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1 Introduction

With new developments in positioning systems and electronics, various researches for moving
objects have progressed [3,5,6]. Our paper is related to selection queries considering future
positions of moving objects, which are referred to as future queries [5]. An example of the
future query is as follows: “which airplanes will be inside a query window 20 minutes from
now?” Airplanes correspond to moving objects that move as time passes. Recently, a data
model that can deal with the future locations of an object has been proposed [5]. Like various
studies [2,4,6], our work is based on this model.

In order to process the selection query efficiently, an accurate estimation of the selectivity
is required. The selectivity is defined as the ratio of the number of data in the query result
to the total number of data in the database. The query optimizer chooses the most efficient
execution plan among all possible plans by estimating the cost of each plan. The accuracy of
the selectivity estimation significantly affects the selection of an efficient plan. Recently, an
effective method of selectivity estimation for the future locations of moving objects has been
proposed [2]. The estimation method used the spatio-temporal histogram for the selectivity
estimation. The construction algorithm of the histogram was focused on the spatial locations
of moving objects, in contrast to both their locations and velocities. The approach may not
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be very effective about moving objects with very skewed velocity distributions. In this paper,
we construct the spatio-temporal histogram to balance the two aspects of moving objects.

Experimental results show that our proposed spatio-temporal histogram method has bet-
ter estimation results over various queries for synthetic moving objects. In experiments on
moving objects with a very skewed velocity distribution, while the existing method for the
selectivity estimation of a spatio-temporal query has the average error ratio from 18% to
59%, our method has the average error ratio from 12% to 23%.

2 Related Work

We briefly describe the selectivity estimation considering the future locations of moving ob-
jects [2]. The method used the spatio-temporal histogram to estimate the number of objects
passing the query. The histogram method is one of the most popular selectivity estima-
tion methods, because it approximates any data distribution and requires reasonably small
storage with low error rates [1]. The spatio-temporal histogram is a set of spatio-temporal
buckets. The spatio-temporal bucket consists of a spatial bounding rectangle, a velocity
bounding rectangle, and the number of objects in two bounding rectangles. Table 1 presents
the symbols used throughout the paper. Subscripts 1 and 2 of SB, V' B, and () B represent di-
mensions in the 2D space. Figure 1(a) shows a spatio-temporal query. In Figure 1(b), dotted
thick lines indicate a spatio-temporal bucket. Like the uniformity assumption in each bucket
of the histogram [1], a general uniform distribution in each spatio-temporal bucket of the
spatio-temporal histogram is assumed. That is, the spatial locations of moving objects are
distributed uniformly in the spatial bounding rectangle and the velocities of moving objects
are distributed uniformly in the velocity bounding rectangle. According to this assumption,
analytical formulas for the selectivity estimation for a spatio-temporal query intersecting
spatio-temporal buckets has been proposed [2]. Moving objects are updated very frequently.
If new update information is not reflected to the histogram, the query optimizer may choose
an inefficient plan because an inaccurate estimation of selectivity is used. The histogram
is not required to be updated from the whole objects, but it can be updated from sample
objects. In spatio-temporal databases, the histogram can be maintained practically by using
sample data [2].

The method in [2] creates the spatial bounding rectangles of a spatio-temporal histogram
using the MinSkew algorithm [1] based on the locations of moving objects. The MinSkew
algorithm creates the buckets of a histogram to minimize the spatial-skew of spatial objects.
As shown in Figure 2, consider a spatio-temporal bucket of the spatio-temporal histogram.
Dots indicate the spatial positions of moving objects. Arrows(or velocity vectors) indicate
the future positions of moving objects. A moving object o; has the velocity vector (8,1).
The rectangle means SB of the spatio-temporal bucket. As shown in Figure 2, the spatial
positions of objects can be uniformly distributed in SB by the MinSkew algorithm. The
velocity bounding rectangle of a spatio-temporal bucket has minimum and maximum velocity
values of moving objects in the spatial bounding rectangle of the bucket. So, as shown in



Table 1
Symbol description

Symbol Description

I(It, 1M interval: I* < I'; I'| low value of I; I", high value of T
tY histogram update time

QB(a1,a2) spatial rectangle of query: aj, as are intervals
Q(QB,t) query: time interval ¢

SB(s1,s2) spatial bounding rectangle: s1, s2 are intervals

V B(v1,v2) velocity bounding rectangle: vy, v are intervals

Bst(nst, SB,VB) | spatio-temporal bucket: ns¢, number of moving objects in SB and VB

Bs(ns,SB) spatial bucket: ng, number of moving objects in SB
Hs spatial histogram: a set of Bg
B, (ny,VB) velocity bucket: n,, number of moving objects in VB
H, velocity histogram: a set of B,
Hs(Hs, Hy) spatio-temporal histogram
Np number of Bs in Hs (or By in Hy)
N number of moving objects
Ngsm number of sample moving objects
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Fig. 1. Spatio-temporal query and spatio-temporal bucket

Figure 2, v; and vy of V' B are [-6,8] and [-7,2], respectively. Although the velocity distribution
of moving objects is actually skewed in V B, the selectivity is estimated under the uniformity
assumption in V' B. As a result, the approach in [2] may not be very effective for moving
objects with a very skewed velocity distribution.

3 Improved Spatio-Temporal Histogram for Selectivity Estimation

In this section, we describe how to construct our improved spatio-temporal histogram. Our
improved spatio-temporal histogram H,; consists of a spatial histogram H; and a velocity
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Fig. 2. A spatio-temporal bucket containing moving objects with a very skewed velocity distribution

histogram H,. As shown in Figure 3, we propose an efficient construction algorithm of the
spatio-temporal histogram considering both locations and velocities of moving objects. We
create a spatial histogram H, using the MinSkew algorithm with a spatial grid SG. A grid,
a set of cells, can be represented by an array structure. Figure 4 illustrates how to create
a spatial histogram with 3 buckets. Figure 4(a) shows the spatial locations of 25 objects.
Figure 4(b) shows a spatial grid SG after processing lines 1-3 of Figure 3. Let’s assume that
Figure 4(c) is the result after processing line 6. Then, Figure 4(d) shows the result after
processing lines 8-9. Similarly, we also create a velocity histogram H, using the MinSkew
algorithm with a velocity grid VG. So, two bounding rectangles of our spatio-temporal bucket
conceptually consist of an SB of H, and a VB of H,. We can use H, with the minimized
velocity-skew because H, is created by the MinSkew algorithm.

Algorithm constructSTH(¢t*, SM, Ng)

Input: t*, histogram update time; SM, a set of sample moving objects;
Np, number of Bs in Hs (or By in Hy)

Output: Hs¢(Hs, Hy), spatio-temporal histogram

01. for each moving object m in SM,

02. let s be the spatial position of m at t“.

03. increase the number of objects of a cell, in SG, which contains s.
04. let v be the velocity point on 2D space of m.

05. increase the number of objects of a cell, in VG, which contains v.

06. construct Np spatial bounding rectangles of Hs from SG using the MinSkew algorithm.
07. construct Np velocity bounding rectangles of H, from VG using the MinSkew algorithm.

08. for each Bs(ns, SB) of Hs,
09. assign the sum of numbers of objects of SG’s cells in SB to ns.

10. for each By(ny,V B) of Hy,
11. assign the sum of numbers of objects of VG’s cells in VB to ny.

Fig. 3. Improved Hg; construction algorithm

Next, we define a function C'(Q needed to process the selectivity estimation algorithm using
Hg;. Let t* be the histogram update time, v the velocity bounding interval, a the spatial
interval of the query, and ¢ the time interval of the query. CQ calculates I which is the
maximum spatial interval at t* of moving objects that can pass the query. For example,
consider a query and moving objects limited by a velocity bounding interval v[v! < 0,0" > 0].
As shown in Figure 5, all movements within the velocity interval v of an object that starts
from a point (p,t") cannot pass the query. From CQ, the thick line I depicts the maximum
spatial interval of moving objects that can pass the query.
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Fig. 5. Maximum spatial interval I derived by CQ

CQ(t*,v,a,t) produces an interval I as follows:

al — (8 —t)oh if vh < 0 e a — (th — )l if ol >0

al — (t" — t*)v" otherwise a — (t" — t*)o! otherwise

I'=

Next, we explain how to estimate a selectivity for a spatio-temporal query intersecting a
spatio-temporal bucket with n moving objects bounded by SB and V B as shown in Fig-
ure 6. A formula (" —#*) (vl —v!) (" —t*) (vh —vl) indicates an area of all the possible positions
at t" of a moving object that starts from a point in SB. Then (s? — s})(#" — %) (v} —v})(sh —
sh)(th — ) (v — vl) corresponds to all the movements of all the moving objects that start
from SB. To consider all the movements of moving objects that pass the query, we present
a function A that is an area of a sub-rectangle of SB where moving objects that start from

the sub-rectangle pass one point in five sides of the query. For five sides of the query, A
has different formulas: A1, A2, A3, A4, and AB. ftlh faaf A2(Ai, A2)dN\1d)y corresponds
to all the movements of moving objects that start from a sub-rectangle of SB and first
pass the a’ side of the query, as illustrated in Figure 6. Similarly, fﬁh f;f A1(Ag, Ag)dNdAs,

I fj’ A3\, Ao)dNd), [1 f;’f A4(\1, Ao)dAid)Ns, and flh f;f AB(\1, Ao)did)s are for the

a} side, the d) side, the a% side, and the base side of the query, respectively. Let STBQ(t%,n, SB,V B, Q)
be a selectivity estimation function between a spatio-temporal bucket and a spatio-temporal

query, where n is the number of moving objects bounded by SB and V' B. STBQ(t*,n,SB,V B, Q)

is estimated as follows:
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Figure 7 shows a selectivity estimation algorithm using our spatio-temporal histogram Hg(Hy, H,).
The estimation is calculated for each B, of H,. Let V; and V5 be velocity bounding inter-
vals with the minimum and maximum values of whole moving objects for dimension 1 and
dimension 2, respectively. Lines 3-5 check whether a spatio-temporal bucket bounded by
SB(s1,s2) and VB(Vy,V;) intersects with the query ). Lines 7-8 summate the estimation
results between a B, and each B, of H, In line 8, the number of moving objects bounded by
an SB and a VB is ng X

is obtained by multlplylng the sample factor

Nsm

Algorithm selectivityST
Input: t*, histogram update time; Hg(Hs, Hy), spatio-temporal histogram; @), query
Output: sum, the result of selectivity estimation

01. sum « 0.

02. for each Bs(ns, SB) in the Hj,
03. Il HslﬂCQ(t“,Vl,al,t).
04. IQ — SQﬂCQ(tu,VQ,QQ,t).
05. ifL ADAIL£D,

06. suml < 0.
07. for each B,(n,,VB) in the H,,
08. suml «— suml + STBQ(t",ns x N=, 5B, VB , Q).
09. sum <« sum + suml.
N

10. sum <« sum X ——.
sm

Fig. 7. Selectivity estimation algorithm



4 Experiments

We make an experimental environment such that moving objects have skewed velocity dis-
tributions. Objects with the maximum speed 3.0 are set to move in the 1000 x 1000 2D
space. We use real-life spatial data to generate moving objects. Figure 8(a) and Figure 8(b)
show the initial spatial locations of moving objects using Tiger/lines and Sequoia, respec-
tively. Tiger/lines and Sequoia have been popularly used in spatial database research. The
number of objects for Tiger/lines is 498,830. The number of objects for Sequoia is 547,401.
Figure 9 depicts the velocity distributions of moving objects. For the velocity of a moving
object, we randomly choose a point in a circle with a radius 3 corresponding to the maximum
speed. The direction from the center point to the chosen point indicates the direction of the
object. The distance between two points indicates the speed of the object. We use again
Tiger/lines(Figure 9(a)) and Sequoia(Figure 9(b)) to generate the movements of objects
with reasonably skewed velocity distributions. We also use synthetic data(Figure 9(c) and
Figure 9(d)) to generate the movements of objects with very skewed velocity distributions.
We experiment with 8 data sets of moving objects: All combinations for 2 types(S1,52) of
initial spatial locations and 4 types(V1,V2,V3,V4) of velocities.

(a) V1 (b) V2 (c) V3 (d) V4

Fig. 9. Velocities

We update approximately 1% of the whole moving objects every time unit and randomly
select the updating data from the whole moving objects. We use the sample data from the
whole moving objects using a simple round robin scheme for the spatio-temporal histogram



and update the spatio-temporal histogram from the sample data every time unit. This his-
togram update strategy can be possible because the 1/O overhead for the spatio-temporal
histogram update from the sample data is remarkably low, compared to the update overhead
of approximately 1% of the whole moving objects per time unit. The size of H; is set to 4
Kbytes, which corresponds to a page size. A spatial grid (SG) for constructing the spatio-
temporal histogram is set to 50 x 50. The size of the query spatial rectangle (QB) varies
as 0.1% 0.25%, 0.5%, 1% of the size of the data space. The spatial position of a query is
randomly chosen in the data space.

Figure 10 shows the experimental results for moving objects with reasonably skewed velocity
distributions. Let ISTH be our Improved Spatio-Temporal Histogram and STH be the Spatio-
Temporal Histogram [2]. Figure 10(a) and Figure 10(a) show the experimental results for
(S1,V2) and (S2,V1), respectively. Each query is evaluated by the average relative error of
200 queries. The time interval length is set to 15. In general, our proposed method more
accurately estimates the selectivity of spatio-temporal queries to moving objects, compared
to the existing method.
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Fig. 10. Average relative error for ISTH and STH to moving objects with reasonably skewed velocity
distributions

We also consider experimental results for moving objects with very skewed velocity distri-
butions. Figure 11(a) and Figure 11(a) show experimental results for (S1,V3) and (S2,V4),
respectively. The time interval length is set to 30. As shown in Figure 11, our proposed
method has considerably better estimation results, compared to the existing method.

5 Conclusions

Spatio-temporal databases have been studied intensively in recent years. In this paper, we
proposed the construction algorithm of an improved spatio-temporal histogram to accurately
estimate the selectivity for spatio-temporal queries for the future locations of moving ob-
jects. Our algorithm constructs a spatio-temporal histogram to balance spatial location and
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Fig. 11. Average relative error for ISTH and STH to moving objects with very skewed velocity
distributions

velocity distributions of moving objects. In experiments on moving objects with very skewed
velocity distributions, our proposed method produced a significantly accurate estimation of
the selectivity for spatio-temporal queries, compared to the existing method.
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