province[area]/city [name] 2387

M8-1 /mondial[continent] [organization]/country/province[city][name=‘‘Alsace’’] 1
M8-2 /mondial[continent] [organization]/country [province/city/name]/border 263
M8-3 /mondial[continent] [organization]/country/province[area]/city [name] 2387

M10-1 /mondial[continent] [organization] [sea] [river]/country /province[city] [name=‘‘Alsace’’] 1
M10-2 /mondial[continent] [organization] [sea] [river]/country [province/city/name]/border 263
M10-3 /mondial[continent] [organization] [sea] [river] /country/province[area]/city[name] 2387

M12-1 /mondial[continent] [organization] [sea] [river] [lake] [island] /country/province[city] [name=‘‘Alsace’’] 1
M12-2 /mondial[continent] [organization] [sea] [river] [lake] [island] /country [province/city/name]/border 263
M12-3 /mondial[continent] [organization] [sea] [river] [lake] [island] /country/province [area]/city [name] 2387

M14-1 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country/province [city] [name=‘‘Alsace’’] 1
M14-2 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country [province/city/name]/border 263
M14-3 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country/province [area]/city [name] 2387

M16-1 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country/province [city] [name=‘‘Alsace’’]
[area] [population]

1

M16-2 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country [name] [population] [province/
city/name] /border

263

M16-3 /mondial[continent] [organization] [sea] [river] [lake] [island] [mountain] [desert]/country/province [name] [area]
[population]/city [name]

2387



Table 4
Query set for the comparison of extended and EvalDP (XMark 50% data).

Query Query expression Results

X6-1 /site[regions]/people/person[name=‘‘Wissal Rathsack’’] 1
X6-2 /site[regions]/people/person/profile/business 5839
X6-3 /site[regions]/people/person/watches/watch 23,657

X8-1 /site[regions] [categories] [catgraph]/people/person[name=‘‘Wissal Rathsack’’] 1
X8-2 /site[regions] [categories] [catgraph]/people/person/profile/business 5839
X8-3 /site[regions] [categories] [catgraph]/people/person/watches/watch 23,657

X10-1 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name=‘‘Wissal Rathsack’’] 1
X10-2 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person/profile/business 5839
X10-3 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person/watches/watch 23,657

X12-1 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name=‘‘Wissal Rathsack’’]
[emailaddress] [creditcard]

1

X12-2 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name] [emailaddress]/profile/business 5839
X12-3 /site[regions] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name] [emailaddress]/watches/watch 23,657

X14-1 /site[regions/africa/item] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name=‘‘Wissal Rathsack’’]
[emailaddress] [creditcard]

1

X14-2 /site[regions/africa/item] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name] [emailaddress] /
profile/business

5839

X14-3 /site[regions/africa/item] [categories] [catgraph] [open-auctions] [closed-auctions]/people/person[name] [emailaddress] /
watches/watch

23,657

X16-1 /site[regions/africa/item] [categories/category/name] [catgraph] [open-auctions] [closed-auctions]/people/
person[name=‘‘Wissal Rathsack’’] [emailaddress] [creditcard]

1

X16-2 /site[regions/africa/item] [categories/category/name] [catgraph] [open-auctions] [closed-auctions]/people/person[name]
[emailaddress] /profile/business

5839

X16-3 /site[regions/africa/item] [categories/category/name] [catgraph] [open-auctions] [closed-auctions]/people/person[name]
[emailaddress] /watches/watch

23,657
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In Table 2, the Results shows the number of combinations in query results for 1.4 MB Mondial data and 57.6 MB XMark 50%
data.

Figs. 14 and 15 show the results of query processing for Mondial data set and XMark 50% data set, respectively. The per-
formance of Extended is far better than EvalDP. Especially, as the number of combinations in query results increases, the
query processing time of EvalDP increases remarkably. In EvalDP, the query processing procedure is composed of two phases.
The first phase is to find data matches without considering distributional nodes. Accordingly the data matches contain not
possible answers. In the second phase, EvalDP repeatedly accesses the probabilistic XML document to evaluate the probabil-
ity of each data match. Therefore, as the number of combinations in query results increases, the performance of EvalDP is
degraded.

While the experimental queries in Table 2 have only 4 nodes, we additionally use harder and more complex queries for
experiments which have 6, 8, 10, . . . , 16 nodes as in Kimelfeld et al. (2008). For two data sets, Mondial and XMark 50%, we
create 18 queries for each data set that are three queries for each query node size. In other words, there are three 6-nodes
queries, three 8-nodes queries, three 10-nodes queries, etc. Tables 3 and 4 show the information about these experimental
queries. For the Mondial data set, we use 18 queries from M6-1 to M16-3 as shown in Table 3, and Mx-y means that the
query has x nodes and if y = 1, then the number of the query result is 1, if y = 3, then the number of the query result is large,
and if y = 2, then the number of the query result is more than the case y = 1 and less than the case y = 3. For the depth prop-
erty, shallow, medium and deep queries are spread over the whole queries. For the ratio of the descendant edges property,
we choose parent–child edges because the EvalDP is more efficient in the case of parent–child edges and our approach shows
similar performance for both parent–child relationships and ancestor–descendant relationships. For the XMark 50% data set,
we use 18 queries from X6-1 to X16-3 as shown in Table 4, and the meanings of x and y of the Xx-y are same as those of Mx-y.
Figs. 16 and 17 show the results of query processing from M6-1 to M16-3 in Table 3 over the Mondial data set and from X6-1
to X16-3 in Table 4 over the XMark 50% data set, respectively. The performance of Extended is far better than EvalDP. It is
similar to the case of Figs. 14 and 15 that the query processing time of EvalDP increases remarkably as the number of com-
binations in query results increases. In case the size of the result is one, the performance of Extended is similar to that of
EvalDP.

6.2. Query processing with the p-index

In the previous researches about probabilistic XML data and query, the condition for the probability value of each node
has not been considered. In this paper, we propose the condition for the probability value and a lightweight index to deal
with the probability conditions. In this subsection, we analyze the performance of queries with the condition for the prob-
ability value and the efficiency of the p-index.
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Fig. 16. Query processing for Mondial (2).
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We use some simple path queries and query trees under the XMark 100% data set. Table 5 shows the information about
experimental queries. Query P1 and P2 are simple path queries and Query P3 is a query tree. Queries from P11 to P13 derived
from P1 have probability conditions for query nodes. For example, P12 is the ancestor–descendant relationship between the
person and the phone in which the phone is restricted to the ones that have 0.3 or more and 0.6 or less conditional proba-
bility. The Results shows the number of combinations in query results.

Figs. 18 and 19 show the results of query processing with the p-index against without the p-index for XMark 100% data
set. The performance of the p-index is far better than no index. Especially, as the number of data nodes restricted by the
probability conditions increases, the time for query processing decreases.

If there is a constraint for the value of conditional or existence probability of a node, our proposed index, the p-index, can
avoid accesses to the disk blocks which store labels with the value of probability which does not satisfy the constraint. If the
number of disk blocks is N and the labels satisfying the constraint are in m (<N) disk blocks, then it is possible to access only
m blocks for getting the list of labels that satisfy the constraint. However, if m = N which is the worst case, then we should
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Fig. 17. Query processing for XMark 50% (2).



Table 5
Query set for the comparison of p-index and no p-index.

Query Query expression Results

P1 person//phone 12,679
P11 person//phone (pc = 0.5) 574
P12 person//phone (0.3 6 pc 6 0.6) 4167
P13 person (0.4 6 pc 6 0.7)//phone

(0.3 6 pc 6 0.6)
620

P2 category//listitem 1267
P21 category//listitem (pc = 0.3) 81
P22 category//listitem (0.2 6 pc 6 0.9) 729
P23 category (0.4 6 pc 6 0.7)//listitem

(0.2 6 pc 6 0.9)
245

P3 site//person[.//watch]//phone 12,679
P31 site//person (0.4 6 pc 6 0.6)[.//watch]//

phone
2,078

P32 site//person (0.4 6 pc 6 0.6)[.//watch
(0.2 6 pc 6 0.6)]//phone

798

P33 site//person (0.4 6 pc 6 0.6)[.//watch
(0.2 6 pc 6 0.6)]//phone (pc = 0.5)

36
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Fig. 18. Query processing with p-index (1).
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access all the disk blocks. For example, when there is a query node such as title (pc > 0.7) and the list of labels for title ele-
ments are stored in N disk blocks, we firstly access the p-index for conditional probabilities of title elements and then we
follow four linked lists from the start pointers of [0.7, 0.8), [0.8, 0.9), [0.9, 1.0) and [1.0]. At this time, we do not know whether
we should access all disk blocks or some parts of the disk blocks. In the worst case, we should access N disk blocks. The num-
ber of disk blocks which should be accessed is dependent on the data. But in many cases, the p-index can decrease the num-
ber of disk blocks which should be accessed, and also make the size of input list to be decreased in the time and space
complexities of our query processing. The size of the result set is one of the factors of time and space complexities, but it
is not affected by using the p-index.
7. Conclusions

In this paper, we propose an extended interval-based labeling scheme to provide efficient probabilistic XML query pro-
cessing. The extended interval-based labeling scheme not only takes the advantages of the previous interval-based labeling
scheme but also solves weak points of previously proposed probabilistic XML query processing methods. It accesses only the
labels of data specified in queries and finds data matches simultaneously with evaluating the probability of results in order
to eliminate unnecessary data matches.

Also, we present an extended probabilistic XML query model with the predicates for the values of probabilities and a
lightweight index for those probabilities. The index helps not to access the data which should be eliminated by the proba-
bility condition. Therefore the index reduces the time of data access and improves the performance of probabilistic XML
query processing.

Experimental results show that our approach is significantly better than EvalDP, which is the most recent approach for
probabilistic XML query processing, and improves the performance of query processing when the predicates for the values
of probabilities are given.
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