
Hyper-Rectangle Based Segmentation and Clustering
of Large Video Data Sets

Seok-Lyong Lee* and Chin-Wan Chung✝

*Department of Information and Communication Engineering, ✝ Department of Computer Science
Korea Advanced Institute of Science and Technology

373-1, Kusong-Dong, Yusong-Gu, Taejon 305-701, Korea
sllee@islab.kaist.ac.kr, chungcw@cs.kaist.ac.kr

Abstract

Video information processing has been one of great challenging areas in the database community

since it needs huge amount of storage space and processing power. In this paper, we investigate the

problem of clustering large video data sets that are collections of video clips as foundational work

for the subsequent processing such as video retrieval. A video clip, a sequence of video frames, is

represented by a multidimensional data sequence, which is partitioned into video segments

considering temporal relationship among frames, and then similar segments of the clip are grouped

into video clusters. We present the effective video segmentation and clustering algorithm which

guarantees the clustering quality to such an extent that satisfies predefined conditions, and show its

effectiveness via experiments on various video data sets.

Keywords: Clustering, Clustering algorithm, Video cluster, Video segment

1. Introduction

 Recently, the video information has become widely used in many application areas such as

news broadcasting, video on demand, and video conferencing, as digital storage technology and

computing power have been significantly advanced in the last decade. These applications involve

searching, consuming, or exchanging large volume of complex video data sets. To handle such

voluminous data sources, it is essential that the video data should be effectively represented, stored,

and retrieved.

 A video database may contain a number of video clips that can be represented by

multidimensional data sequences (MDS’s). In our earlier work [11], we have formally defined an

MDS S with K points in the n-dimensional space as a sequence of its component vectors, S = 〈S[1],

S[2], …, S[K]〉 , where each vector S[j] (1≤j≤K) is composed of n scalar entries, that is, S[j] = (S1[j],

S2[j], …, Sn[j]). A video clip consists of multiple frames in temporal order, each of which can be

represented by a multidimensional vector in the feature space such as RGB or YCbCr color space.

Thus, a video clip is modeled as a sequence of points in a multidimensional space such that each

frame of the sequence constitutes a multidimensional point, whose components are feature values

of a frame. By modeling a video clip to an MDS, the problem of clustering frames in a video clip is

2

transformed into that of clustering points of an MDS in a multidimensional space. Each sequence is

partitioned into video segments (or video shots) and then similar segments are grouped into a video

cluster. Figure 1 shows the hierarchical structure of video data.

 Figure 1. Hierarchical structure of video data

 The clustering has attracted great interest in many database applications such as customer

segmentation, sales analysis, pattern recognition, and similarity search. The task of clustering data

points can be defined as follows: Given a set of points in a multidimensional space, partition the

points into clusters such that points within each cluster have similar characteristics while points in

different clusters are dissimilar. A point that is considerably dissimilar to or inconsistent with the

remainder of the data is referred to as an outlier or a noise.

 Various clustering methods have been studied in database communities, however the clustering

of video data should be handled in a way different from the existing clustering methods in various

aspects. First, in a video clustering, the temporal relationship among frames and among video

segments should be considered importantly, since the temporal ordering of frames and video

segments is an intrinsic feature of video data. Existing methods did not consider it. Second, a target

object to be clustered in existing methods is mapped to a single point in a multidimensional space

and thus belongs to a single cluster, while a video clip is represented by multiple points that can be

partitioned into multiple separate clusters. Third, the shapes of clusters may also be considered

differently. The existing methods attempt to look at quantitative properties of clusters, independent

of how they will be used. They determine a certain number of clusters that optimize given criteria

such as the mean square error. Thus, the shapes of clusters are determined arbitrarily depending on

the distribution of points in the data space. However, we consider, in addition to the clustering itself,

the subsequent retrieval process importantly, such as ‘Find video clips that are similar to a given

news video.’ Therefore, the shapes of clusters should be appropriate for this purpose.

Video cluster

Video segment

Video frame

Video clip

First Frame
Last Frame

3

 It is usual in the video search that one or more key frames are selected for each video segment,

and a query is processed on the selected frames [7]. But the search by the key frames does not

guarantee the correctness since they cannot summarize all the frames of the segment. We proposed

in [11] the similarity search scheme based on the hyper-rectangle that tightly bounds all points (or

frames) in the segment, not on the key frames to prevent ‘false dismissal.’ We believe that

guaranteeing the correctness is one of important features in the similarity search. In addition, the

shapes of clusters should be proper for the indexing mechanism. We use a hyper-rectangle as the

shape of a cluster, since current dominant indexing mechanisms such as the R-tree [9] and its

variants [3,4,14] are based on a minimum bounding rectangle (MBR) as their node shape.

1.1. Problem definition

 The representation and the retrieval of video data place various special requirements on

clustering techniques, motivating the need for designing a new clustering algorithm. Those

requirements are categorized into two classes as follows: the geometric characteristics of clusters,

and the temporal and semantic relationship among elements in a cluster

 First, the cluster should be dense with respect to (wrt.) the volume and the edge for the efficient

retrieval, by minimizing the volume and the edge of a cluster per point and maximizing the number

of points per cluster. Next, the temporal and semantic relationship among elements in a cluster

should be maintained. It means that the information on temporal ordering of elements in a cluster

should be preserved, and elements in a cluster should be semantically similar. In addition to these

requirements, it should be able to deal with outliers appropriately, and minimize the number of

input parameters to the clustering algorithm. Considering these requirements, the clustering

problem in this paper is formalized as follows:

 Given: A data set of video clips and the minimum number of points minPts per video segment

 Goal: To find the sets of video clusters and outliers that optimize the values of predefined

 measurement criteria.

An input parameter minPts is needed to determine outliers. In our method, each point in a sequence

is initially regarded as a segment with a single point, and then closely related segments are

repeatedly merged to form a cluster. If a certain segment has “far fewer” points than the average

after the segmentation process, all points in it can then be considered as outliers. For instance, if a

segment with 2 or 3 points is located away from other segments, it may be a set of outliers with

high possibility. “Far fewer” is of course heuristically determined depending on applications. A too

small value of minPts makes unimportant segments be indexed, degrading the memory utilization,

while a too large value of minPts makes meaningful segments be missed. In this context, if a

segment has points the number of which is less than a given minPts value after the segmentation

process, all points in the segment are regarded as outliers. Those outliers are not indexed, but

written out to the disk for later processing.

4

1.2. Brief sketch of our method

 In the first step of our method, video clips are parsed to generate a data set of MDS’s. Feature

values are extracted from each frame of the video clip by averaging color values of pixels of a

frame or segmented blocks of a frame. As an optional process, if the dimensionality of generated

data is high, it is reduced to a low dimensionality to avoid ‘dimensionality curse problem.’ It is

usual that high dimensional data may not be used in reality since it needs huge amount of storage

space and causes severe processing overhead.

 In the next step, the generated MDS is partitioned into video segments such that predefined

geometric and semantic criteria are satisfied. Outliers are also identified in this process. Finally,

similar segments of a sequence are grouped into a video cluster in the clustering process to get the

better clustering quality. In this way, a given video clip is represented by a small number of video

clusters which will be indexed and stored into a database for later processing. In this paper, we

focus on the segmentation and the clustering processes. The overall structure is shown in Figure 2.

 The segmentation and clustering method proposed in this paper is a foundational work for the

creation of video databases, and can be used for various application domains such as video digital

libraries, video on demand, news on demand, and tele-education systems. One of potential

applications, which is emphasized in this paper, is the segmentation and clustering of video data

sets, but we believe other application areas in which data can be represented in the form of MDS

can also benefit. For examples, audio sequences, time series data, and various analog signals can be

represented by MDS, and thus our method can be applied.

1.3. Paper Organization

 The rest of the paper is organized as follows: Section 2 provides a survey of related works with

a brief discussion on clustering data points and data sequences. Section 3 includes basic definitions,

clustering characteristics, and various measurements of clustering quality. The segmentation

process is described in Section 4 with an algorithm to produce video segments from an MDS.

Section 5 provides the clustering process to generate video clusters by merging video segments.

Video

clips

Multi-dim.

sequences

Video

segments

Video

clusters

MDS
generation

process

Segment-
ation

 process

Clustering

process

Figure 2. Overall structure of the proposed method

5

Experimental results are presented in Section 6 and we give conclusions in Section 7.

2. Related works

 Many excellent approaches on clustering data points in a multidimensional space have been

proposed, such as CLARANS [13], BIRCH [15], DBSCAN [5], CLIQUE [2], and CURE [8].

 CLARANS is a clustering algorithm that is based on randomized search and gets its efficiency

by reducing the search space using user-supplied input parameters. The algorithm BIRCH

constructs a hierarchical data structure called the CF-tree for multiphase clustering by scanning a

database and uses an arbitrary clustering algorithm to cluster leaf nodes of the CF-tree. It is the first

approach to handle outliers effectively in the database area. DBSCAN tries to minimize

requirements of domain knowledge to determine input parameters and provides arbitrary shapes of

clusters based on the distribution of data points. Its basic idea is that for each point of a cluster, the

neighborhood of the point within a given radius has to contain at least a given number of points.

Thus, it needs only two input parameters, the radius and the number of points. CLIQUE identifies

dense clusters automatically in subspaces of a high dimensional data space. The subspaces allow

better clustering of data points than the original space. As input parameters, it needs the size of a

grid that partitions the space and a global density threshold for clusters. The concept of clustering

points in subspaces is extended to the projected clustering in [1] to pick particular dimensions on

which data points are closely related and to find clusters in the corresponding subspace.

 Another recent approach is CURE that identifies clusters having non-spherical shapes and wide

variances in size. It achieves this by representing each cluster using multiple well-scattered points.

The shape of a non-spherical cluster is better represented when more than one point are used. This

algorithm finishes the clustering process when the number of clusters in the current level of the

cluster hierarchy becomes k, where k is an input parameter. However, all approaches described

above need multiple input parameters, and do not consider the temporal relationship among data

points. Thus, they may not be applied to the clustering of data sequences, that have the temporal

and semantic relationship among their elements, such as video clips.

 The first clustering algorithm for sequences was proposed in [6], partitioning a sequence into

subsequences, each of which is contained in an MBR (or a cluster). This algorithm uses the

marginal cost (MCOST) which is defined as the average number of disk accesses divided by the

number of points of the cluster. To determine MCOST, it considers the volume factor based on the

volume increment of the current cluster when a point is included into the cluster. The MCOST

method is initially designed to represent a time-series sequence by multiple rectangles. It was

slightly modified in [10] to a two-pass algorithm running forward and backward to identify video

shot boundaries, and also slightly modified in [11] to support the multidimensional rectangular

query. The MCOST method can be used for the segmentation of video sequences in the sense that it

can handle a sequence and a video can be represented by a multidimensional sequence. However, it

6

is not able to deal with outliers appropriately. Moreover, it considers the volume factor only during

the clustering process, which is sometimes not sufficient. The edge of a cluster and the similarity

between points in a cluster should also be considered as important factors in addition to the volume.

We address this in Section 3.3 using some intuitive examples.

3. Preliminaries

 In this section, we discuss various characteristics of a hyper-rectangle that is used to define a

video segment and a video cluster, and clustering factors to be considered for effective

segmentation and clustering. Table 1 summarizes symbols and definitions used in this paper.

 Table 1. Summary of symbols and definitions
Symbol Definition

S
S[i]
N
N

HR
VC
VS
P
SP
K

dist(*,*)
Vol(HR)

Edge(HR)
VPP
EPP
PPC

Multidimensional data sequence (MDS)
ith entry of S
Number of dimensions
Number of sequences in a database
Hyper-rectangle
Video cluster
Video segment
Point, represented by (P1, P2, …, Pn) in the space [0, 1]n

Starting point of VC
Number of points in HR
Euclidean distance between two points
Volume of HR
Total edge length of HR
Volume per point
Edge per point
Number of points per cluster

3.1. Characteristics of a hyper-rectangle

 A hyper-rectangle is a geometric polyhedron that tightly bounds all points in a video segment

or a video cluster. First, we define it formally as follows:

Definition 1 (Hyper-rectangle). A hyper-rectangle HR with k points, Pj for j = 1, 2, …, k in the n-

dimensional space, is represented by two endpoints, L(low point) and H(high point), of its major

diagonal, and the number of points in the rectangle as follows: HR = 〈L, H, k〉 , where L = {(L1, L2,

…, Ln) | Li = min1≤j≤k (Pj
i)}, and H = {(H1, H2, …, Hn) | Hi = max1≤j≤k (Pj

i)} for i = 1, 2, …, n. ■

We can represent a point Pj in the hyper-rectangular form by placing Li = Hi = Pj
i for all dimensions,

that is, 〈Pj, Pj, 1〉 . This rectangle is denoted by HR(Pj) which has zero volume and edge. It is

sometimes convenient to describe operations of the segmentation and clustering if we regard a

multidimensional point as a hyper-rectangle. The volume Vol(HR) and the edge, i.e. total edge

length, Edge(HR) of HR are computed as:

7

∑

∏
≤≤

−

≤≤

−⋅=

−=

ni

iin

i

ni

i

LHRHHRHREdge

LHRHHRHRVol

1

1

1

)..(2)(

)..()(

Then, the volume and the edge per point of HR, VPP(HR) and EPP(HR) respectively, will be:

kHR

LHRHHR

kHR

HREdge
HREPP

kHR

LHRHHR

kHR

HRVol
HRVPP

ni

iin

i

ni

i

.

)..(2

.

)(
)(

.

)..(

.
)(

)(

1

1

1

∑

∏

≤≤
−

≤≤

−⋅
==

−
==

Two hyper-rectangles can be merged during segmentation and clustering processes. We define a

merging operator between two hyper-rectangles as follows:

Definition 2 (Merging operator ⊕). Let HR1 and HR2 be hyper-rectangles. Then, the merging

operator ⊕ is defined as HR1 ⊕ HR2 = HR3 such that HR3.L = {(HR3.L
1, HR3.L

2, …, HR3.L
n) | HR3.L

i

= min(HR1.L
i, HR2.L

i)}, HR3.H = {(HR3.H
1, HR3.H

2, …, HR3.H
n) | HR3.H

i = max(HR1.H
i, HR2.H

i)}

for i = 1, 2, …, n, and HR3.k = HR1.k + HR2.k. ■

 By Definition 2, we can easily recognize that the operator ⊕ has a symmetric property, that is,

HR1 ⊕ HR2 = HR2 ⊕ HR1. Consider a point P to be merged to a hyper-rectangle HR = 〈L, H, k〉 .
Merging P into HR produces a probably bigger hyper-rectangle, which causes changes in the

volume, the edge, and the number of points. We are interested in the amount of change resulting

from the merging process, since it is an important factor for clustering. The volume and edge

increments, ∆Vol(HR, P) and ∆Edge(HR, P) respectively, are formulated as follows:

 ∆Vol(HR, P) = Vol(HR ⊕ HR(P)) � Vol(HR) (5)

 ∆Edge(HR, P) = Edge(HR ⊕ HR(P)) � Edge(HR) (6)

3.2. Similarity between two points

 The similarity of two points in a multidimensional space, each of which is represented by a

multidimensional vector, is generally defined as a function of the Euclidean distance (hereafter,

referred to as ‘distance’) between those two points. The similarity between video frames can be

described as a function of the distance between the corresponding feature vectors. The value range

of the similarity between two objects is usually [0,1] while the range of the distance is [0, ∞]. The

distance is close to zero when two objects are similar, and becomes large if they are quite different.

But the similarity is the opposite. It is close to 1 when two objects are similar, while it is close to

zero when they are very dissimilar. The distance between two objects can be transformed into the

similarity by an appropriate mapping function. In this paper, a data space is normalized in the [0,1]n

hyper-cube, where the length of each dimension is 1, and thus the maximum allowable distance is

n , the length of a diagonal of the cube. This distance will be easily mapped to the similarity. We

will use the distance for the similarity measure for simplicity. The distance between two adjacent

(1)

(3)

(4)

(2)

8

points in a n-dimensional sequence S is given as:

 ∑
≤≤

−+=+
ni

ii jSjSjSjSdist
1

2])[]1[(])1[],[(

where Si[j] is a coordinate value of dimension i of the j-th point in sequence S.

3.3. Clustering Factors

 In this section, we discuss two clustering factors, geometric and semantic factors, that should be

considered for clustering MDS’s. The former considers the geometric characteristics of hyper-

rectangles, and is applied to both the segmentation and the clustering. On the other hand, the latter

considers the semantic relationship among elements in hyper-rectangles, and is related to the

segmentation only. We discuss those factors with intuitive examples in this section.

Geometric factor: Since geometric characteristics of a cluster have a great impact on the search

efficiency, we need to consider this factor importantly for clustering. Apparently, a cluster with

large volume in the search space has the higher possibility to be accessed by a query than that with

small volume. However, the edge for the hyper-rectangular cluster should also be considered as an

important factor in addition to the volume, as we have shown in [12]. Example 1 illustrates it.

Example 1. Let HR1 and HR2 be hexahedral clusters with sides a, a, and b (a<b), respectively in

the 3-dimensional space as shown in Figure 3. We are going to determine the cluster into which a

point P is being merged. In Figure 3.(a), we can see that ∆Vol(HR1, P) = ∆Vol(HR2, P) = a2⋅b,

∆Edge(HR1, P) = 4⋅a and ∆Edge(HR2, P) = 4⋅b. From the standpoint of the volume as a clustering

factor, both HR1 and HR2 can be candidates. On the other hand, in Figure 3.(b), ∆Edge(HR1, P) =

∆Edge(HR2, P) = 4⋅a, ∆Vol(HR1, P) = a2⋅b, and ∆Vol(HR2, P) = a3. In this case, both HR1 and HR2

can be candidates if we consider the edge as a clustering factor. However, we observe intuitively

that HR1 is an appropriate candidate for the former case while HR2 is good for the latter case, since

a < b. It means that both volume and edge should be considered as factors for the clustering. ■

 (a) Same volumes, different edges (b) Different volumes, same edges

 Figure 3. Clustering factors: the volume and the edge

Semantic factor: Since consecutive points in a video segment are closely related, that is,

semantically similar with each other, the distance between them needs to be considered as an

a a

HR1
HR1HR2

HR2P P

ab

b

a
a

a

a

b

(7)

9

important clustering factor. If a point is spatially far from the previous point of a sequence, a new

video segment should be started from the point. Example 2 shows this.

 Figure 4. Semantic factor of clustering

Example 2. Let us consider an MDS which consists of a series of points Pj for j = 1, 2, …, k, k+1,

…, as shown in Figure 4. We are going to determine whether a point Pk+1 is to be merged into a

video segment VS1 or not. Let ∆Vol(VS1, Pk+1) and ∆Edge(VS1, Pk+1) be the volume and the edge

increments respectively, resulting from the inclusion of Pk+1 into VS1, which are related to the

shaded area in the figure. If we consider only the volume and the edge as clustering factors, Pk+1

may be included in VS1, since ∆Vol and ∆Edge are relatively small. However, it will be better if a

new video segment VS2 is started from Pk+1 because Pk+1 is spatially far from Pk, that is, two points

are dissimilar semantically. It shows that the distance between two consecutive points should also

be considered as an important clustering factor. ■

3.4. Measurement of clustering quality

 In this section, we introduce the criterion functions that can be used to measure the quality of

clustering. As we mentioned the clustering requirements in Section 1.1, the clusters should be

dense wrt. the volume and the edge for efficient retrieval. It is accomplished by minimizing the

volume and the edge per point and by maximizing the number of points per cluster. As quantitative

measures to evaluate the quality, we use three parameters: the volume per point (VPP), the edge per

point (EPP), and the number of points per cluster (PPC). Suppose MDS S is represented by p

hyper-rectangles, HR1, …, HRp. Then, VPP, EPP, and PPC of S are defined as follows:

p

kHR
PPC

kHR

HREdge
EPP

kHR

HRVol
VPP pj j

pj j

pj j

pj j

pj j ∑
∑

∑
∑

∑ ≤≤

≤≤

≤≤

≤≤

≤≤ === 1

1

1

1

1
.

 ,
.

)(
 ,

.

)(

 The MCOST method proposed in [6] considers the volume factor only when it generates

clusters from sequences. However, as we claimed in Section 3.3 with some intuitive examples, the

edge factor should also be considered importantly during the clustering process. In this context, the

clustering quality should be evaluated wrt. both volume and edge factors.

(8)

P1
P2

Pk

Pk+1

∆Vol, ∆Edge

VS1

VS2

10

4. Video Segmentation

 Once multidimensional sequences have been generated from video clips, each sequence is

partitioned into video segments. The segmentation is the repeating process of merging a point of

the sequence into a hyper-rectangle if predefined criteria are satisfied. Consider a point P to be

merged to a hyper-rectangle HR = 〈L, H, k〉 in the unit space [0,1]n. Then, the segmentation is done

in such a way that if the merging of P into HR satisfies certain given conditions then it is merged

into the current segment, otherwise a new segment is started from the point. In this process, a

merging object is a hyper-rectangle or a point (when a new segment is started), while a merged

object is always a point. Let us start the discussion with the formal definition of a video segment as

follows:

Definition 3 (Video segment). A video segment VS that contains k points in the temporal order, Pj

for j = 1, 2, …, k, is defined as follows: VS = 〈sid, SP, HR〉 , where sid is the segment-id, SP is the

starting point of VS, HR = 〈L, H, k〉 such that L = {(L1, L2, …, Ln) | Li = min1≤j≤k (Pj
i)} and H = {(H1,

H2, …, Hn) | Hi = max1≤j≤k (Pj
i)} for i = 1, 2, …, n. ■

To merge a point into a segment during the segmentation process, our method uses predefined

geometric and semantic criteria that should be satisfied. In the next subsections, we discuss those

criteria and our proposed algorithm.

4.1. Geometric criterion

 First, we introduce the geometric bounding condition with respect to the volume and the edge

of a video segment. In [12], we introduced the concept of a unit hyper-cube which is defined as

follows:

Definition 4 (Unit hyper-cube). Let HRS be a hyper-rectangle that tightly bounds all K points in a

video sequence S. Then, a unit hyper-cube uCUBE is defined as a cube in the space [0,1]n, occupied

by a single point assuming all points are uniformly distributed over the hyper-space of HRS. If its

side-length is e, its volume and edge will be:

 n SnnSn

K

HRVol
nenuCUBEEdge

K

HRVol
euCUBEVol

)(
22)(,

)(
)(11 ⋅⋅=⋅⋅=== −−

If all points of S are uniformly scattered into the space of HRS, we can think one point is allocated

to a unit hyper-cube. We can figure out intuitively that each point of S forms a hyper-rectangle

whose shape is a unit hyper-cube. However, the uniform distribution is not likely to occur in reality.

Points in a sequence usually show a clustered distribution in the real world. For instance, frames in

a video segment are very similar, and thus the points of a segment are clustered together. The

uniform distribution provides a bound in determining whether to merge a point into a video

segment or not. The bounding thresholds wrt. volume and edge, τvol and τedge respectively for a

(9)■

11

sequence S, are given as follows:

 enuCUBEEdgeeuCUBEVol n
edge

n
vol ⋅⋅==== −12)(,)(ττ (10)

Definition 5 (Geometric bounding condition). Suppose a point P is to be merged into a video

segment VS in the space [0,1]n. Then, the geometric bounding condition is the condition that must

be satisfied to merge P into VS and it is defined as follows:

 ∆Vol(VS, P) ≤ τvol ¯ ∆Edge(VS, P) ≤ τedge ■ (11)

Lemma 1. The clustering that satisfies the geometric bounding condition guarantees better

clustering quality than the case of the uniform distribution, wrt. VPP and EPP.

Proof. See Appendix A.

4.2. Semantic criterion

 Another important criterion discussed in Section 3.3 is a semantic factor. To determine whether

to merge a point into a current video segment or not, the distance between the point and the

previous point of it in the segment is examined. If the distance exceeds a predefined threshold, then

a new segment is started from the point. Let us consider an MDS that has K points, Pj for j = 1, 2,

…, K. Then, the threshold τdist is the mean distance between all pairs of adjacent points in the

sequence, and defined as follows:

 ∑
−≤≤

+⋅
−

=
11

1),(
1

1

Kj
jjdist PPdist

K
τ

Definition 6 (Semantic bounding condition). Consider a point Pk+1 to be merged into a video

segment VS, whose previous point is Pk, in the space [0,1]n. Then, the semantic bounding condition

is the condition that must be satisfied to merge Pk+1 into VS and it is defined as follows:

 dist(Pk, Pk+1) ≤ τdist ■ (13)

Satisfying this condition guarantees that the distance between any pair of two consecutive points in

the video segment is equal to or less than the mean distance between all pairs of consecutive points

in the sequence. It means that consecutive frames in a video segment have higher similarity than

the mean similarity of those in the whole sequence.

4.3. Algorithm of video segmentation

 Merging a point into a video segment is allowed if both conditions defined in Equation 11 and

13 are satisfied. For convenience, we can represent a point Pt in the video segment form by placing

sid ← NewSID(), SP ← Pt, and HR ← HR(Pt), that is, 〈NewSID(), Pt, HR(Pt)〉 , where NewSID() is a

function that generates the sid of a video segment. This video segment produced by a point Pt is

denoted by VS(Pt). To describe the process of merging a point, we introduce an algorithm

MERGE_POINT that has two arguments with a positional order. The first argument is a merging

(12)

12

object that can be a video segment, while the second one is a merged object that is a point. This

algorithm is described in Figure 5.

 Algorithm VIDEO_SEGMENTATION in Figure 6 describes the segmentation process for a

single MDS. It takes an MDS and minPts as input parameters, and returns the sets of video

segments and outliers. In Step 0, it computes thresholds wrt. volume, edge, and distance for an

MDS, to get bounding conditions. In Step 1, it evaluates geometric and semantic bounding

conditions for each point of the MDS to determine whether to merge the point into the current

segment or not. After this process, the number of points in each video segment is checked if it is

less than minPts. All points in the segment with the value lower than minPts are regarded as

outliers, and treated differently for the subsequent indexing and retrieval process.

Algorithm MERGE_POINT
Input: video segment VSIN, point Pt
Output: video segment VSOUT

Step 0: /* Merge a point into a video segment */
VSOUT.sid ← VSIN.sid
VSOUT.SP ← VSIN.SP
VSOUT.HR ← VSIN.HR ⊕ HR(Pt)

Step 1: return VSOUT

 Figure 5. Algorithm MERGE_POINT

Algorithm VIDEO_SEGMENTATION
Input: MDS Si with K points, minimum number of points per video segment minPts
Output: set of video segments VSi, set of outliers Oi

Step 0: /* Initialization */
VSi ← φ, Oi ← φ
compute τvol, τedge, and τdist for Si

VScurrent ← VS(First point P1 of Si)
Step 1: /* Video segment generation */

 for each successive point Pj (2≤j≤K) of Si

if ∆Vol(VScurrent.HR, HR(Pj)) ≤ τvol �
∆Edge(VScurrent.HR, HR(Pj)) ≤ τedge �
dist(Pj-1, Pj) ≤ τdist then

VScurrent ← MERGE_POINT(VScurrent, Pj)
else

if VScurrent.HR.k ≤ minPts then
Oi ← Oi ∪ {all points in VScurrent}

else
VSi ← VSi ∪ {VScurrent}
VScurrent ← VS(Pj)

end if
 end if
 end for

Step 2: return set VSi, set Oi

 Figure 6. Algorithm VIDEO_SEGMENTATION

13

5. Video clustering

 After video segments are generated from an MDS, those segments that are spatially close need

to be merged together to promote the clustering quality defined in Equation 8. It is important to

determine whether two hyper-rectangles of video segments or clusters are to be merged or not.

Merging two hyper-rectangles is allowed as long as the predefined condition is satisfied. This

process generates larger clusters gradually to optimize given measurement criteria. We formally

define the video cluster as follows:

Definition 7 (Video cluster). A video cluster VC with r video segments in a temporal order, VSj for

j = 1, 2, …, r, is defined as follows: VC = 〈cid, slist, HR〉 , where cid is a cluster-id, slist is an

ordered list of sid’s wrt. the temporal relationship among VS’s, HR = 〈L, H, k〉 such that L = {(L1, L2,

…, Ln) | Li = min1≤j≤r (VSj.HR.Li)} and H = {(H1, H2, …, Hn) | Hi = max1≤j≤r (VSj.HR.Hi)} for i = 1, 2,

…, n, and k = Σ1≤j≤r (VSj.HR.k). ■

5.1. Placement of two hyper-rectangles

 To determine whether two hyper-rectangles are to be merged or not, the spatial placement of

them is important. There are three types of placements based on their relative positions: inclusion,

intersection, and disjunction. In this section, we give an analysis on each placement with its

possibility of merging. Figure 7 illustrates these placements.

Suppose that by merging two hyper-rectangles, HR1 and HR2, a merged hyper-rectangle HRm is

generated, that is, HRm = HR1 ⊕ HR2. Let VPPm and EPPm be the VPP and EPP of the merged

hyper-rectangle, and VPPn and EPPn be those for the case of non-merging. Then, the following

holds by Equation 8:

..

)()(
 ,

..
)()(

.

)(

.

)(
 ,

.

)(

.

)(

21

21

21

21

2121

kHRkHR

HREdgeHREdge
EPP

kHRkHR

HRVolHRVol
VPP

kHR

HRHREdge

kHR

HREdge
EPP

kHR

HRHRVol

kHR

HRVol
VPP

nn

mm

m
m

mm

m
m

+
+=

+
+=

⊕==⊕== (14)

(15)

HR2

HR2

HR2

HR1

 (a) Inclusion (b) Intersection (c) Disjunction

 Figure 7. Placement of two hyper-rectangles

HR1 HR1

14

(a) Inclusion (Without loss of generality, we assume HR1 ⊇ HR2)

 In this case, we derive the following using Equation 14 and 15 since Vol(HRm) = Vol(HR1).

.
.

)(
 Thus,

 .
.

)(

.

)()(

..

)()(

2

22

21

21

kHR

HRVol
VPPVPP

kHR

HRVol
VPP

kHR

HRVolHRVol

kHRkHR

HRVolHRVol
VPP

m
nm

m
m

m

m
n

−=

+=+=
+
+=

.
2

1
 Therefore,

.
.

)(

.

)(

.

)(
0 , assumption By the 12

21

nmn

m
m

m

mm

VPPVPPVPP

VPP
kHR

HRVol

kHR

HRVol

kHR

HRVol
HRHR

≤≤

==≤≤⊇

Similarly, since Edge(HRm) = Edge(HR1), we derive:

nmn

m
mm

nm

m
m

m

m
n

EPPEPPEPP

EPP
kHR

HREdge

kHR

HREdge
EPPEPP

kHR

HREdge
VPP

kHR

HREdgeHREdge

kHRkHR

HREdgeHREdge
EPP

≤≤

≤≤−=

+=+=
+
+=

2

1

 :hold following the,
.

)(
0 Since .

.

)(
 Thus,

 .
.

)(

.

)()(

..

)()(

22

22

21

21

Since VPPm ≤ VPPn and EPPm ≤ EPPn by Equation 16 and 17, the clustering is always better than

non-clustering. Therefore, when a hyper-rectangle is included in the other one, it is naturally

allowed to merge two hyper-rectangles. The case of VPPm = VPPn/2 and EPPm = EPPn/2 occurs

when two hyper-rectangles are identical.

(b) Intersection (HR1 ∩ HR2 ≠ φ)

 To get better clustering quality wrt. VPP and EPP than the case of non-clustering, VPPm ≤ VPPn

and EPPm ≤ EPPn should hold. By Equation 14 and 15, we derive:

n
mm

m
m

n
mm

m
m

EPP
kHRkHR

HREdgeHREdge

kHR

HRHREdge

kHR

HREdge
EPP

VPP
kHRkHR

HRVolHRVol

kHR

HRHRVol

kHR

HRVol
VPP

=
+
+≤⊕==

=
+
+≤⊕==

..
)()(

.
)(

.
)(

..

)()(
.

)(
.

)(

21

2121

21

2121

By Equation 18 and 19, the conditions to get the better quality is: Vol(HR1 ⊕ HR2) ≤ Vol(HR1) +

Vol(HR2) and Edge(HR1 ⊕ HR2) ≤ Edge(HR1) + Edge(HR2). Let us consider the condition wrt. the

edge. When two hyper-rectangles intersect, then the edges of those two rectangles intersect in every

dimension. By geometric characteristics of a hyper-rectangle, the following lemma holds:

Lemma 2. When two hyper-rectangles, HR1 and HR2, intersect, then the following always holds:

 Edge(HR1 ⊕ HR2) ≤ Edge(HR1) + Edge(HR2) (20)

Proof. See Appendix A.

(17)

(16)

(18)

(19)

15

Since Edge(HR1 ⊕ HR2) ≤ Edge(HR1) + Edge(HR2) always holds by Lemma 2, the condition to get

the better quality will be: Vol(HR1 ⊕ HR2) ≤ Vol(HR1) + Vol(HR2)

(c) Disjunction (HR1 ∩ HR2 = φ)

 When two hyper-rectangles are disjoint, it is clear from Figure 7.(c) that Vol(HR1 ⊕ HR2) is

always greater than Vol(HR1) + Vol(HR2), while the relationship between Edge(HR1 ⊕ HR2) and

Edge(HR1) + Edge(HR2) varies. Using Equation 14 and 15, we derive:

n

mm

m
m VPP

kHRkHR

HRVolHRVol

kHR

HRHRVol

kHR

HRVol
VPP =

+
+>⊕==

..

)()(

.

)(

.

)(

21

2121

Because we consider both VPP and EPP as the clustering quality, we conclude that when two

hyper-rectangles are disjoint, then the clustering quality becomes worse if we merge two rectangles,

regardless of EPP. Thus, the merging of hyper-rectangles is not allowed in this case.

 By considering all three cases that are discussed above, we finally conclude that the following

lemma holds.

Lemma 3. Merging two hyper-rectangles, HR1 and HR2, of video segments or video clusters

guarantees better clustering quality wrt. VPP, EPP, and PPC than non-merging if the following

condition holds:

 Vol(HR1 ⊕ HR2) ≤ Vol(HR1) + Vol(HR2) (22)

Proof. See Appendix A.

Lemma 3 states that when two hyper-rectangles are merged, the expanded volume ExpVol by

merging, depicted as the shaded space in Figure 7.(b), must be equal to or less than the volume of

the intersected space of two rectangles. That is:

Vol(HR1 ⊕ HR2) = Vol(HR1 ∪ HR2) + ExpVol = Vol(HR1) + Vol(HR2) − Vol(HR1 ∩ HR2) + ExpVol

Vol(HR1 ⊕ HR2) − (Vol(HR1) + Vol(HR2)) = − Vol(HR1 ∩ HR2) + ExpVol

By Equation 22, − Vol(HR1 ∩ HR2) + ExpVol ≤ 0. Therefore, ExpVol ≤ Vol(HR1 ∩ HR2) holds.

5.2 Algorithm of video clustering

 Merging two hyper-rectangles is allowed only when the condition specified in Equation 22 is

satisfied. We can represent a video segment VS in the video cluster form by placing cid ←

NewCID(), slist ← AddItem(VS.sid), and HR ← VS.HR, that is, 〈NewCID(), AddItem(VS.sid),

VS.HR〉 . Here, NewCID() is a function that generates the cid of a video cluster, and the function

AddItem(VS.sid) adds the sid of VS to the slist. This video cluster generated by the video segment

VS is denoted by VC(VS). Algorithm MERGE_CLUSTERS merges two clusters. It takes two input

video clusters and generates a merged video cluster, as described in Figure 8.

 Algorithm VIDEO_CLUSTERING shown in Figure 9 performs the clustering of video segments

that are generated by algorithm VIDEO_SEGMENTATION. It takes the set of video segments of an

MDS as an input, and produces the set of video clusters. Each video segment in the set is

(21)

16

represented in the video cluster form in Step 0. Each pair of video clusters is examined in Step 1

wrt. the condition specified in Lemma 3 to determine whether to merge two clusters or not.

Algorithm MERGE_CLUSTERS
Input: video clusters VCIN1, VCIN2
Output: video cluster VCOUT

Step 0: /* Merge two video clusters */
VCOUT.cid ← NewCID()
for each item VSa.sid in VCIN1.slist

VCOUT.slist ← AddItem(VSa.sid)
end for
for each item VSb.sid in VCIN2.slist

VCOUT.slist ← AddItem(VSb.sid)
end for
VCOUT.HR ← VSIN1.HR ⊕ VSIN2.HR

Step 1: return VCOUT

 Figure 8. Algorithm MERGE_CLUSTERS

Algorithm VIDEO_CLUSTERING
Input: set of video segments VSi for an MDS Si

Output: set of video clusters VCi

Step 0: /* Initialization */
 VCi ← φ

for each item VSr in VSi

VCr ← VC(VSr)
VCi ← VCi ∪ {VCr}

end for
Step 1: /* Video cluster generation */

 for each pair (VCa, VCb) in VCi

if Vol(VCa.HR ⊕ VCb.HR) ≤ Vol(VCa.HR) + Vol(VCb.HR) then
VCc ← MERGE_CLUSTERS(VCa, VCb)
VCi ← VCi − { VCa, VCb}
VCi ← VCi ∪ {VCc}

end if
 end for

Step 2: return set VCi

 Figure 9. Algorithm VIDEO_CLUSTERING

5.3 Overall algorithm and complexity

 By consolidating algorithms, VIDEO_SEGMENTATION and VIDEO_CLUSTERING that are

described in Figure 6 and 9 respectively, we present the overall algorithm in Figure 10 to cluster a

data set of MDS’s. Except the data set itself, the algorithm takes only one input parameter minPts

to determine outliers, and returns a set of video clusters and a set of outliers. Even though it returns

a set of video clusters excluding video segments, the information on the video segments is not lost

since each video cluster holds a list of them by Definition 7.

17

Algorithm CLUSTER_VIDEODATASET
Input: data set of MDS’s, minPts
Output: set of video cluster VC, set of outliers O
Step 0: /* Initialization */

VC ← φ , O ← φ
Step 1: /* Video clustering process */

for each MDS Si in the data set (1≤i≤N)
VSi, Oi ← VIDEO_SEGMENTATION(Si, minPts)
O ← O ∪ Oi

VCi ← VIDEO_CLUSTERING(VSi)
VC ← VC ∪ VCi

end for
Step 2: return set VC , set O

 Figure 10. Algorithm CLUSTER_VIDEODATASET

 By algorithm CLUSTER_VIDEODATASET in Figure 10, it is clear that its complexity is O(N)

wrt. the number of sequences N in a database. As for the number of points K in each sequence, we

observe in algorithm VIDEO_SEGMENTATION of Figure 6 that the complexity is the order of K in

Step 0 for the computation of threshold values, and also the order of K for the for-loop of Step 1.

We do not consider the complexity wrt. the number of video segments or clusters since it is

negligibly small compared to K and the value of it varies inside the algorithm. Consequently, the

complexity of the overall algorithm is O(NK), which is linear wrt. N and K.

6. Experiments

 In order to evaluate the effectiveness of our proposed method, we have conducted experiments

on data sets of various real-world videos such as TV news, dramas, and animation films. Our

experiment focuses on showing the clustering quality of the method with respect to predefined

measurements mentioned in Section 3.4. In this section, we describe our preparation for the

experiment and give the results with brief analyses.

6.1. Experimental Preparation

 For the experiment, we generated video clips of different lengths from various video data

sources and extracted RGB color features from each frame of the video clips. According to the

RGB feature values, a single frame is mapped to a point in a multidimensional space, and thus,

each video clip is represented by an MDS. Experiments were conducted by using 3-dimensional

data sets for convenience, but our method does not restrict the dimensionality of data sets.

 Figure 11 depicts a sample sequence in the [0,1]3 unit space. It is generated from a video clip

with 3025 frames which is a part of a TV news program. Each frame of the clip in the figure is

represented by a point with connected lines to adjacent points according to the temporal

relationship. We executed the segmentation algorithm to get a set of video segments and a set of

18

outliers for each sequence in the data sets. From the video segments identified in this process, video

clusters are produced by the video clustering algorithm. Figure 12 depicts the result of the

clustering process, showing video clusters overlapped with the sequence in Figure 11. In the figure,

a point that is not contained in any hexahedron is regarded as an outlier.

 Figure 11. A 3-dimensional sequence generated from a video clip

 Figure 12. A 3-dimensional sequence with video clusters

 Our experimental data sets consist of 3-dimensional sequences of different lengths, from 30

frames to 9000 frames (video clips of one second to five minutes length). Total number of clips

used in the experiment is 6,984. Table 2 summarizes these data sets.

6.2. Experimental Results

6.2.1. Evaluation Parameters

 We discussed two clustering factors, geometric and semantic factors, that should be considered

for clustering MDS’s. To measure the clustering quality on the geometric characteristics of video

19

 Table 2. Test data sets used in the experiment

Data set name
Length of video clips

(#frames)
Number of video

clips
v1 30 < L ≤ 500 1,527
v2 500 < L ≤ 1000 1,216
v3 1000 < L ≤ 2000 1,032
v4 2000 < L ≤ 3000 836
v5 3000 < L ≤ 4000 645
v6 4000 < L ≤ 5000 508
v7 5000 < L ≤ 6000 415
v8 6000 < L ≤ 7000 336
v9 7000 < L ≤ 8000 262

v10 8000 < L ≤ 9000 207
Total 6,984

segments and clusters, we use VPP, EPP, and PPC defined in Equation 8 as evaluation parameters.

In addition to the geometric characteristics, we measure the semantic relationship among points in

the video segment by using the mean distance MeanDist between consecutive points in segments.

Let us consider a video segment VS with k points, Pj for j = 1, 2, …, k. Then, the summation of

Euclidean distances between consecutive points for VS, DistSumVS, will be:

 ∑ −≤≤ +=
11 1),(

kj jjVS PPdistDistSum

When an MDS S is composed of p video segments, VSh for h = 1, 2, …, p, the MeanDist for S is

defined as follows:

∑
∑

≤≤

≤≤

−
=

ph h

ph VS

S kHRVS

DistSum
MeanDist h

1

1

)1..(

6.2.2. Results and Analyses

 We compared our method to the MCOST algorithm proposed in [6] since other related

algorithms [10, 11] are based on it with slight modifications. The experimental results are shown in

Figure 13-17. In the figures, the results by the segmentation and the clustering of our method are

denoted as V_SEG and V_CL respectively, while that by the MCOST algorithm is denoted as

MCOST.

Volume per point: The volume of the hyper-rectangle per point (VPP) generated by each

algorithm is depicted in Figure 13 over different lengths of video data sets. In the figure, we can

observe that VPP’s of V_SEG and V_CL decrease more sharply than that of MCOST as the length

of the video clip increases. For long sequences (say v7 through v10), VPP of V_CL is 29% to 42%

of that of MCOST. It is because our method reflects characteristics of an individual sequence

during the segmentation process, including the length of the sequence. That is, a unit hyper-cube,

which is used as the geometric bounding condition for segmentation, is likely to be dense as the

(23)

20

a_aav\aa

f_aav^ah

b_aav^ag

b_fav^ag

c_aav^ag

c_fav^ag

d_aav^ag

d_fav^ag

e_aav^ag

§b §c §d §e §f §g §h §i §j §ba

�
�
�

~t���

���vx

��t}

 Figure 13. Volume per point comparison

a

a_aab

a_aac

a_aad

a_aae

a_aaf

a_aag

a_aah

§b §c §d §e §f §g §h §i §j §ba

v
�
�

~t���

���vx

��t}

 Figure 14. Edge per point comparison

ha

ia

ja

baa

bba

bca

bda

bea

bfa

bga

bha

§b §c §d §e §f §g §h §i §j §ba

�
�
t

~t���

���vx

��t}

 Figure 15. Number of points per cluster

length of a sequence increases. It is based on the phenomenon that a video clip has higher

probability to have similar segments, as it becomes longer. For instance, a long news video clip

may have many similar scenes in which the same anchor appears. It is natural that a video clip has

dense segments when the unit hyper-cube of it becomes dense, since its volume is used as a

bounding threshold for segmentation. In addition, our method is able to handle outliers properly,

21

which also contributes to generating dense segments.

 Other interesting observation is that for short sequences (say, v1) VPP’s of V_SEG and V_CL

are larger than that of MCOST. The unit hyper-cube of the clip with a few segments (say 2-4

segments) may occupy large space if the segments are located far away from each other in the

space. Clearly, a sparse unit-cube causes the video clip to have sparse segments by the

segmentation algorithm. From the viewpoint of the volume factor, we observe that our method is

more efficient than MCOST for video clips longer than approximately 500 frames. In reality, most

of video clips are longer than 500 frames.

 On the other hand, VPP of V_CL shows a steady enhancement compared to that of V_SEG,

since video clusters are generated based on Lemma 3 in Section 5.

Edge per point: As for the edge of the hyper-rectangle per point (EPP), Figure 14 shows

considerable differences among MCOST, V_SEG, and V_CL. EPP of V_CL is 52% to 79% of that

of MCOST, and EPP of V_SEG is 78% to 89% of that of MCOST. This enhancement results from

the fact that our method considers the edge as an important clustering factor as well as the volume.

The capability of handling outliers may also contribute to the enhancement. EPP’s of V_SEG and

V_CL decrease as the length of a video clip increases, which is caused by the same reason stated in

VPP’s case. EPP of V_CL shows 66% to 88% of that of V_SEG, while VPP of V_CL shows a small

enhancement compared to that of V_SEG. It illustrates that merging video segments in the video

clustering process improves EPP much rather than VPP.

Number of points per cluster: Related to VPP and EPP discussed above, the number of points per

cluster (PPC) is shown in Figure 15. As we can observe in the figure, PPC’s of MCOST and V_SEG

show a little difference. PPC of V_SEG shows a slight enhancement over all video data sets,

compared to MCOST. However, the clustering process that merges multiple segments into a cluster

enhances PPC greatly. PPC of V_CL is 1.30 to 1.85 times better than that of MCOST.

 From experimental results regarding VPP, EPP, and PPC, we conclude that our method

generates denser clusters than MCOST wrt. the volume and edge, and the densities of clusters

become higher as video clips become longer.

a_aadf

a_aaea

a_aaef

a_aafa

a_aaff

a_aaga

a_aagf

§b §c §d §e §f §g §h §i §j §ba

~
�
�
�
u
�¤
¥

~t���

���vx

 Figure 16. Mean distance between consecutive points in segments

22

a_aaa

a_aaf

a_aba

a_abf

a_aca

a_acf

a_ada

a_adf

a_aea

§b §c §d §e §f §g §h §i §j §ba

�
¦
¥�
��
£
�
�
¥�

 Figure 17. Ratio of outliers with respect to the total points in sequences

Mean distance between points in segments: As an indicator to show the semantic relationship

between points in the segment, the MeanDist is evaluated as shown in Figure 16. Apparently, the

small value of the MeanDist indicates that the elements in segments are semantically closer than

the large value. The MeanDist of V_SEG is 85% to 97% of that of MCOST over all video data sets,

which illustrates that video segments produced by our method have a closer semantic relationship

among their elements than those produced by MCOST. It is because our method considers the

semantic bounding condition described in Definition 6 as an important clustering factor, while

MCOST does not.

Ratio of outliers: Figure 17 shows the ratio of the number of outliers versus the number of total

points in sequences. To determine outliers, minPts is set to 5. We believe this choice is reasonable

in the video application domain, since it takes approximately 1/6 sec. to play a 5-frame video and

the segments with frames less than 5 are nearly meaningless in reality. A 1/6 sec. playing time may

not be perceived well by the human visual system. Starting from 3.2% for short sequences, it shows

an almost steady rate of 1.0% for sequences longer than 1000 frames. These outliers are treated

separately from video clusters for similarity search processing.

7. Conclusions

 The retrieval of video data sets is one of the great potential areas in database applications, even

though it has not been widely studied. For an efficient retrieval of video data sets, the clustering

process is essential as a foundational work for representing, indexing, and storing video data sets.

In this paper, we have investigated the segmentation and clustering of large video data sets. To

solve the problem, we have first discussed clustering factors considering geometric and semantic

characteristics of clusters, and defined the measures to evaluate the clustering quality. Based on

these clustering factors and measures, we proposed an effective clustering method that has the

following desirable properties:

z It maintains the temporal and semantic relationship among elements within a video cluster.

23

z It generates dense clusters wrt. the volume and the edge which satisfy the predefined criteria

of clustering quality.

z It identifies outliers properly in order to deal with them differently from video clusters in the

subsequent retrieval process.

 Another important property of our method is that most of parameter values for clustering are

determined using the characteristics of the video clip, not supplied by the user. It can be of benefit

from the following two aspects: First, our method needs only one parameter minPts to determine

outliers as an input. It is desirable to minimize the number of input parameters since it is not easy to

get the domain knowledge in advance in order to set input values, such as the number of clusters to

be generated or the minimum distance between clusters. Second, our method generates clusters

considering the properties of a video clip, such as the type of a video. For example, the scenes of a

news video are not frequently changed while those of a cartoon or an animation film are frequently

changed.

 We have performed experiments with various real video data sets and examined the clustering

quality. Our method has shown considerable effectiveness wrt. VPP, EPP, PPC, and MeanDist as

shown in the experimental results. As a future work, we plan to study the similarity search method

for large vedeo data sets based on the video segments and clusters proposed in this paper.

References

[1] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fart algorithms for projected

clustering, in: Proceedings of ACM SIGMOD Int’l Conference on Management of Data,

Pennsylvania, 1999, pp. 61-72.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high

dimensional data for data mining applications, in: Proceedings of ACM SIGMOD Int’l

Conference on Management of Data, Washington, 1998, pp. 94-105.

[3] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The R*-tree: an efficient and robust

access method for points and rectangles, in: Proceedings of ACM SIGMOD Int’l Conference

on Management of Data, New Jersey, 1990, pp. 322-331.

[4] S. Berchtold, D. Keim, and H. Kriegel, The X-tree: an index structure for high-dimensional

data, in: Proceedings of Int’l Conference on Very Large Data Bases, India, 1996, pp. 28-39.

[5] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering

clusters in large spatial databases with noise, in: Int'l Conference on Knowledge Discovery in

Databases and Data Mining, Oregon, 1996, pp. 226-231.

[6] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in time-series

databases, in: Proceedings of ACM SIGMOD Int’l Conference on Management of Data,

Minnesota, 1994, pp. 419-429.

24

[7] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D.

Lee, D. Petkovic, D. Steele, and P. Yanker, Query by image and video content: the QBIC

system, IEEE Computer, 28(1995), 23-32.

[8] S. Guha, R. Rastogi, and K. Shim, CURE: An efficient clustering algorithm for large databases,

in: Proceedings of ACM SIGMOD Int’l Conference on Management of Data, Washington,

1998, pp. 73-84.

[9] A.Guttman, R-trees: a dynamic index structure for spatial searching, in: Proceedings of ACM

SIGMOD Int’l Conference on Management of Data, Massachusetts, 1984, pp. 47-57.

[10] V. Kobla, D. Doermann, and C. Faloutsos, Video Trails: Representing and visualizing

structure in video sequences, in: Proceedings of ACM Multimedia, Washington, 1997, pp. 335-

346.

[11] S. L. Lee, S. J. Chun, D. H. Kim, J. H. Lee, and C. W. Chung, Similarity search for

multidimensional data sequences, in: Proceedings of IEEE Int’l Conference on Data

Engineering, California, 2000, pp. 599-608.

[12] S. L. Lee, and C. W. Chung, On the effective clustering of multidimensional data sequences,

Technical Report CS-TR-2000-154, in http://cs.kaist.ac.kr/library/tr/, KAIST, 2000.

[13] R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining, in:

Proceedings of Int’l Conference on Very Large Data Bases, Chile, 1994, pp. 144-155.

[14] T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+ tree: a dynamic index for multi-

dimensional objects, in: Proceedings of Int’l Conference on Very Large Data Bases, England,

1987, pp. 507-518.

[15] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An efficient data clustering method for

very large databases, in: Proceedings of ACM SIGMOD Int’l Conference on Management of

Data, Canada, 1996, pp. 103-114.

Appendix A. Proofs of Lemmas

Lemma 1. The clustering that satisfies the geometric bounding condition guarantees better

clustering quality than the case of the uniform distribution, wrt. VPP and EPP.

Proof. Suppose that the segmentation of MDS S generates p video segments and the set is VS =

{VS1, …, VSp}. Let VSj (1≤j≤p) be generated by merging a point u times starting with a single point,

and the increments of volume and edge by the lth merging (1≤l≤u) be ∆Volj,l and ∆Edgej,l,

respectively. Since VSj.HR.k = 1, Vol(VSj.HR) = 0, and Edge(VSj.HR) = 0 in the initial state, after

merging u times, we get: VSj.HR.k = 1 + u, Vol(VSj.HR) = Σ1≤l≤u∆Volj,l, and Edge(VSj.HR) =

Σ1≤l≤u∆Edgej,l. Since every merging step satisfies Equation 11, the following holds: ∆Volj,l ≤ en and

∆Edgej,l ≤ 2n-1 ⋅ n ⋅ e . Thus, we derive:

 Vol(VSj.HR) = Σ1≤l≤u ∆Volj,l ≤ Σ1≤l≤u e
n < (1+u) ⋅ en = VSj.HR.k ⋅ en

25

 Edge(VSj.HR) = Σ1≤l≤u ∆Edgej,l ≤ Σ1≤l≤u (2
n-1⋅n⋅e) < (1+u)⋅2n-1⋅n⋅e = VSj.HR.k⋅2n-1⋅n⋅e

Suppose that the volume and the edge per point wrt. MDS S after segmentation are VPPS and EPPS,

and those of the uniform distribution are VPP0 and EPP0 respectively. Using Equation 8 and above

equations, we conclude:

0
1

1

1

1

1

1

0

1

1

1

1

2
..

2)..(

..

).(

..

)..(

..

).(

EPPen
kHRVS

enkHRVS

kHRVS

HRVSEdge
EPP

VPPe
kHRVS

ekHRVS

kHRVS

HRVSVol
VPP

n

pj j

n

pj j

pj j

pj j

S

n

pj j

n

pj j

pj j

pj j

S

=⋅⋅=
⋅⋅⋅

<=

==
⋅

<=

−

≤≤

−
≤≤

≤≤

≤≤

≤≤

≤≤

≤≤

≤≤

∑
∑

∑
∑

∑
∑

∑
∑

Lemma 2. When two hyper-rectangles, HR1 and HR2, intersect, then the following always holds:

 Edge(HR1 ⊕ HR2) ≤ Edge(HR1) + Edge(HR2) (20)

Proof. Let ei(HR) be the edge length of HR in dimension i. When HR1 and HR2 intersect, the edges

of HR1 and HR2 intersect in every dimension. It is clear that ei(HR1 ⊕ HR2) ≤ ei(HR1) + ei(HR2) for i

= 1, 2, …, n. If we consider all dimensions, then:

Edge(HR1 ⊕ HR2) = Σ1≤i≤n ei(HR1 ⊕ HR2)

≤ Σ1≤i≤n (ei(HR1) + ei(HR2))

= Σ1≤i≤n ei(HR1) + Σ1≤i≤n ei(HR2)

= Edge(HR1) + Edge(HR2).

Therefore, Lemma 2 holds. ■

Lemma 3. Merging two hyper-rectangles, HR1 and HR2, of video segments or video clusters

guarantees better clustering quality wrt. VPP, EPP, and PPC than non-merging if the following

condition holds:

 Vol(HR1 ⊕ HR2) ≤ Vol(HR1) + Vol(HR2) (22)

Proof. When the above condition holds, we derive the following:

 .
..

)()(

..

)(

21

21

21

21
nm VPP

kHRkHR

HRVolHRVol

kHRkHR

HRHRVol
VPP =

+
+≤

+
⊕=

Since Vol(HR1 ⊕ HR2) ≤ Vol(HR1) + Vol(HR2) holds when HR1 and HR2 intersect, we know that

Edge(HR1 ⊕ HR2) ≤ Edge(HR1) + Edge(HR2) always holds from Lemma 2. Thus, we derive:

 .
..

)()(

..

)(

21

21

21

21
nm EPP

kHRkHR

HREdgeHREdge

kHRkHR

HRHREdge
EPP =

+
+≤

+
⊕=

Let PPCm be PPC of a merged hyper-rectangle and PPCn for the case of non-merging. Then, it is

clear by Equation 8 that PPCn is (HR1.k + HR2.k) / 2 while PPCm is (HR1.k + HR2.k). Thus, PPCm >
PPCn. Therefore, Lemma 3 holds. ■

 ■

