
Multi-way R-tree joins using indirect predicates

Ho-Hyun Parka, Jun-Ki Minb,*, Chin-Wan Chungb, Tae-Gyu Changa

aSchool of Electrical and Electronics Engineering, Chung-Ang University, 221, HukSuk-Dong, DongJak-Ku, Seoul 156-756, South Korea
bDepartment of Electrical Engineering and Computer Science, KAIST 373-1, Kusong-dong, Yusong-gu, Taejon 305-701, South Korea

Received 1 July 2003; revised 11 December 2003; accepted 12 December 2003

Available online 28 February 2004

Abstract

Since spatial join processing consumes much time, several algorithms have been proposed to improve spatial join performance. Spatial

join has been processed in two steps, called filter step and refinement step. The M-way R-tree join (MRJ) is a filter step join algorithm, which

synchronously traverses M R-trees. In this paper, we introduce indirect predicates which do not directly come from the multi-way join

conditions but are indirectly derived from them. By applying indirect predicates as well as direct predicates to MRJ, we can quickly remove

the minimum bounding rectangle (MBR) combinations which do not satisfy the direct predicates or the indirect predicates at the parent level.

Hence we can reduce the intermediate MBR combinations for the input to the child level processing and improve the performance of MRJ.

We call such a multi-way R-tree join algorithm using indirect predicates indirect predicate filtering (IPF). Through experiments using

synthetic data and real data, we show that IPF significantly improves the performance of MRJ.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Spatial databases; Spatial join; M-way R-tree join; Indirect predicates

1. Introduction

For the past several years, the research on spatial

database systems has actively progressed because the

applications using the spatial information such as geo-

graphic information systems, multimedia systems, satellite

image database and location based service have increased.

The spatial join is a common spatial query type which

requires high processing cost due to the high complexity and

large volume of spatial data. The spatial join combines

entities from data sets into a single entity set whenever the

combination satisfies the join condition (e.g. intersect). In

general, the join operation is an important and time

consuming database query operation since it retrieves

information from different data sets based on Cartesian

product.

To reduce the overall processing cost, the spatial join is

processed in two steps, called the filter step and the

refinement step [5,12]. As shown in Fig. 1(a), the filter step

evaluates tuples whether they satisfy the constraints of

a given spatial query, using the MBR (Minimum Bounding

Rectangle) approximation. We call the result of the filter

step candidate tuples, which constitute a super set of the

exact query result. The refinement step (Fig. 1(b)) examines

the candidate tuples using exact computational geometric

algorithms [19] to check whether the tuples really satisfy the

constraints of the given spatial query. This paper, like most

related spatial database literature, focus the query proces-

sing on the filter step [2,22].

Example 1. An example of a 3-way spatial join is ‘Find all

buildings which are adjacent to roads that intersect with

boundaries of districts’.

As in Example 1, the multi-way spatial join combines

MðM . 2Þ spatial relations using M 2 1 or more

spatial predicates. Formally, an M-way spatial join

can be expressed as follows [11,14]: given M

relations R1;R2;…;RM and a query Q; where Qij is the

binary spatial predicate between Ri and Rj; find all M-tuples

{kr1; r2;…; rMll;i; j : ri [Ri; rj [Rj and riQijrj ¼ TRUE}.

An M-way spatial join can be modeled by a query graph

whose vertices represent relations and edges represent

spatial predicates.

0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2003.12.007

Information and Software Technology 46 (2004) 739–751

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ82-42-869-5577; fax: þ82-42-869-3577.

E-mail addresses: jkmin@islab.kaist.ac.kr (J.-K. Min), hohyun@cau.

ac.kr (H.-H. Park), chungcw@islab.kaist.ac.kr (C.-W. Chung), tgchang@

cau.ac.kr (T.-G. Chang).

http://www.elsevier.com/locate/infsof

There have been several papers on the multi-way

spatial join [10,11,14,15]. One way to process an M-way

spatial join is as a sequence of 2-way joins [10]. Another

possible way, when all join attributes have spatial indexes

and each join attribute is shared among the join predicates

connected to the relation (i.e. only one spatial attribute per

relation participates in the join), is to scan the relevant

indexes synchronously for all join attributes to obtain a set

of spatial object identifier (oid) tuples. In the case when

the R-trees are used, this is called the M-way R-tree join

(MRJ) which is considered as a generalization of the 2-

way R-tree join [2,7].

MRJ is known to be more efficient than a sequence of 2-

way joins in the case of a dense query graph, high density of

data and a small range of M [11]. Furthermore, MRJ has

several advantages over a sequence of 2-way joins. Among

the following, the third advantage will be explained later in

Section 2.2:

† It does not create intermediate results.

† It is appropriate to an interactive query and browsing

environment because it generates the first output as soon

as the algorithm starts [11].

† It avoids unnecessary refinement operations for some

object pairs.

To improve the performance of MRJ, several algorithms

have been proposed [10,11,14,15]. Generally, these tech-

niques only considered the join ordering among relations or

tuples. However, in this paper, we introduce indirect

predicates, which do not directly come from the multi-

way join conditions but are indirectly derived from them. By

applying these extra join conditions (i.e. indirect predi-

cates), we can quickly remove the false results. We call such

a multi-way R-tree join algorithm using indirect predicates

indirect predicate filtering (IPF). The contributions of our

work are as follows:

† We propose three kinds of IPF called domain max

information (DMAX), node max information (NMAX),

and entry max information (EMAX).

† The dynamic maintenance algorithms of DMAX/

NMAX/EMAX with the insertion and deletion of R-

trees are introduced.

† We conduct experiments using synthetic data and real

data to evaluate the query performance of IPF.

The experimental result shows that IPF significantly

reduces the MRJ processing time, and among three IPF

methods, the performance of EMAX outperforms those of

DMAX, NMAX.

The remainder of this paper is organized as follows:

Section 2 provides some background by briefly explaining

the 2-way R-tree join and the MRJ. In Section 3, we

introduce indirect predicates in MRJ. And in Section 4, we

propose a method for processing MRJ using indirect

predicates and new R-tree structures for IPF. In Section 5,

we present experiments for a performance analysis of IPF

using synthetic data and the TIGER data [23]. Finally in

Section 6, we conclude this paper and suggest some future

studies.

2. Related work

2.1. R-tree joins

R-trees were proposed by Guttman [3] as a direct

extention of Bþ-trees [8] to n-dimensions. An R-tree node is

constructed by grouping MBRs of near spatial objects, and a

parent node is again constructed by grouping MBRs of near

nodes. Fig. 2 shows an example set of data MBRs and the

corresponding R-trees built on these MBRs (assuming

maximum node capacity is 3).

After Guttman’s proposal, several researchers proposed

their own variations of the R-tree such as R þ -tree [20] and

Rp-tree [1]. We call all of them R-tree family. The R-tree

family seems to be the most promising ones among many

extent spatial data structures and is the one that most

research efforts have concentrated on.

Assuming that R-trees exist for both join inputs, a join

algorithm called R-tree join which synchronously traverses

both R-trees using depth-first search was proposed [2].

Fig. 1. Spatial join processing steps.

Fig. 2. Some MBRs and the corresponding R-trees.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751740

The basic behavior of the algorithm is as follows: first, it

reads the root nodes of the R-trees and checks if the

rectangles of entries of both nodes mutually intersect. Next,

only for intersected entry pairs, it traverses the child node

pairs by depth-first search and continuously checks the

intersection between the rectangles of entries of both child

nodes. In this way, if the algorithm reaches the leaf nodes, it

outputs the intersected entry pairs and returns to the parent

nodes. The basic algorithm is shown in Fig. 3.

Example 2. Let us consider the join between two R-trees

R1 and R2 in Fig. 2. First of all, the MBR intersections

between entry sets {A1;A2} and {B1;B2} in both root

nodes must be checked. Since kA1;B1l and kA2;B2l are

intersected pairs at the root level, the child nodes of

these pairs must be synchronously traversed. Let us

assume that kA1;B1l will be first traversed. Now the

intersections between entry sets {a1; a2} and {b1; b2} in

nodes A1 and B1 are checked, and ka1; b1l and ka2; b2l
are generated as output. And then, the synchronous

traversal returns to the parent level. In this time, nodes

A2 and B2 are visited. At the check between entry sets

{a3; a4} and {b3; b4} in nodes A2 and B2; ka3; b4l are

generated as the query result.

Two optimization techniques, called search space

restriction and plane sweep, are used to reduce the CPU

time. The search space restriction heuristic picks out the

entries whose rectangles do not intersect with the rectangle

enclosing the other node, before the intersection is actually

checked between the rectangles of entries of both nodes. In

the intersection check between nodes A2 and B2 of Example

2, since among entries in node A2; a4 does not intersect with

the MBR of node B2; a4 cannot intersect with any entry in

node B2 and it can be removed from the check.

The plane sweep first sorts the rectangles of entries of

both nodes for one axis, and then moves forward along the

sweep line and checks the remaining intersection for the

other axis. In the intersection check between nodes A1 and

B1 of Example 2, if we sort the entries in each node along

the x-axis, we obtain ða1; a2Þ and ðb1; b2Þ: After that, if we

merge the two sorted sequences, we obtain ðb1; a1; b2; a2Þ as

a sweep line. Moving along the sweep line, we can check y-

axis intersection for all entries of the other node which are

located after the current sweep line and their x-axis’

intersect with the current sweep line entry. In Example 2,

for entry b1; the y-axis’ intersection will be checked with a1

and a2; for a1; checked with b2; for b2; checked with a2; and

finally for a2; the plane sweep ends because of no further

entries after the sweep line.

Additionally, the algorithm applied the page pinning

technique for I/O optimization. The algorithm used only a

local optimization policy to fetch the child node pairs. Later,

a global optimization algorithm by breadth-first search was

proposed [7]. In this paper, we call both of the join

algorithms 2-way R-tree join or simply R-tree join. When R-

trees exist for both join inputs, it has been shown that the R-

tree join is most efficient [9,10,18].

2.2. M-way R-tree joins

Recently the MRJ algorithm was proposed as a

generalization of the 2-way R-tree join [11,14,15]. As in

the case of the 2-way R-tree join, the basic behavior is also

the synchronous traversal of M R-trees. The synchronous

traversal of M R-trees works as follows: it starts from the

root nodes of M R-trees. For each M-combination from the

entries (called entry-tuple) of the nodes, it checks all

predicates defined by a query. If an entry-tuple satisfies all

the predicates, one of the following occurs:

† If the node-tuple (an M-combination of the R-tree nodes)

is at a nonleaf level, the algorithm is recursively called

for the child node-tuple pointed by the entry-tuple.

† If the node-tuple consists of the leaf nodes, the

algorithm outputs the entry-tuple and processes the

next entry-tuple.

If an entry-tuple does not satisfy at least one predicate,

the entry-tuple is pruned and the next entry-tuple is to be

processed. If all entry-tuples have been checked in a node-

tuple, the algorithm returns to the parent node-tuple. The

above procedure is described in Fig. 4.

In the above algorithm, function GetNextTuple gets a

combination from all the entries of nodes N[]. If there is no

Fig. 3. 2-way R-tree join algorithm.

Fig. 4. M-way R-tree join algorithm.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 741

further combination from N[], GetNextTuple returns NULL

and the while loop ends.

Example 3. We will explain an example of MRJ using the

R-trees again in Fig. 2. Let us consider a 3-way spatial join

whose join predicates are ‘R1 intersect R2 and R2 intersect

R3’. At the root level, there are eight possible entry

combinations because each node has two entries. Among

these combinations, kA2;B2;C1l and k2;B2;C2l satisfy the

join predicates. MRJ first reads the child nodes pointed by

an entry-tuple kA2;B2;C1l and check the join predicates for

the entries among the child nodes. Since there is no entry-

tuple among the nodes, MRJ returns to the parent level and

processes the next entry-tuple kA2;B2;C2l: In this time,

among the entry-tuples from the child nodes pointed by

kA2;B2;C2l; ka3; b4; c3l satisfies the join predicates and is

generated as output.

Algorithm MRJ assumes that all join predicates are

intersect (not disjoint) and the same predicate is applied for

both leaf and nonleaf levels. As pointed out in Ref. [4],

when general join predicates are used, a different predicate

at nonleaf levels should be applied from the predicate at the

leaf level. However, when the actual predicate is intersect,

the leaf and nonleaf level predicates are the same. In a

different manner, Theodoridis and Papadias classified the

spatial relationships as topological, distance and direction

relationships [21]. They have shown that all spatial

relationships can be mapped to the intersect relationship

in the R-tree operation. Thus, the general join predicates and

the different predicates for nonleaf levels can be easily

applied to Algorithm MRJ.

In Example 3, kA2;B2;C1l satisfies the join predicates at

the root level, but it generates no entry combination at the

child level. Similarly, if an entry combination satisfies the

query at the nonleaf level but it leads to generate no query

result at the leaf level, we call it false intersection. The

smaller the number of join predicates are, the more the false

intersection occurs. In this paper, we use the indirect

predicate concept to identify and prune the false intersection

in advance.

The search space restriction and plane sweep heuristics

of the 2-way join can be extended to the M-way join. As

extensions of the search space restriction, some algorithms

such as static variable ordering [11] and space restriction

ordering (SRO) [15] were proposed. And as extensions of

the plane sweep, some algorithms such as multi-level

forward checking [13], plane sweep ordering [15] and plane

sweep forward checking (PSFC) [11] were developed. For

the details and performance evaluations about these

algorithms, refer to Ref. [17]. This paper adopts the

SRO–PSFC combination as a standard MRJ algorithm

because the combination was evaluated to be most efficient

in Ref. [17]. Therefore, we made implementations and

experiments of IPF based on the SRO–PSFC combination.

In Section 1, we mentioned that MRJ can avoid

unnecessary refinement operations compared to the

sequence of 2-way joins. Let us consider again the above

example of the 3-way spatial join. Let us assume that the

above 3-way join is processed by a sequence of 2-way joins

and the join ordering is determined to be ððR1;R2Þ;R3Þ by

the query optimizer. According to Example 2, since entry

pairs ka1; b1l and ka2; b2l are the filter step result of the join

between R1 and R2; the refinement step operations should be

performed on these pairs. However, if we examine Fig. 2,

we come to know that both of b1 and b2 do not intersect with

any object of R3 and the intermediate results ka1; b1l and

ka2; b2l cannot be contained in the final result of the 3-way

join. Therefore, the refinement step operations on ka1; b1l
and ka2; b2l in the sequence of the 2-way joins were

performed unnecessarily. Since MRJ gets rid of such cases

in the filter step, it can avoid such unnecessary refinement

operations.

3. M-way R-tree joins using indirect predicates

In this section, we present our proposed method called

indirect predicates filtering. In this work, following the

standard approach in the spatial join literature, intersect (not

disjoint) is considered as the default join predicate.

The maximum number of possible predicates in the M-

way spatial join is MðM 2 1Þ=2; i.e. all relation pairs have

join predicates. We call such a join complete. If a join is

not complete, i.e. the number of predicates is less than

MðM 2 1Þ=2; the join is incomplete.

As mentioned in Section 2.2, MRJ may generate many

false intersections at nonleaf levels. Especially in an

incomplete join, the possibility of a false intersection is

high. In this case, if we can detect the false intersections

before visiting the node-tuple, we can save I/O and CPU

time. In this section, we propose a method which can detect

the false intersections at nonleaf levels of R-trees.

3.1. Indirect predicates

In this section, we first address the concept of indirect

predicates which do not directly come from the join

conditions but are indirectly derived from them.

Example 4. Let us consider an example query representing

a 4-way spatial join ‘A intersect B and B intersect C and C

intersect D’. Fig. 5(a) shows the query graph for this join.

Fig. 5(c) shows an MBR intersection for a result tuple (i.e. a

tuple from leaf node entries which satisfies the above

query). It seems that there are no relationships between A

and C, between B and D, and between A and D because

there are no predicates between them. However, if bx and cx

represent x-lengths for MBRs of b and c; respectively, the

following relationships are satisfied on x-axis for a result

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751742

tuple ka; b; c; dl

x_distða;cÞ# bx; x_distðb;dÞ# cx; x_distða;dÞ# bx þ cx:

ð1Þ

The same condition holds on y-axis. Since bx and cx are

values per spatial object, MRJ cannot know the values

during nonleaf level processing. However, since the

maximum x-length per object set can be kept in advance

as catalog information by the query optimizer, the query

optimizer can use it. For the result tuple ka;b;c;dl which

satisfies Eq. (1), the following relationships are also satisfied

on x-axis

x_distða;cÞ#max{bjxlbj [domðBÞ}; ð2Þ

x_distðb;dÞ#max{ckxlck [domðCÞ};

x_distða;dÞ#max{bjx}þmax{ckx}:

In Eq. (2), domðBÞ represents the domain (i.e. relation) of

data MBRs for variable B: The same condition holds on y-

axis. The x-length and y-length of MBR at the nonleaf level

of an R-tree may be longer than the max x-length and max

y-length of the data MBRs in the domain. Therefore, Eq. (2)

can be used to find false intersections in advance at the

nonleaf level. Fig. 5(d) shows an MBR intersection between

R-tree nodes for the above query. (We use the node

name as the same as the variable name for convenience.)

If x_distðB;DÞ.max{ckx}; x_distðA;CÞ.max{bjx} or

x_distðA;DÞ.max{bjx}þmax{ckx}; we do not have to

visit the node-tuple kA;B;C;Dl because the node-tuple and

the descendent node-tuples will never satisfy the query.

Therefore, the node-tuple shown in Fig. 5(d) can be pruned

in advance at the entry-tuple level of the parent nodes.

We call the user predicates in the query such as ‘A

intersect B’ and ‘B intersect C’ the direct predicates which

correspond to the edges in Fig. 5(a), and the derived

predicates such as x_distðA;CÞ # max{bjx} and

x_distðB;DÞ # max{ckx} the indirect predicates. The dotted

edges in Fig. 5(b) represent the indirect predicates. These

indirect predicates can be used for pruning entry-tuples at

nonleaf levels of MRJ. We call such pruning IPF. The max

x-length and y-length can be obtained from the catalog

information in the database schema.

3.2. Indirect predicate paths and lengths

A path from vertex vp to vertex vq in a graph G is a

sequence of vertices, vp; vi1
; vi2

;…; vin
; vq such that

ðvp; vi1
Þ; ðvi1

; vi2
Þ;…; ðvin

; vqÞ are edges in the graph. The

length of a path is the sum of the weights of the edges on that

path. In Fig. 5, we call the paths ABC, BCD and ABCD

for indirect predicate pairs AC, BD and AD

the indirect predicate paths (ipp), and the x-path lengths

max{bjx}; max{ckx}; and max{bjx} þ max{ckx} the indirect

predicate x_path lengths (x_ippl). The indirect predicate

y_path lengths (y_ippl) are similarly defined. In this section,

Fig. 5. A query graph and MBR intersection for a 4-way join.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 743

we will explain how to compute the indirect predicate paths

and indirect predicate path lengths.

In Fig. 5, since the corresponding indirect predicate path

for each indirect predicate pair is only one, it is easy to

compute indirect predicate paths and indirect predicate path

lengths. However, there can be several indirect predicate

paths for an indirect predicate pair in a general M-way join

because the general M-way join graph can contain cycles.

Therefore, a systematic method to compute indirect

predicate paths and their lengths is required.

As shown in Fig. 6(a), we first draw a query graph whose

vertices represent relations and edges represent direct

predicates. Then, we assign weights to vertices. The weight

of a vertex is the maximum x-length ðx_maxÞ and y-length

ðy_maxÞ in the relation which the vertex represents. Since

there can be multiple paths between a vertex pair, we

compute the ipp and ippl by using the all pair shortest path

algorithm [6]. In order to get the shortest path between a

vertex pair, we need edge weights but we have only vertex

weights now. Therefore, we obtain edge weights from vertex

weights. The weight of an edge is obtained by summing

weights of the vertices on which the edge is incident. An

example query graph having both vertex weights and edge

weights for a 5-way join is shown in Fig. 6(a). We call this

query graph maximum weighted query graph.

When there is no direct predicate between two vertices S

and D in a maximum weighted query graph, the ipp and ippl

between S and D can be obtained as follows:

† First, we calculate the shortest path and shortest path

length per axis.

† Second, we subtract the weights of both S and D from

the shortest path length and then divide the shortest

path length by 2.

In the first step, the weights of S and D are included in the

edge weights of the shortest path length and the weights of

the intermediate vertex are included twice. Then, in the

second step, we obtain the sum of the weights of

intermediate vertices in the shortest path. Therefore, the

x_ippl between S and D can be calculated by Eq. (3)

x_ipplðS;DÞ ¼ðx_shortest_path_lengthðS;DÞ2 x_maxðSÞ

2 x_maxðDÞÞ=2: ð3Þ

The y_ippl is similarly defined. The ipps and ippls for all

indirect predicate pairs in Fig. 6(a) are shown in Fig. 6(b).

As shown in for indirect predicate pairs AD and AE of Fig.

6(b), the x_ipp and y_ipp between a vertex pair can be

different because the shortest path per axis between the

vertex pair can be different.

The indirect predicate paths and lengths can be used to

find false intersections which could not be found only

by direct predicates during the nonleaf level processing

of MRJ.

Example 5. Let Fig. 7 be an MBR combination of nonleaf

nodes of R-trees in a 5-way spatial join whose query graph

is Fig. 6(a) and whose ipps and ippls are Fig. 6(b). Fig. 7

satisfies all the direct predicates in the query graph of Fig.

6(a), i.e. (A intersect B) and (A intersect C) and (B intersect

D) and (B intersect E) and (C intersect E) and (D intersect

E). However, since the y-distance between B and C is 20, it

is larger than the y_ippl (10) between B and C in Fig. 6(b).

Therefore, this node combination is pruned without further

processing for their descendants.

In Fig. 6(b), BAC and BEC are candidates of the y_ipp

between B and C. Since y_max (10) of D is smaller than

y_max (30) of A, BEC is selected as the y_ipp by the

shortest path algorithm.

4. Variations of indirect predicates

4.1. Node max information

Until now, we have used only one max x-length and y-

length per relation. This is called domain max information.

Fig. 6. Maximum weighted query graph.

Fig. 7. An example of applying indirect predicates in a 5-way join.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751744

In this case, if there are several extremely large objects in a

relation although other objects are not so large, the effect of

indirect predicates can be considerably degraded.

One possible solution for this is to have the max x-length

and y-length per R-tree node. Each node keeps the length of

the largest object per axis among the objects contained in all

subtrees of the node. A leaf node has the max x-length and y-

length for MBRs of all entries in the node, and a nonleaf

node has the maximum value for the max x-lengths and max

y-lengths of its child nodes. At the end, the root node has the

max x-length and max y-length for the relation. The max x-

length per R-tree node is recursively defined as in Eq. (4)

x_maxðNÞ ¼

max{N1rectx…Nnrectx}

for leaf node

max{x_maxðN1refÞ…x_maxðNnrefÞ

for nonleaf node

8>>>>>><
>>>>>>:

; ð4Þ

where n is the number of entries in node N:

The max y-length is similarly defined. We call the max x-

length and y-length per R-tree node node max information.

By using the NMAX instead of the DMAX, we can improve

pruning effects in IPF of MRJ.

As shown in Fig. 8, since only two max values are

attached as max-info per R-tree node (one for x-length and

the other for y-length), we can ignore the storage overhead

due to the max lengths. Since the max lengths can be

dynamically maintained with the R-tree insertion and

deletion, we can always have exact max lengths per R-

tree node. We call this R-tree the NMAX R-tree.

Since calculating the shortest path for every node-tuple

needs a large CPU time overhead1, we calculate the paths

(i.e. ipps per axis) only once using the max information of

the root nodes of R-trees. The reason for calculating the ipps

only once is because the probability that the shortest path

among the root nodes is equal to the shortest path among the

nodes of the other nonleaf levels is high. However, we

calculate the lengths (i.e. ippls) every time based on the ipps

obtained from the root nodes by the following reasons: (1)

although ipps per R-tree level are the same, the ippls may be

significantly different. (2) If an ipp between two nodes are

given, its ippl can be calculated in linear time.

4.2. Entry max information

In NMAX R-trees, we used the NMAX of the current

level to check indirect predicates between entries each of

which points to the child node. Since the NMAX of the

current level is the maximum of the NMAX of all the child

nodes (see Eq. (4)), the max lengths can be much longer

than we need. And if the R-tree height is 2, there is no

benefit from the NMAX because there is only one nonleaf

node (root node). What we actually need is the NMAX of

the child nodes. However, we cannot get the NMAX of the

child nodes without visiting them. Therefore, the last

strategy for IPF is that each entry of nonleaf nodes has the

max information of its child node. We call the max

information per entry EMAX and the R-tree which has the

entry max information the EMAX R-tree.

As shown in Fig. 9, an entry of a nonleaf node in an

EMAX R-tree consists of (max-info, MBR, ptr) where MBR

is the minimum bounded rectangle of its child node, ptr is

the pointer to the child node and max-info (i.e. EMAX) is the

NMAX of the child node. The structure of leaf nodes is the

same as that of the normal R-tree. max-info can also be

dynamically maintained with the MBR field during insertion

and deletion. An entry of a nonleaf node of the EMAX R-

tree occupies 28 bytes, i.e. each 4 bytes for xmin, xmax,

ymin, ymax of MBR, and each 4 bytes for x_max, y_max of

max_info, and 4 bytes for ptr. The normal R-tree uses

20 bytes per entry because there is no max_info in its entry.

Therefore, an EMAX R-tree uses storage 28/20 times of the

normal R-tree in nonleaf nodes. However, in R-trees, since

the most part of storage is used in leaf nodes, this is not a

significant overhead. Since the number of entries which the

EMAX covers is much smaller than what the NMAX covers

(average 1=C times, C : the average number of entries of an

R-tree node), we expect that although there is a little storage

overhead we can get a considerable effect of IPF using

the EMAX.

The MRJ algorithms using indirect predicates are the

same as the normal MRJ algorithms except that the indirect

predicates should be checked for all node pairs which have

no direct predicates.

4.3. Dynamic maintenance of DMAX/NMAX/EMAX

In this section, we describe how DMAX, NMAX and

EMAX are dynamically maintained with the insertion and

deletion of an entry.

The dynamic maintenance of DMAX is straightforward.

When an entry is inserted, if the x-length and/or y-length of

the entry is greater than the current DMAX, it becomes the

new DMAX. In the case of deletion, if the x-length and/or y-

length of the deleted entry is equal to the current DMAX,

the new DMAX must be recomputed by scanning all entries

in the relation.

Fig. 8. Node structure of the NMAX R-tree. Fig. 9. Nonleaf node structure of the EMAX R-tree.

1 The complexity of computing all pair’s shortest paths is known to be

OðM3Þ [6].

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 745

The dynamic maintenance of NMAX and EMAX can be

incorporated into the insertion and deletion algorithms of

the R-trees. The insert algorithm of the R-tree executes

Algorithm AdjustTree which adjusts all covering rectangles

upwards along the insert and split path [3]. In an EMAX R-

tree, since an entry of a nonleaf node directly has a max-info

field (EMAX) together with a MBR field, EMAX can be

maintained exactly in the same way as the MBR field in

Algorithm AdjustTree.

Since NMAX exists not per entry but per node, it is

maintained slightly differently from EMAX. The following

algorithm AdjustXNMAX is invoked together with Algor-

ithm AdjustTree of the R-tree (Fig. 10).

When an entry is inserted to a leaf node and a split

does not occur, if x_length of the entry is greater than the

current x_max (the x-component of max-info for NMAX)

of the node, the x_length becomes the new x_max. If

x_max of the leaf node is replaced, Algorithm AdjustXN-

MAX is invoked again for the parent node to adjust x_max

of the parent node. If a split occurs, x_max’s for the split

node and the newly created node must be recalculated.

For a leaf node, x_max is calculated by scanning all

entries. If the split is propagated to a nonleaf node, for

both the split node and the newly created node, all child

nodes must be visited to recalculate the new x_max’s. In

this way, Algorithm AdjustXNMAX is propagated upward

until no split occurs and x_max of a node is not changed,

or it encounters the root node.

The Rp-tree sometimes invokes the forced re-insert

routine when an overflow occurs [1]. To perform the re-

insertion, some entries must be deleted first. After the

deletion, the new x_max is calculated by the same method

as in the case of the split. The procedure for the re-insert is

the same as that for the normal insert. In the case of the re-

insert of a nonleaf level entry, the parameter x_length is the

x_max of the child node of the entry. The algorithm

for y_max, i.e. AdjustYNMAX, can be similarly defined

(Fig. 11). When an entry of the R-tree is deleted, the

deletion algorithm lastly invokes CondenseTree. As in

the case of the insertion, the following algorithm Con-

denseXNMAX is invoked together with Algorithm Con-

denseTree of the R-tree.

When an entry is deleted from a leaf node, if the x_length

of the entry is equal to the current x_max of the node, the

new x_max must be calculated by scanning all entries of the

node. The newly calculated x_max is propagated upward at

the same time with CondenseTree. If CondenseXNMAX is

invoked at nonleaf level as a result of the propagation and

the x_length parameter is equal to the current x_max of the

nonleaf node, all child nodes of the nonleaf node must be

visited to calculate the new x_max. If the number of entries

of a node is less than the low limit (i.e. m) as a result of the

deletion, the node must be condensed.

The original condense algorithm CondenseTree of the R-

tree deletes the entry pointing to the node from the parent

node and re-inserts all remaining entries in the deleted node

[3]. When a node is deleted, the x_max of the parent must be

adjusted because an entry is also deleted from the parent

node. In that case, the x_max of the deleted node is passed

as a parameter. The maintenance of the x_max for the re-

insert is the same as that for the forced re-insert in

AdjustXNMAX.

The algorithm for y_max, i.e. CondenseYNMAX, can be

similarly defined. As we have shown in the above two

algorithms, the dynamic maintenance of NMAX has more

overhead than that of EMAX because it sometimes needs

scanning child nodes. This is also one reason we suggest

EMAX in this paper.

5. Experiments

To measure the performance of IPF in the MRJ, we

conducted some experiments using synthetic data and real

data. The experiments were performed on a Sun Ultra II

170 MHz platform on which Solaris 2.5.1 was running with

384 MB of main memory. As we mentioned in Section 2.2,

many heuristics were developed as extensions of the search

space restriction and plane sweep heuristics of the 2-way

join. Among them, we used the SRO–PSFC combination as

Fig. 10. The algorithm of AdjustXNMAX.

Fig. 11. The algorithm of CondenseXNMAX.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751746

a standard MRJ algorithm in our experiments because it is

known to be most efficient [17].

5.1. Experimental environments

Data sets. we extensively evaluated our proposed

technique, IPF with synthetic and real-life data sets.

For a performance evaluation of IPF using synthetic data

sets, we first generated several data sets which consist of

10,000 uniformly distributed rectangles for data densities

0.25 and 1.0 on domain size (100,000,100,000). For each

data set, in order to easily maintain the data density, we

generated the same sized rectangles (500 for density ¼ 0.25

and 1000 for density ¼ 1.0). And then, for each data set, we

built the Rp-trees [1] for node sizes 1K and 4K. For each

node size, the heights of the Rp-trees are 3 and 2, and the

sizes of LRU buffers are 512 and 256 pages, respectively2.

The real data sets in our experiments were extracted from

the TIGER/Line data of US Bureau of the Census [24]. We

used the road segment data of seven counties of the

California State in the TIGER data. The statistical

information of the California TIGER data is summarized

in Table 1. In Table 1, Li_NMAX stands for the average

NMAX in the i-th level of the Rp-tree built on the data set.

L0_NMAX is for the leaf level and L2_NMAX for the root

level, i.e. DMAX. The original TIGER data of all counties

were center-matched to join different county regions, i.e. the

x and y coordinates of the original TIGER data were

subtracted from those of the center point of each county.

We built the Rp-trees for the above data sets for node size

4K. The heights of the Rp-trees are equally 3. For this

experiment, we randomly extracted the following three data

combinations from the TIGER data shown in Table 1. An

M-way join for each data combination was performed for

the first M counties of the data combination for M ¼ 3;…; 7:

Data combi 1 Ala. S.D. Sac. Ker. Mon. S.B. Ora.

Data combi 2 Mon. S.B. S.D. Sac. Ker. Ala. Ora.

Data combi 3 Ora. Ala. S.B. S.D. Ker. Sac. Mon.

Query sets. We selected the following four query types as

input queries: half, ring, chain and star. Example query

graphs for each query type including the complete query

type in a 5-way join are shown in Fig. 12. The spatial

predicate used for our experiments is intersect (not disjoint).

5.2. Experimental results of IPF

In our experiments, we report the response time of each

M-way spatial join technique. The response time consists of

CPU and I/O portions. According to Refs. [11,15], however,

the MRJ is a CPU-bound task. Since the presentation of the

I/O is less important and it is well described in Ref. [15], we

present only the total response time in our experimental

results.

Synthetic data sets. To measure the effect of IPF, we

varied DMAX. Note that the change of DMAX does not

incur the loss of accuracy of query results because indirect

predicates are supplementary and the actual result is

determined by only direct predicates. Fig. 13 shows the

response time of NO IPF and IPF in the chain query type

with varying DMAX (assuming x-length and y-length of

DMAX are equal) and the performance rates between them.

NO IPF in Fig. 13 stands for the MRJ algorithm which just

uses the SRO and PSFC heuristics without indirect

predicates while IPF literally stands for the MRJ algorithm

which uses both heuristics with indirect predicates.

Obviously, the performance of NO IPF is not affected by

varying DMAX.

Since we generated only the same sized rectangles, the

values of DMAX, NMAX and EMAX are actually the same

as the size of the rectangles. However, for convenience of

experiments, we assume that we can vary only DMAX in

synthetic data sets. This corresponds to the case that we vary

only one rectangle with the other rectangles unchanged.

As shown in Fig. 13, the effect of IPF increases as M

increases and DMAX decreases. IPF performs better in the

low density data (0.25) than in the high density data (1.0),

especially in the node size 4K. In this experiment, IPF is

faster about 5 times than NO IPF in the case of low density,

high M and small DMAX. (See the case of density ¼ 0.25,

M ¼ 7 and DMAX ¼ 500 in Fig. 13(b).) However, there is

no effect of IPF in the case of large DMAX. (See around

8000 of DMAX in node size 1K and from around 16,000 of

DMAX in node size 4K in Fig. 13(b).)

We also measured the performance of IPF in other query

types (Fig. 14). There is nearly no effect in the half query

type but there is a large effect in the star query type. This

Table 1

Statistical information of the California TIGER data

(a) Basic statistics

County # of obj Domain area Avg. length Density

Ala. 49,070 8,622,244,995 10,280 0.23

Ker. 113,407 257,781,100,758 212,169 0.26

Mon. 35,417 175,744,112,068 234,192 0.20

Ora. 91,970 6,999,955,588 8066 0.21

Sac. 46,516 7,577,171,218 11,186 0.24

S.D. 103,420 15,124,196,476 122,104 0.22

S.B. 64,037 9,930,158,696 10,081 0.22

(b) max-info per Rp-tree level

County L2_NMAX L1_NMAX L0_NMAX

Ala. 46,623,940 36,912,640 676,550

Ker. 82,046,497 58,484,599 15,901,273

Mon. 90,856,194 66,084,504 16,751,351

Ora. 36,586,735 24,232,638 557,488

Sac. 64,424,103 46,423,223 788,604

S.D. 80,546,828 46,953,819 973,807

S.B. 45,416,460 29,312,845 660,540

2 We assume that an Rp-tree node occupies one page.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 747

means that IPF has a large effect in the small number of

direct predicates (and consequently numerous indirect

predicates) but has a small effect in many direct predicates.

Real data sets. For the real data combinations of Section

5.1, we measured the performance of IPF using three kinds

of max information such as DMAX, NMAX and EMAX.

Fig. 15 shows the response time of NO IPF and IPF

for various data combinations of real data sets under

node size 4K, and Fig. 16 the relative performance rate of

IPF to NO IPF.

Fig. 12. Example query graphs in a 5-way join.

Fig. 13. Performance of IPF in the chain query type on synthetic data sets.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751748

Most behaviors are similar to the case of density ¼ 0.25

of the synthetic data sets because the average density of the

real data sets is around 0.25. Since the lengths of indirect

predicates decrease along the sequence of DMAX, NMAX

and EMAX, the performance of IPF increases along the

sequence. From these results, we can see that EMAX clearly

outperforms DMAX and NMAX.

In the star query, the performance of IPF is much

influenced by the characteristics of the central node because

the longest path in the query graph has length 2 and the

central node is the intermediate node of all ipps. In our

experiments, the central node of the star query represents the

first element of each data combination. If there are many

objects over the small domain area in the central node, the

MBR sizes of the intermediate nodes of the Rp-tree will be

small and the effect of IPF will decrease. For this reason, we

think, the effect of IPF for the star query in data combination

3 is small. From the above fact, we can also know that IPF

has a large effect if the domain area is large.

As a general conclusion of this experiment, IPF has a

considerable effect in higher Ms and sparser query types in

terms of spatial query characteristics, and in lower density,

larger R-tree node size, smaller max-info and larger domain

area in terms of data characteristics. In most cases, IPF using

EMAX is more efficient than those using DMAX, NMAX,

and NO IPF.

5.3. Experimental results of dynamic maintenance of NMAX

and EMAX

We also made an experiment to measure the overhead

of the dynamic maintenance of NMAX and EMAX during

Fig. 14. Relative performance of IPF in other query types (density ¼ 0.25).

Fig. 15. Response time of IPF for various data combinations on real-life data sets (nodes size ¼ 4K, unit: seconds).

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 749

R-tree insertion and deletion. For this experiment, we

implemented the dynamic maintenance algorithms of the

NMAX and EMAX Rp-trees presented in Section 4.3. The

experimental data are the same as the real data, used in

Section 5.2, which are the road data of seven counties in the

California state. We generated the following three kinds of

Rp-trees for each data set:

† the original Rp-tree (ORIG) which has no max-info,

† the NMAX Rp-tree which has NMAX per node,

† the EMAX Rp-tree which has EMAX per entry.

The generation time of each Rp-tree per data set is shown

in Fig. 17. The NMAX and EMAX Rp-trees obviously

consume more time than the original Rp-tree for tree

generation because they must dynamically maintain NMAX

and EMAX whenever insertion occurs. According to Fig.

17, the EMAX Rp-tree needs about 5% more time than the

original Rp-tree, and the NMAX Rp-tree about 14% more

time.

Since the max_info of the EMAX Rp-tree can be adjusted

at the same time as the MBR in AdjustTree which

the insertion algorithm of the Rp-tree finally invokes, the

maintenance overhead of EMAX is not so big. However,

according to Section 4.3, when insertion occurs in the

NMAX Rp-tree, AdjustXNMAX and AdjustYNMAX must be

invoked along with AdjustTree to maintain NMAX

dynamically. If split or forced re-insertion occurs during

insertion, the AdjustXNMAX and AdjustYNMAX algorithms

must visit all child nodes to calculate a new NMAX.

Therefore, the overhead of NMAX is shown higher than the

overhead of EMAX in Fig. 17.

Fig. 16. Relative performance rate (IPF/NO IPF).

Fig. 17. The Rp-tree generation time of ORIG, NMAX and EMAX.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751750

In Section 5.2, we showed that the join performance

using EMAX is much better than that using NMAX. And in

this section we showed that the dynamic maintenance cost

of EMAX is cheaper that that of NMAX. Therefore, we

recommend EMAX rather than NMAX in processing multi-

way spatial joins using indirect predicates.

6. Conclusions

In this paper, we introduced indirect predicates in the

MRJ, and proposed an optimization technique called

indirect predicate filtering to improve the performance of

MRJ. For IPF, we introduced three kinds of max

information called domain max information, node max

information and entry max information. For DMAX, we

used the catalog information of the query optimizer, and for

NMAX and EMAX, we suggested new R-tree structures

called the NMAX R-tree and the EMAX R-tree.

Through experiments using synthetic data and real data,

we showed that IPF has a great impact on improving the

performance of MRJ. From the viewpoint of query

characteristics, the effect of IPF increases as M is higher

and the number of direct predicates is smaller. From the

viewpoint of data characteristics, the effect of IPF increases

as the data density is lower and the node size of the Rp-tree

is bigger and the domain area is larger and the max-info is

smaller. Especially IPF using EMAX clearly outperforms

the other max information DMAX and NMAX.

We also examined how NMAX and EMAX can be

dynamically maintained in conjunction with the R-tree

insertion and deletion algorithms. By experiments, we

showed that the maintenance cost of EMAX is cheaper than

that of NMAX. Therefore, this paper recommends EMAX

rather than NMAX in processing multi-way spatial joins

using indirect predicates because EMAX outperforms

NMAX in both join and insertion.

Since MRJ is a filter step operation, the result is a set

of oid-tuples. After completing MRJ, an oid-pair may

appear several times in the resulting oid-tuples. If the oid-

tuples are read in the refinement step without scheduling,

it may access the same page several times and perform

the same refinement operation several times. However,

this can be solved by extending scheduling methods for

oid pairs such as [24] to oid-tuples. In future studies, first,

we will develop an efficient refinement algorithm for the

M-way spatial join. Second, we will develop a cost model

of IPF and combine the IPF algorithm with our rule-based

optimization technique for spatial and non-spatial mixed

queries called ESFAR (Early Separated Filter And

Refinement) [16].

Acknowledgements

This work was supported by the Ministry of Information

and Communication of Korea through the research grant

of IITA.

References

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The Rp-tree: an

efficient and robust access method for points and rectangles, Proc.

ACM SIGMOD (1990) 322–331.

[2] T. Brinkhoff, H.-P. Kriegel, B. Seeger, Efficient processing of spatial

joins using R-trees, Proc. ACM SIGMOD (1993) 237–246.

[3] A. Guttman, R-trees: a dynamic index structure for spatial searching,

Proc. ACM SIGMOD (1984) 47–57.

[4] O. Günther, Efficient computation of spatial joins, Proc. IEEE ICDE

(1993) 50–59.

[5] R.H. Güting, An introduction to spatial database systems, VLDB J. 3

(4) (1994) 357–399.

[6] E. Horowitz, S. Sahni, Fundamentals of Computer Algorithms,

Computer Science Press, Rockville, MD, 1978.

[7] Y.-W. Huang, N. Jing, E.A. Rundensteiner, Spatial joins using R-

trees: breadth-first traversal with global optimizations, Proc. VLDB

(1997) 396–405.

[8] D. Knuth, The Art of Computer Programming, vol. 3. Sorting and

Searching, Addison Wesley, Reading, MA, 1973.

[9] M.L. Lo, C.V. Ravishankar, Spatial joins using seeded trees, Proc.

ACM SIGMOD (1994) 209–220.

[10] N. Mamoulis, D. Papadias, Integration of spatial join algorithms for

processing multiple inputs, Proc. ACM SIGMOD (1999) 1–12.

[11] N. Mamoulis, D. Papadias, Multiway spatial joins, ACM Trans.

Database Syst. (TODS) 26 (4) (2001) 424–475.

[12] J.A. Orenstein, Spatial query processing in an object-oriented

database system, Proc. ACM SIGMOD (1986) 326–336.

[13] D. Papadias, N. Mamoulis, V. Delis, Algorithms for querying by

spatial structure, Proc. VLDB (1998) 546–557.

[14] D. Papadias, N. Mamoulis, Y. Theodoridis, Constraint-based proces-

sing of multiway spatial joins, Algorithmica 30 (2) (2001) 188–215.

[15] H.-H. Park, G.-H. Cha, C.-W. Chung, Multi-way spatial joins using R-

trees: methodology and performance evaluation, Proc. SSD (1999)

229–250.

[16] H.-H. Park, Y.-J. Lee, C.-W. Chung, Spatial query optimization

utilizing early separated filter and refinement strategy, Inf. Syst. 25 (1)

(2000) 1–22.

[17] H.-H. Park, Early Separated Filter/Refinement Strategies and Multi-

way Spatial Joins for Spatial Query Optimization, PhD Thesis,

KAIST, 2001.

[18] J.M. Patel, D.J. DeWitt, Partition based spatial-merge join, Proc.

ACM SIGMOD (1996) 259–270.

[19] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduc-

tion, Springer, Berlin, 1985.

[20] T. Sellis, N. Roussopoulos, C. Faloutsos, The Rþ-tree: a dynamic

index for multidimensional objects, in: Proceedings of VLDB, 1987.

[21] Y. Theodoridis, D. Papadias, Range queries involving spatial

relations: a performance analysis, Proc. COSIT (1995) 537–551.

[22] Y. Theodoridis, E. Stefanakis, T. Sellis, Cost models for join queries

in spatial databases, Proc. IEEE ICDE (1998) 476–483.

[23] US Bureau of the Census, Washington, DC, TIGER/Line Files,

Technical Documentation, 1995.

[24] P. Valduriez, Join indices, ACM Trans. Database Syst. 12 (2) (1987)

218–246.

H.-H. Park et al. / Information and Software Technology 46 (2004) 739–751 751

	Multi-way R-tree joins using indirect predicates
	Introduction
	Related work
	R-tree joins
	M-way R-tree joins

	M-way R-tree joins using indirect predicates
	Indirect predicates
	Indirect predicate paths and lengths

	Variations of indirect predicates
	Node max information
	Entry max information
	Dynamic maintenance of DMAX/NMAX/EMAX

	Experiments
	Experimental environments
	Experimental results of IPF
	Experimental results of dynamic maintenance of NMAX and EMAX

	Conclusions
	Acknowledgements
	References

