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Abstract

In recent years, spatio-temporal databases have been studied intensively. This paper
proposes how to process k closest pair queries in spatio-temporal databases for the
first time. A spatio-temporal k closest pair query continuously searches the k closest
pairs between a set of spatial objects and a set of moving objects for a specified time
interval of the query. To maintain the order of the k closest pairs, we use a time
function that can represent the change in distance between a spatial object and a
moving object as time passes.

For efficient processing of k closest pair queries, we present an event-based struc-
ture, instead of a simple split list structure to avoid unnecessary computations, along
with a distance bound used to prune unnecessary node accesses. Our event-based
method is 9 to 43 times faster, compared to a method using a simple split list struc-
ture. Also, our event-based structure can be applied to process spatio-temporal k
nearest neighbor queries. In various experiments, our event-based approach is 11 to
46 times faster than an existing approach for processing spatio-temporal k nearest
neighbor queries.
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1 Introduction

In recent years, with the development of technologies such as wireless com-
munication systems and global positioning systems (GPS), spatio-temporal
databases have been studied intensively [13, 21, 11]. Research for moving ob-
jects can be classified into two groups according to the positions of the objects:
the past positions and the future locations. Our paper is concerned with the
future positions of moving objects. An example of a query on future locations
is as follows: “which cars will be inside the query window 20 minutes from



now?” Cars correspond to moving objects that move as time passes. To rep-
resent moving objects, we use a data model proposed by Sistla et al [14]. This
model can manage the future positions of an object with the latest update
information: the spatial position (z1,x9), the velocity (vi,vs), and the last
update time (¢,) where subscripts 1 and 2 indicate each dimension in the 2-
dimensional space. The future locations of a moving object can be represented
as a function of time ¢: (zq + (t — t,) X v, 29 + (t — t,) X vy). Various recent
works [1, 9, 12, 13, 18, 20] have been developed on this model as well.

We apply this model to solve k closest pair queries (K-CPQs) and k nearest
neighbor queries (K-NNQs) in spatio-temporal databases. A continuous near-
est neighbor query [19] retrieves the nearest neighbor of every point on an
arrow as shown in Figure 1 (e.g., find the nearest restaurant on my route from
the position at time #' to the position at time t*). The result of the continu-
ous nearest neighbor query is {f(tl, t1,01), (t1, o, 03), (to, th, 05)}, meaning that
the nearest neighbor for the time interval [#, tl} is 01, the nearest neighbor for
[t1, 2] is 03, and the nearest neighbor for |ts, th] is 0o5. To process the contin-
uous k nearest neighbor queries (K-NNQs), Tao et al. [19] presented a split
list SL = {(tl, t2, K1>, (tQ, t3, Kg), S (tn, tn+1, Kn>} where Kz denotes K-NN
objects for [t;,t;11]. They use a method that accesses all K; for 1 < i < n
in order to update SL where a spatio-temporal K-NNQ is processed. This
processing method incurs a very long query processing time. The method is
applied in situations that involve spatial target objects and a moving query
object; however, it cannot be applied to cases involving only moving objects
among which one is a query object or a spatial query object and moving tar-
get objects. To solve this problem, we use a time function (called Curve) that
can represent the change in distance not only between a spatial object and a
moving object but also between two moving objects.
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Fig. 1. continuous nearest neighbors

Spatiotemporal K-CPQs involve the problem of finding the k closest pairs (K-
CPs) between spatial objects and moving objects as shown in Figure 2 for a
given time interval. Let us consider a K-CPQ between cars and intersections
of roads. Using the result of the K-CPQ, we can predict the amount of traffic
congestion by checking what the density of cars near intersections will be.
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Fig. 2. spatial objects and moving objects

In this paper, we propose an event-based structure along with the concept of
Curve. This event-based structure allows us to avoid unnecessary computa-
tions, and is paired with MinDistBound which is used for pruning unnecessary
node visits, to efficiently process the k closest pair queries (K-CPQs).

In experiments on spatio-temporal K-CPQs, our event-based method is up
to 43 times faster compared to a method using a simple split list structure.
We performed spatio-temporal K-CPQs with various values of k. The results
show that higher values of k lead to longer query processing time as in general
experimental results [5]. We also applied our event-based structure to process
k nearest neighbor searches on spatio-temporal databases proposed in [19].
In several such experiments of running spatio-temporal £ nearest neighbor
searches, our event-based method performed 11 to 46 times faster than the
method of [19].

The contributions of this paper are as follows:

e We propose an event-based structure to avoid unnecessary computations
in order to efficiently process K-NNQs or K-CPQs for various data sets
in spatio-temporal databases.

e We develop an efficient algorithm for spatio-temporal K-CPQs, and es-
pecially derive a heap management algorithm that uses MinDistBound
to minimize the total number of node accesses.

The rest of the paper is organized as follows. Section 2 discusses the related
work on K-NNQs in spatio-temporal databases, K-CPQs in spatial databases,
and the TPR-tree. In Section 3, we explain how to maintain the intermedi-
ate results of K-CPQs using an event-based structure. Section 4 describes a
spatiotemporal K-CPQ algorithm that uses MinDistBound to prune unneces-
sary node visits. Section 5 presents experimental results and discusses them
in detail. Finally, conclusions are made in Section 6.



2 Related Work

First, we briefly describe past work on K-NNQs in spatio-temporal databases.
Then, we explain K-CPQs in spatial databases. And, we describe the TPR-tree
for moving objects that correspond to a data set for processing spatio-temporal
K-CPQs. Finally, we explain the k-th level problem.

Zheng and Lee [22] proposed a method for nearest neighbor queries for a mov-
ing object(or query) on spatial data. They pre-compute the Voronoi diagram of
spatial objects and store it in the R-tree. The Voronoi diagram allows efficient
processing of nearest neighbor queries. However, the method only deals with
one nearest neighbor. Song and Roussopoulos [15] discussed nearest neigh-
bor queries in R-trees that employ sampling. Their method has no accuracy
guarantee since even a high sampling rate may miss some results.

Tao et al. [19] proposed a nearest neighbor query that retrieves the nearest
neighbor of every point on a line segment. The method can retrieve all nearest
neighbors for the query time interval and can return an accurate result. How-
ever, it is limited to performing the k nearest neighbor queries only between a
moving query object and a set of spatial objects.

Hjaltason and Samet [8] proposed distance-join algorithms for closest pair
queries in spatial databases. These algorithms are based on a priority queue
that requires a large amount of main memory because they store not only the
node pairs but also the object pairs. To solve this problem, Corral et al. [5]
proposed a closest pair algorithm based on a heap structure that maintains
only the internal node pairs. In [6], considering distance functions between
two MBRs, they deduce lower and upper bounds for the k closest pairs of
objects within two MBRs and use them for a pruning heuristic and updat-
ing strategies for their branch-and-bound algorithms to improve performance.
They also applied their methods for extensions of K-CP(Q such as K-Self-CPQ),
Semi-CPQ, and K-FPQ(the k farthest pairs query). Our spatio-temporal K-
CPQ algorithm is based on their work.

Saltenis et al. [13] proposed the TPR-tree that is based on the R-tree and
supports spatio-temporal queries for the future locations of moving objects.
Figure 3 shows a time-parameterized bounding interval(TPBI) of the TPR-
tree and three one-dimensional moving objects(m; ~ mg) bounded by the
bounding interval at ¢5. TPBI is the most important concept of the TPR-
tree and consists of a spatial interval [y',y"] and a velocity interval [w!, w"]
as shown in Figure 3. The spatial interval of TPBI is represented at index
creation time ty. The incline of an arrow indicates the moving objects velocity.
As shown in Figure 3, the objects move within the range of bold lines as time
passes.
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Fig. 3. Time-parameterized bounding interval of the TPR-tree at tg

The k-th level problem in an arrangement of n curves is introduced in computa-
tional geometry. Tamaki and Tokuyama [17] proposed a kinetic data structure
for the k-th level problem considering a small number of objects.We propose
an event-based structure that can be maintained incrementally. Our method
can be practically adapted in situations of a large number of objects, compared
to the kinetic data structure. In addition, the kinetic data structure method
was not implemented, and consequently no experimental result is available
from the method. In this paper, we deal with curves of order from 1% to k",
whereas the k-th level problem focuses on the k™ order.

3 Event Maintenance Technique

In this section, we first define the problem of spatio-temporal K-CPQs formally
and describe a method to calculate the change in distance between a spatial
object and a moving object. The problem for determining the order of K-CPQs
is conceptually the same as the k-th level problem [17]. Next, we introduce an
event-based structure that can efficiently keep the ordered results with respect
to the distance in spatio-temporal databases. Finally, we describe how to
update the event-based structure.

3.1 Definition of Problem and Curve

Let @ = {01, 09,...,0n} be a set of spatial objects and Ml = {my,ms, ..., mp}

be a set of moving objects. Let [t!, t"] be the time interval of a query. The out-

put of a K-CPQ from Q and M for [, "] is {(t1, 12, K1), (t2, 3, Ka), . . ., (tns tni1, Kn)}
where t! = ¢, t" = t,,,1, and for 1 < i < n, each [t;, ;1] is the maximum inter-

val in which the corresponding K-CPs K; can be maintained. For (t,,t,41,K,),

Ky = {(0ay,mp,); - - -, (0a,, mp, )} satisfies the following condition:

dist(0a,,mpa,,t) < ... < dist(oa,, mg,,t) < dist(o;, mj, 1),
Oays- -+ 0a, € OAMg,,....mg, N\
v<0i7mj) € (@ X M — {(Oa1vm51)> SRR (Oakvmﬁk)}) /\Vt € [tg’tg+1]'

Now, let us observe how to maintain the order of pairs in K, for [t,, t,41]. The



distance d between a spatial object and a moving object can be represented
as a function of time ¢, and d changes as time passes. Let (s1,$2) be the
location of a spatial object and (zq + (t — t,) X vl,xo + (¢t — t,) X v2) be
the future locations of a moving object as mentioned in Section 1. Then,
d> = (z1+ (t — t,) X v1 — s1)* + (w2 + (t — tu) X v2 — 52)%. We can use
this formula (called Curve) from which we can easily determine the distance
ordering of closest pairs of spatial objects and moving objects. Figure 4 shows
6 curves for 6 pairs of spatial objects and moving objects. As seen in Figure 4,
we can clearly determine the ascending order of curves in the time intervals.
An intersection of two curves indicates the distances of two pairs are equal at
the corresponding point in time. Figure 5 shows the result of a K-CPQ from
6 curves for [t,t"] where k = 5. To determine the order of two pairs, we use
d? because it involves fewer and less costly computations than d.

d2 A
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Fig. 4. 6 curves
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Fig. 5. Result of K-CPQ (k =5)
3.2  Data Structure

We can acquire the exact result of a K-CP(Q by checking all the pairs between
two object sets. In order to find a precise final result, we can consider com-
paring and updating the intermediate result, which corresponds to a structure
that enumerates all K-CPs, such as that of Figure 5, until all the pairs be-
tween the two sets have been checked. However, this method is very inefficient



since it requires a large memory space and a great deal of CPU time. To
solve this problem, we propose an efficient method that can find the K-CPs
without wasting resources. Let us observe two K-CPs from two continuous
time intervals in Figure 5. In general, the order of £k — 2 curves is the same
while the order of the other 2 curves is different. For example, let us consider
the K-CPs= {c1, c3, ¢, ¢y, c5} for [ty,t5] and the K-CPs= {¢y, ¢3, o, 5, ¢4} for
[t2,t3]. The order of the 3 curves (¢, co,c3) is the same for [tq, 3], however
the order of the other 2 curves (cy,c5) for [t1,ts] and [to, 3] are different. We
call the change in the order of curves an event and use the event to efficiently
process K-CPQs.

Table 1
Symbol description

Symbol | description

c curve : at? + t+

th ¢l start time and end time of a query time interval
e event (te1,te2, Ca, Cu)

E ordered set of events {e, ey, ..., ¢€,}

b boundary (¢, tp2, ¢)

B ordered set of boundaries {by, b, ..., by}

1. curve index

R event-based structure (I.,t}, " E, B")

Table 1 presents the symbols used throughout the paper. An event e consists
of (te1,tes, Ca, Cy), meaning that d2(cy,ter — €) > d2(cy,ter — €), d2(cg, te1) =
d2(cy, ter), d2(cq,t) < d2(cy,t) for all t € (te1,te2) where the function d2(c,t)
returns the value of ¢ at time ¢t. IE and B are ordered by t.; and t;;, respectively.
An ordered set B of boundaries is used to avoid unnecessary calculations. B¥
identifies the ordered set of boundaries each of which is the £ curve of the
result of a K-CPQ. In order to access curves quickly, we employ a curve index
I. on a complete binary search tree for K-CPs and use curves for the key of
the tree.

Let t{ = t' and #} = t.; of the first event in E. We propose an event-based
structure R = (I, t}, t" E,B*) to efficiently update the intermediate results of
a K-CPQ until we acquire the final result of the K-CPQ. The first component
I.. of R is for K-CPs initially for [t},#"]. We maintain E such that each event e
in E includes at least one curve from K-CPs for [e.t.1, €.t.o] where e.a denotes
the a component of e. If the intersection of all curves of a certain event e and
all curves of K-CPs for [e.te, e.te2]| is empty, it means that the event is not
related to the K-CPs and the event must be discarded. From Figure 4, we can
acquire the following R = (I, # " E,B%) when k = 5:



e ] for 5 curves ordered as ¢y, co, c3, ¢4, and c5

ot =t th=1¢

o E = {(t1,ts,c3,Ca), (to, t3, 5, Ca), (t3, L4, C, Ca), (ta, 17, Co, C3)}
o B% = {(t', 12, c5), (t2,t3,ca), (t3, ", ) }

3.8 Maintaining Event-Based Structure

This section describes an efficient method for maintaining the event-based
structure R. First, we introduce a definition with respect to B, which is re-
quired to avoid unnecessary computations. Let B; and B, be ordered boundary
sets. We define a predicate > between B; and By when Bq.by.ty1 = Ba.by.tp1
and By.bp,|.tye = Ba.b|B,|.tr2. By > By returns TRUE if all the curves of B,
are above all of the curves of By, as shown in Figure 6. Otherwise, B, > By
returns FALSE.

¢ " time

Fig. 6. Two ordered sets of boundaries

We briefly explain how to generate new events between curves of I. and a newly
considered curve. Consider a simple example as seen in Figure 7. Figure 7
shows 5 curves for [t;,¢;11) and the corresponding complete binary search tree
I. for the 5 curves ordered as ¢y, ¢, c3, ¢4, and c5. Then, consider a new
curve cg that leads to the change of the order of the 5 curves as shown in
Figure 8. Three events are generated from I, and cg. The shaded circles
indicate the nodes that are visited during the processing for generating new
events. Three events on I, and ¢g for [t;,t;11) is generated as the following :

{(t1,t2, cs,3), (ta, t3, 6, C1), (T3, i1, €1, C6) }-

We introduce how to update R. The method is divided into the following
two steps: the event generation step and the rearrangement step. The event
generation step checks whether a new curve can be pruned by B of R and
creates two curve indexes I, and I from the previous I, of R and the new
curve if the curve is not pruned. The states of I, and I validate for the time
interval of the first event. We use I, for the rearrangement step and I as I,
of the changed state of R. The event generation step also adds new events
generated by the new curve to E of R. The rearrangement step makes new B¥
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Fig. 8. Three new events generated from I. and cg for [t;,t;11)

using I. and E obtained from the event generation step and removes invalid
events from E.

>
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Fig. 9. Change of the order of K-CPs by ¢7

Next, we briefly present how to update R due to the effects of a new curve
over a query time interval [t/,¢"]. We assume that the current state r; of
R is the state of Figure 4 and a new curve c; changes the state of R as
shown in Figure 9. Let ry be the updated state of R. Figure 10(a) illus-
trates the event generation step in detail. First, we check whether there exist
new events between I. and c¢; for [t!,t;). An event (t4,t1,cs3,c;) is created.
Then, the processing is repeated as follows. We update the order of nodes
of I. affected by the first event (¢1,t,c3,¢co) of E. That is, the order of the
5 curves in [, is changed from {c;,cq,c3,¢q4,¢5} to {c1,c3,¢o, 4,5} Then,
we check whether there exist any new events between the modified I, and
¢y for [t1,t3). For [ty,t3), no event is created in our example. The same
process is applied according to the order of the remaining events. As seen



in Figure 10(a), a new event (t,t",cr,c3) is created for [ty,t"]. After the
process of generating new events, the contents of E from its previous state
and the two new events are merged to obtain the updated value for E =

{(tcw tla C3, 07)7 (tla t27 C3, 62)7 (t27 t37 Cs, 04)7 (t& t4a Cg, 64)7 (t47 tba C2, 63)7 (tb7 th7 C7, 05)}

Figure 10(b) illustrates the rearrangement step in detail. The ascending order
of the 5 curves for the initial state of I’ for [t!,t,) is {c1, 2, cr,c3,¢4}. The
order of the 5 curves of I/ is modified by the first event (¢,,t1, c3, ¢7) for [ta, t1)
so that the order becomes {c1, co, 3, ¢7,¢4}. In a manner similar to the event
generation step, we repeatedly process the rearrangement step. We construct
B* from the change of the k" node of I’ and remove invalid events in E
if I’ is not affected by the corresponding events. As seen in Figure 10(b),
since the event (t3,t4,cq,cq) does not affect I, with the order of curve set
{c1,¢3,c0,c7,c5} for [ta, t3), the event is removed from E. Consequently, we
can acquire the following updated R = (I, t,t" E,B®):

e [, for 5 curves ordered as {c, ¢a, ¢7, 3,4}

o th =t th=t,

o E = {(ta,t1,c3,¢1), (t1,ta, C3,Ca), (ta, ta, 5, Ca), (ta, ty, C2, c3), (t, 1", 7, c3)}
o B = {(t!,ta, cq), (ta, t", c5)}

time [tt) [t,.t) [L,.1) [t.t,) [t,,t"]
event - (t,,1,,C5,C,) (t,,t5,¢5,¢,) (t;,t,,¢4,C,) (t,,thc,.c5)

state of I, NS ey © CORN Y O OB
& © DRSS Cy © © © © ©

new event (t,.t,,c5,C) - - - (t,,t,c5,c5)

(a) Event Generation Step

time [tht) [t,t)) [ty.t) [t5.55) [6,t) [t4:5,) [ty.t"]
event - (otisCuy) | Wistsescs) | Watspesc) | Gatpcsed) | (utpescs) | Ethoses)
@) © ) @ © @)
pel OO NONO NGNS NONC] I @) @ & €
O e |©@ |[©® DIOIN DI

(b) Rearrangement Step
Fig. 10. Updating R
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4 K-CPQ Algorithm

In this section, we present an efficient algorithm for K-CPQs between a set of
spatial objects and a set of moving objects. We assume that spatio-temporal
K-CPQs are processed from the R*-tree for spatial objects and the TPR-tree
for moving objects since the R*-tree is one of the most popular indexes in spa-
tial databases [7, 3] and the TPR-tree is a popular index for spatiotemporal
databases [13, 12]. We first discuss the minimum distance boundary called
MinDistBound needed for pruning visits of unnecessary nodes. Then, we show
the Heap algorithm using MinDistBound and the event-based structure men-
tioned in the previous section.

4.1 Minimum Distance Boundary

We use MinDistBound to decide which node pair to visit first in order to
minimize the total number of accessed nodes. MinDistBound is an ordered
set B of boundaries that indicates minimum distances between an MBR of an
R-tree and a TPBR (called an MBR in a general tree structure) of a TPR-tree
as time passes. Figure 11(a) illustrates an MBR, of the R-tree and a TPBR
of the TPR-tree. The inner rectangle of the TPBR is the MBR of the TPBR
at time ¢!. Similarly, the outer rectangle of the TPBR is the MBR of the
TPBR at time t". As shown in Figure 11(b), let us consider the MBR of the
TPBR at a certain time between ¢! and ¢". Since the square of the minimum
distance between two MBRs is d?> = a? + b?, we can consider the distances
in two individual 1-dimensional spaces instead of a distance in 2-dimensional
space for the MinDistBound between two MBRs. Figure 12 depicts the change
in distance for each dimension as time passes. In the case of Figure 12(b), the
distance is 0 after time ¢; since the MBR and the TPBR intersect with each
other. Figure 13 illustrates a method that creates a MinDistBound between
an MBR and a TPBR in the 2-dimensional space. As seen in Figure 13, the
MinDistBound for a 2-dimensional space is the sum of the MinDistBound for
each dimension.

— dim | — dim 1

dim 2 MBR dim 2

D TPBR |: d=a2+b?

(a) (b)
Fig. 11. MBR and TPBR
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MBR TPBR MBR TPBR |
|

dim1 dim?2

(a) (b)

Fig. 12. Distance for each dimension
dim 1 dim 2

@ ¢ @2

NG

t t time  t! t th time tl t, th time

Fig. 13. Distance between an MBR and a TPBR

We use four functions for obtaining MinDistBound in the 2-dimensional space.
Let MinDistBound1D be a function that creates a MinDistBound between an
MBR and a TPBR in the corresponding 1-dimensional space. In the MinDist-
Bound1D function, we use the method to find the intersecting time interval of
two TPBRs to maintain the TPR~tree proposed by [13]. We can easily calcu-
late MinDistBound for each dimension from the method proposed by [13]. The
function CommonTimelnterval returns a common time interval from the time
intervals of two boundaries. The FirstBoundary(IB) returns the first boundary
of B. The NextBoundary(BB, b) returns the next boundary of b in B. For ob-
taining MinDistBound, we use the plane-sweep technique that is widely used
in the area of computational geometry [4]. Figure 14 shows the MDB algo-
rithm for generating MinDistBound between an MBR and a TPBR. As seen
in Figure 14, this algorithm can be generalized into a D-dimensional space.

4.2  Heap Algorithm

We use a heuristic that aims at further improving our algorithm after accessing
two internal nodes. For the child nodes of the two nodes, the heuristic is to
sort the pairs of an MBR and a TPBR in ascending order of MinMinDist
which indicates the minimum value of MinDistBound for [t!,¢"]. This order
of processing is expected to improve the pruning of pairs. A heap is used to
store pairs of nodes according to their MinMinDist. The pair with the smallest
value resides at the top of the heap. This pair is the next candidate for visiting.
Figure 15 shows the overall algorithm. The Create function initializes a heap
H and the Empty function checks whether H is empty. The first element of H

12



Algorithm MDB(MBR R1, TPBR R2, time t!, time t*)

1. B« MinDistBoundlD(R1, R2,t,t" 1)

2. fori+— 2to D do

3. B’ «— MinDistBoundlD(R1, R2,t',t" 1)
4. b« FirstBoundary(B)

5 b — FirstBoundary(B')

6 B’ — {}

7. while b # null \ ¥ # null do

8. [t1,t2] «— CommonTimelnterval(b,b’)
9. c+—bc+b.c

10. B — B | J{(t1,t2,0)}

11. if bty < U .tpo

12. b« NextBoundary(B,b)

13. else if b.tyy > U tpo

14. b «— NextBoundary(B',b")

15. else if b.tpy = U .1y

16. b« NextBoundary(B,b)

17. b — NextBoundary(B',V')

18. remove B and B’

19. B — B

20. return B

Fig. 14. MDB algorithm

is returned by the Delete function and an entry pair is inserted by the Insert
function. For pruning of unnecessary node visits, we use MaxMinDist that
indicates the maximum value of MinDistBound for [t!, t"].

Algorithm Heap(R-tree R1, TPR-tree Rz, number k, time t, time ")

1. H « Create()
BF — {(t!,t", 00)}
3. Insert(H, Ri.RootNode, Ra.Root Node)

N

4. while not Empty(H) do

5. (N1, N2) «— Delete(H)

6. B «— MDB(N1.MBR, No. TPBR,t t")

7. if MinMinDist of B > MaxMinDist of B¥, then stop
8. if B> B* is FALSE

9. if N1 and N5 are internal nodes

10. calculate B for each possible entry pair

11. for each pair (E1, E2) where B > B¥ is FALSE
12. Insert(H, E1.ChildNode, E2.ChildN ode)
13. if N1 and Ny are leaf nodes

14. for each curve c of all entry pairs

15. if {(t},t", ¢)} > B* is FALSE, update R = (I, ¢}, t", B, B*)

Fig. 15. Heap Algorithm

5 Experimental Evaluation

In this section, we present the experimental environment and the experimental
results of our proposed method. In order to create a realistic environment

13



for our experiments, moving objects are synthetically generated using real-life
spatial data. While the disk access is a popular performance metric, the CPU
time can be significant for some operations. The total processing time includes
both the disk access time and the CPU time. Therefore, we evaluate the total
processing time need to process K-CPQs. Then, we show the experimental
results for K-NNQs.

5.1 Ezxperimental Environment

For a practical situation, let us consider K-CPQs between cars and intersec-
tions of roads within a part of a city. We generate moving objects in a way
which makes an experimental environment more realistic. We use Sequoia
data [16], which is real-life spatial data popularly used in spatial database
research, to generate moving objects. We set the initial spatial positions of
moving objects using Sequoia data. There are approximately 11000 moving
objects. Objects are set to move randomly with the maximum speed 1 for
one unit of time in the 10000 x 100002D space. To generate spatial objects
that correspond to the other data of spatio-temporal K-CPQs, we use another
set of real-life spatial data, Tiger/lines [10]. The number of spatial objects is
about 3200. Experiments are conducted on a Pentium IV 2.4 GHz PC with 1
GBytes main memory. The size of the nodes for the R-tree and the TPR-tree
is set to 4 KBytes, which corresponds to a page size. The value of k varies
from 20 to 250. The length of the query time interval varies from 1 to 10 units.

Since our event-based structure can be applied in the processing of spatiotem-
poral K-NNQs, we additionally show the effect of the event-based structure
on processing spatio-temporal K-NNQs. The length of the query varies among
1%, 2%, 4%, 8%, and 16% of the size of one axis in the 2D space and about
137000 spatial objects are considered. We compare our event-based method
with an existing method [19] for processing spatio-temporal K-NNQs using the
above experimental environment which is similar to that used in [19].

5.2 Ezxperimental Results

For processing spatio-temporal K-CPQs, we can use a split list structure enu-
merating all K-CPs such as those of Figure 5 as well as our event-based struc-
ture. Figure 16 illustrates the performance of two methods: one method uses
our event-based structure (EBS) and the other method uses the split list struc-
ture (SLS) proposed by [19]. The total cost is the number of seconds taken
to process K-CPQs. The length of the query time interval is set to 1 unit. In
the experiments for spatio-temporal K-CPQs where 20 < k < 80, the method
using SLS has the total cost ranging from 327.1 to 2221.4 seconds, while the
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method using EBS has the total cost ranging from 33.5 to 51.6 seconds. Since
the method using SLS enumerating all K-CPs requires a large number of com-
parisons from the split list structure in order to maintain the order of the k
closest pairs, it is very inefficient. However, our method using EBS can re-
markably reduce the number of comparisons by using I, and B*. Figure 17
shows the experimental results of our EBS for larger k’s. The results using
SLS for larger k’s have been omitted as it requires a considerably large amount
of time compared to our event-based structure.
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Fig. 16. Total cost of K-CPQ for 20 < k£ < 80
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Fig. 17. Total cost of K-CPQ for 100 < k < 250

We assess the total cost for various lengths of the query time interval in spa-
tiotemporal K-CPQs. Figure 18 illustrates the experimental results with re-
spect to the length of the query time interval from 1 to 5 units where £ is set
to 20. Our method using EBS is 9 to 17 times faster than the method using
SLS. Figure 19 shows the total cost for the larger length of the query time
interval.
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total cost (sec)
2

query time interval

Fig. 18. Total cost of K-CPQ for query time interval from 1 to 5

Our event-based structure can be applied in the processing of spatio-temporal
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Fig. 19. Total cost of K-CPQ for query time interval from 6 to 10

K-NNQs. We compare our event-based method with the existing split list
method proposed by Tao et al. [19] for processing spatio-temporal k nearest
neighbor queries. Figure 20 illustrates the experimental results between our
event-based method (EBM) and the existing split list method (SLM). The
length of the query is set to 1% of the size of one axis. The results of 20
queries are averaged. In various experiments on K-NNQs, our event-based
approach is 11 to 46 times faster than the existing approach.
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Fig. 20. Total cost of K-NNQ for 20 < k£ < 200

Figure 21 shows the number of node accesses and the number of sub-intervals
from the results of K-NNQs having varied k from 20 to 200. As k increases, the
number of node accesses and the number of sub-intervals increase linearly with
respect to k. As seen in Figure 20 and Figure 21, the processing of KNNQs is
CPU bound since the number of node accesses gradually increases proportional
to k whereas the total processing time remarkably decreases.
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Fig. 21. Node accesses and sub-intervals of K-NNQ for various k values
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Next, we compare the performance of both methods by varying the length of
the query from 1% to 16% where k is set to 20. When the length of the query is
4%, the total cost for EBM is 7.51 seconds, while that for SLM is 98.4 seconds.
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Fig. 22. Total cost of K-NNQ for query length

6 Conclusions

To maintain the order of the k closest pairs, we used a time function that
can represent the change in distance between a spatial object and a moving
object as time passes. The function can be also used for K-CPQs between a
set of moving objects and a set of moving objects and for K-NNQs with the
following various combinations of data: spatial objects and a moving query
object, moving objects and a moving query object, and moving objects and
a spatial query object. In this paper, we proposed an event-based structure,
instead of a simple list data structure to avoid unnecessary computations, and
a distance bound strategy used to prune unnecessary node accesses in order
to efficiently process k closest pair queries. Our event-based method is 9 to
43 times faster, compared to a method using a simple split list structure, for
spatio-temporal k closest pair queries. From various experimental results, we
observed that the total cost for processing spatio-temporal K-CPQs is CPU
bound rather than I/O bound.

As our future work for spatiotemporal K-CPQs, we will consider the problem
in the environment of the road network. Many kinds of moving objects use
the road network. The correct distance measure for those objects is not the
Euclidean distance but the network distance.
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