
An approximate duplicate elimination in RFID data streams

Chun-Hee Lee a, Chin-Wan Chung b,⁎
a Data Analytics Group, SAIT, Samsung Electronics, Yongin, 446–712, Republic of Korea
b Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305–701, Republic of Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 March 2010
Received in revised form 16 July 2011
Accepted 18 July 2011
Available online 31 July 2011

The RFID technology has been applied to a wide range of areas since it does not require contact
in detecting RFID tags. However, due to the multiple readings in many cases in detecting an
RFID tag and the deployment of multiple readers, RFID data contains many duplicates. Since
RFID data is generated in a streaming fashion, it is difficult to remove duplicates in one pass
with limitedmemory.We propose one pass approximate methods based on Bloom Filters using
a small amount of memory. We first devise Time Bloom Filters as a simple extension to Bloom
Filters. We then propose Time Interval Bloom Filters to reduce errors. Time Interval Bloom
Filters need more space than Time Bloom Filters. We propose a method to reduce space for
Time Interval Bloom Filters. Since Time Bloom Filters and Time Interval Bloom Filters are based
on Bloom Filters, they do not produce false negative errors. Experimental results show that our
approaches can effectively remove duplicates in RFID data streams in one pass with a small
amount of memory.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
Duplicate elimination
RFID
Bloom filter
Real-time DBs
Smart cards

1. Introduction

Recently, due to the advancement of information technology, various kinds of data such as XML, RDF, and RFID data have been
generated [18,9,5,8]. Especially, a large amount of RFID data has been generated in many environments since the RFID technology
does not require contact in detecting RFID tags and therefore has been used in many areas such as business, military, and medical
applications. The RFID adoption in Walmart is a typical RFID example in the business area.

However, the advantage of the RFID technology causes a new problem. Since an RFID tag is detected without contact, if an RFID
tag is within a proper range from an RFID reader, the RFID tag will be detected whether we want to or not. Therefore, if RFID tags
stay or move slowly in the detection region, much unnecessary data (i.e., duplicate RFID data) will be generated. On the other
hand, if RFID tags move fast or many RFID tags move simultaneously in the detection region, one RFID reader may not be able to
detect all of them. To prevent missing readings of RFID tags in such cases, several RFID readers are generally deployed in order to
monitor a single location [1,2]. When several RFID readers detect one RFID tag at the same time, duplicate data is generated.
Therefore, we cannot avoid the generation of duplicate RFID data in RFID applications.

An intelligent RFID reader with the processing capability can eliminate duplicate RFID data generated by the RFID reader.
However, duplicate RFID data generated from multiple readers can not be removed with only the self-contained processing
capability of RFID readers. Therefore, we need a technique to eliminate duplicate RFID data in the server (RFID middleware) that
collects RFID data from various RFID readers.

Consider the example in Fig. 1. There are two RFID readers and two tags pass through the detection region. In this situation,
Reader1 and Reader2 detect tags with the identifier ID1 and ID2. Each reader generates the detection information such as btag ID,
location of the reader, timeN. Reader1 detects the tag with ID1 and generates RFID data b ID1, Loc1, 1N, b ID1, Loc1, 2N, b ID1, Loc1,
4N. However, the RFID data is duplicate data except b ID1, Loc1, 1N. Also, Reader1 generates RFID data b ID2, Loc1, 3N b ID2, Loc1, 5N
for the tagwith ID2 and b ID2, Loc1, 5N is duplicate data. In the sameway, Reader2 generates RFID data and has duplicates as shown

Data & Knowledge Engineering 70 (2011) 1070–1087

⁎ Corresponding author. Tel.: +82 42 350 3537; fax: +82 42 350 7737.
E-mail addresses: chunhee1.lee@samsung.com (C.-H. Lee), chungcw@kaist.edu (C.-W. Chung).

0169-023X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2011.07.007

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2011.07.007
mailto:chunhee1.lee@samsung.com
mailto:chungcw@kaist.edu
http://dx.doi.org/10.1016/j.datak.2011.07.007
http://www.sciencedirect.com/science/journal/0169023X

in the lower part of Fig. 1. This is because a reader detects a tag continuously within the detection region. RFID data generated in
each reader is sent to the server. Then, there are more duplicates in the server since two readers may detect the same tag. For
example, b ID1, Loc1, 1N in Reader1 and b ID1, Loc2, 1N in Reader2 are duplicate. Therefore, the server removes duplicate RFID data
as preprocessing and the result for preprocessing is b ID1, Loc1, 1N b ID2, Loc2, 2N. This problem seems simple for a small amount of
RFID data.

However, the volume of RFID data is generally very big. Also, if a tag is attached to each item, the amount of data generated in a
large retailer will exceed terabytes in a day [13]. And, RFID data is produced in a stream. It means that a duplicate elimination
method should process data instantly with limited memory. It is difficult to design an exact duplicate elimination method. As an
alternative, we can use approximate duplicate elimination techniques for RFID applications that do not require exact answers.

In such an application, we can consider a real-time analysis application for the movement of customers in a large department
store. Each store in the department store has RFID readers. Each customer has a unique RFID tag. Themanager wants the real-time
analysis of the movement of customers such as the number of customers in each store and the store which has the maximum
number of customers. For such an analysis, the central server in the department store should remove duplicates. In this
environment, so much RFID data comes into the server simultaneously and there are duplicates. Especially, when a customer stays
at the same location for a long time, it generates a large number of unnecessary duplicate data. In order to eliminate duplicates
exactly, we need to keep all RFID data including duplicates in memory during a long period. Therefore, it is difficult to eliminate
duplicates exactly in real-time using a small amount of memory relative to the amount of RFID data. In this application, the
manager does not feel uncomfortable even if statistics with allowable errors are provided. Therefore, we propose approximate
RFID duplicate elimination techniques in one pass with the limited memory.

Bloom Filters have been widely used as a very compact data structure with an allowable error. To manage RFID data streams
with a small amount of memory, we devise Bloom Filter based approaches. However, since Bloom Filters are targeted for static
data, we should adapt Bloom Filters to RFID data stream environments. We thus propose Time Bloom Filters as a straightforward
adaptation of Bloom Filters. Since Time Bloom Filters are based on Bloom Filters, they do not generate false negatives which are
duplicate data contained in the result after filtering. However, they may generate false positives that are non-duplicate data which
are not contained in the result after filtering. We provide the false positive probability for Time Bloom Filters. Also, to reduce false
positives for Time Bloom Filters, we devise Time Interval Bloom Filters using the concept of the interval.

Our contributions are as follows:

• The Effective Duplicate Elimination Methods. In data stream environments, it is not easy to design one pass duplicate elimination
algorithm with limited memory. To design such an algorithm, we adapt Bloom Filters to RFID data stream environments. We
propose effective approximate duplicate elimination methods, Time Bloom Filters and Time Interval Bloom Filters. They can
eliminate duplicates in one pass with a small amount of memory.

• Space Optimization for Time Interval Bloom Filters.While the Time Bloom Filter stores one time field, the Time Interval Bloom Filter
stores two time fields as a time interval. Therefore, the Time Interval Bloom Filter needs more space than the Time Bloom Filter.
We devise a method to reduce space for the Time Interval Bloom Filter.

• The Formulation of a Duplicate Elimination Problem. Thoughmany papersmention the duplicate elimination problem in RFID data,
they do not formulate it rigorously. In this paper, we formulate the duplicate elimination problem in RFID data streams formally.

• Parameter Setting. In Time Bloom Filters and Time Interval Bloom Filters, the number of hash functions k affects errors. We
propose a formula to find k and validate it using an experimental evaluation.

1.1. Organization

The rest of this paper is organized as follows. In Section 2, we present related work. In Section 3, we explain Bloom Filters as a
preliminary, and in Section 4, we formalize the duplicate elimination problem in RFID data streams. We describe Time Bloom
Filters and Time Interval Bloom Filters in Sections 5 and 6, respectively. In Section 7, we discuss parameter setting in Time Bloom
Filters and Time Interval Bloom Filters. We measure the effectiveness of Time Bloom Filters and Time Interval Bloom Filters
experimentally in Section 8. Finally, we conclude our work in Section 9.

Reader1(Loc1)

Tag: ID2

Tag: ID1

<ID1, Loc1, 1> <ID1, Loc1, 2>
<ID2, Loc1, 3> <ID1, Loc1, 4>
<ID2, Loc1, 5>

<ID1, Loc2, 1> <ID2, Loc2, 2>
<ID1, Loc2, 3> <ID2, Loc2, 5>

<ID1, Loc1, 1>
<ID2, Loc2, 2>

Server

<ID1, Loc1, 1> <ID1, Loc2, 1>
<ID1, Loc1, 2> <ID2, Loc2, 2>
<ID2, Loc1, 3> <ID1, Loc2, 3>
<ID1, Loc1, 4> <ID2, Loc2, 5>
<ID2, Loc1, 5>

Reader2(Loc2)

Fig. 1. An example for duplicate RFID data elimination.

1071C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

2. Related work

As RFID tags have been fabricated at a very low cost, an enormous volume of RFID tags will be used in various places (e.g., retail
stores, hospitals) in the near future. Therefore, a vast amount of RFID data will be generated. Chawathe et al.[8] discuss challenges
for managing such an enormous volume of RFID data. Also, Bornhovd et al.[5] give an overview of the Auto-ID infrastructure
(Device Layer/Device Operation Layer/Business Process Bridging Layer/Enterprise Application Layer) which integrates data from
smart items (e.g., RFID, sensor) with existing business processes.

RFID-based item-tracking applications are typical RFID applications. To support item-tracking applications, some work has
been done [14,13,3]. In [14], the bitmap datatype and its operations are introduced. By sharing the prefix of EPC,1 a collection of
EPCs is compactly represented in the bitmap datatype. However, [14] does not focus on query processing in an RFID-based item
tracking. Gonzalez et al. [13] propose a new warehousing model, RFID-Cuboid, for RFID data compression and path-dependent
aggregates. Also, to trace RFID tags efficiently, Ban et al. [3] propose the Time Parameterized Interval R-Tree. Cao et al.[6] present a
distributed RFID stream processing system with the inference for tracking and monitoring. In addition, the works in [12,16,17]
provide a tool to analyze a large amount of RFID data in the warehouse environment. Gonzalez et al. [12] propose FlowCube to
analyze commodity flows at multiple levels. Lee and Chung [16,17] devise an effective path encoding scheme to answer path
oriented queries.

As raw RFID data obtained from RFID readers misses readings and includes duplicate readings, there has been some work on
RFID data cleansing [1,15,21]. Since RFID data from various sites is sent to the server, there exists heavy traffic in the network. In
[1], to reduce network traffic, the edge processing is proposed. In the edge processing, data aggregation and smoothing, filtering,
and grouping are performed as early as possible. The temporal smoothing filter that infers missing readings within a fixed time
window is a general method to correct missing readings. However, it is difficult for users to decide the best time window size and
the smoothing filter with a fixed time window size does not perform well due to the dynamics of RFID flows. Thus, to correct
missing readings, Shawn et al.[15] use an adaptive window size according to the characteristics of RFID flows. In order to adapt the
window size, they apply statistical sampling. Generally, data cleansing for RFID data streams is performed in a preprocessing step.
However, Rao et al.[21] propose a deferred data cleansing method which is performed during query execution.

One of the most general and important cleaning of RFID data is to remove duplicate RFID data. There has been traditional
research such as hash-based algorithms and sorting-based algorithms in duplicate elimination [11]. However, since those
algorithms focus on duplicate elimination in stored data, they need to scan data many times. Thus, it is difficult to apply traditional
duplicate elimination techniques to RFID data streams.

To eliminate duplicates for streaming data, approximate algorithms are proposed [20,10]. In [20], Metwally et al. use Bloom
Filters for detecting duplicates in click streams. However, if click streams are generated continuously, all entries of the Bloom Filter
will become 1 in the long run and then the Bloom Filter will be useless. In [10], Deng et al. solve the above problem using Stable
Bloom Filters. In order to remove old data in a streaming environment, the Stable Bloom Filter sets cells corresponding to an input
data to the maximum value and decreases values of randomly selected cells whenever data arrives. However, Stable Bloom Filters
have false positive errors as well as false negative errors. In addition, the parameter setting in Stable Bloom Filters is complex and
its solution is not always optimal. In [23], Wang et al. provide a method to remove duplicates over distributed data streams. The
eager approach and the lazy approach are proposed to share Bloom Filters between the coordinator and the remote sites.

To eliminate duplicate RFID data, HashMerge is proposed in [2]. In HashMerge, a hash structure is used for an efficient duplicate
elimination. However, it does not deal with the deletion operation which removes unnecessary data in the hash table. Also, the
problem of RFID duplicate elimination is mentioned in [1,21,22] but they do not propose algorithms to eliminate duplicates. The
authors in [19] use count Bloom Filters to remove duplicate RFID data. However, they consider duplicate elimination only at
the reader level. Therefore, RFID readers should preprocess RFID data and send the preprocessed data to the server. In the case of
RFID readers without the self-contained computing power, the approach cannot be applied. Also, the critical disadvantage of the
approach is that it generates both false positives and false negatives.

While the above approaches focus on eliminating duplicate RFID data, [7] focuses on preventing the generation of duplicate
RFID data. Duplicate RFID data generated in the same reader can be removed easily with the self-contained processing capability.
However, duplicate RFID data generated in different readers cannot be removedwith only the self-contained processing capability
of the readers. To prevent the generation of duplicate RFID data in different readers, [7] deals with the redundant reader
elimination. By removing the redundant readers which read the same tag simultaneously, [7] prevents the generation of duplicate
RFID data. However, they assume writable tags on which some information can be written. Therefore, the method in [7] cannot be
applied to the general cases.

3. Preliminary

Bloom Filters were originally proposed in [4]. The goal of Bloom Filters is to test whether any element is contained in a given set
S using a small amount of memory. Although it is easy to test the membership of any element, if a set contains a large number of
elements, we have to keep all elements of the set in memory and thus need a large amount of memory. Bloom Filters test the
membership with allowable errors using a small amount of memory compared to the given set.

1 Electronic Product Code(EPC) is a coding scheme of RFID tags to identify them uniquely.

1072 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

The Bloom Filter is based on a hash coding. It consists of an array ofm bits and k hash functions (h1,h2,⋯,hk). We assume that k
hash functions address elements to range {0,⋯,m−1} with a uniform distribution and are independent from each other. Initially,
all cells of the Bloom Filter are set to 0.

To represent a large number of elements in a set S using the Bloom Filter, the Bloom Filter sets cells, which correspond to h1(a),
h2(a),⋯,hk(a), to 1 for each element a in S. Since one cell may be set to 1 by different elements, the Bloom Filter tests the
membership of any element with errors.

To test whether an element a is contained in a set S using the Bloom Filter, we check k cells which correspond to h1(a),h2(a),⋯,
hk(a). If the value of at least one cell among k cells is 0, it is obvious that a is not in S. In this case, the Bloom Filter reports that a is
not contained in S. If all values of k cells are 1, a is probably in S. The Bloom Filter reports that a is contained in S. In this case, there
may exist false positive errors that report a is in S although it is not in S. However, in the Bloom Filter, there do not exist false
negative errors that report that a is not in S although a is in S.

When the number of hash functions is k, the number of cells is m, and the number of elements in a set is n, the false positive

probability f is f = 1− 1−1
m

� �kn� �k

[4]. Ifm is large enough, 1−1
m

� �kn
≈ e−kn=m. Thus, f ≈(1−e−kn/m)k. When n andm are given,

Bloom Filters can evaluate k to minimize f using derivatives. When k = ln2ð Þ· m
n

� �
, f is minimized. Therefore, Bloom Filters set k

to ln2ð Þ· m
n

� �
in order to minimize false positive errors.

4. Problem statement

The system architecture that we consider is depicted in Fig. 2. The RFID data stream generated in the field comes into the server.
There are the Filtering Module and Applications in the server. Before the raw RFID data stream is moved to applications, it passes
through the filtering module. With the filtering module, duplicate RFID data is removed from the raw RFID data stream.
Applications receive non-duplicate RFID data in a stream. That is, in the filtering module, duplicate RFID data is immediately
dropped from the raw RFID data stream.

RFID data is generated at many RFID readers continuously. RFID readers send RFID data to the server. Hence, the server receives
a sequence of RFID data in a stream. RFID data consists of a tag identifier (i.e., EPC), the location of the RFID reader, and the detected
time of the tag.

We define an RFID data stream formally as follows:

Definition 1. An RFID data stream S is a set {s1,⋯,sn},2 where si consists of a triple (TagID,Loc,Time) such that

• "TagID" is the electronic product code (EPC) of the tag and used for identifying the tag uniquely.
• "Loc" is the location of the reader which detects the tag.
• "Time" is the time of detecting the tag.

In an RFID data stream, RFID data x is considered as a duplicate if there exists y(≠x) in the RFID data stream such that
x.TagID=y.TagID, and x.Time−y.Time≤τ, where τ is an application-specific positive value [2,21,22]. From the definition of the
duplicate, we can find a non-duplicate RFID data stream by eliminating duplicates.

However, in a case that RFID data with the same TagID is generated repeatedly at intervals that are less than or equal to τ,
finding a non-duplicate RFID data stream is confusing. For example, consider an RFID data stream S={s1,s2,s3}, where s1=(tag1,
loc1,5), s2=(tag1, loc1,10), and s3=(tag1, loc1,15) (τ=8). From S, we know that s2 is a duplicate because of s1, and s3 is a
duplicate because of s2. However, S arrives at the server in sequence. If s2 arrives at the server, we can first remove s2 from {s1,s2}. In
that case, if s3 arrives at the server, s3 is not a duplicate since there does not exist s2.

Field

Server

Applications

Raw RFID
Data Stream Filtering

Module

Non-duplicate
RFID Data Stream

Drop Duplicate
RFID Data

Duplicate
RFID Data

Fig. 2. The system architecture.

2 Strictly speaking, an RFID data stream S is a sequence b s1,⋅⋅⋅,snN but, in this section, we consider an RFID data stream as a set because elements in an RFID
data stream contain the time information and a sequence is generated in time order.

1073C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Depending on the property of applications, a non-duplicate data stream for S can be defined differently. In this paper, a non-
duplicate RFID data stream for S is considered as {s1} instead of {s1,s3} since data with the same TagID that is generated repeatedly
at intervals that are less than or equal to τ is generally useless.

We formulate the duplicate RFID data elimination problem formally with some definitions.

Definition 2. For RFID data x and y, x and y are connected in S if there exists z∈S such that x.TagID=y.TagID, z.TagID=x.TagID,
|x.Time−z.Time|≤τ and |z.Time−y.Time|≤τ. x and y are connected in S also if x and z are connected in S and z and y are
connected in S.

‘Connected’ is defined in order to remove duplicate RFID data of the same TagID that is generated repeatedly at intervals that
are less than or equal to τ. If an RFID data stream contains two elements which have the same TagID and Time, one is an obvious
duplicate. In this case, we consider the latter element in a sequence order as a duplicate. We focus on the elements with different
Time to identify a duplicate. Using Definition 2, we define the duplicate formally in Definition 3.

Definition 3. RFID data x is a duplicate in S if there exists any y(≠x)∈S such that (x.TagID=y.TagID and x.Time−y.Time≤τ) or
(x and y are connected in S and y.Time≤x.Time).

The non-duplicate RFID data stream for an RFID data stream S is an RFID data stream after removing all duplicate RFID data in S.
We can define the non-duplicate RFID data stream as the duplicate-free maximal set. The duplicate-free set and the duplicate-free
maximal set are defined as follows:

Definition 4. A set S′(⊂S) is called a duplicate-free set in S if there does not exists x∈S′ such that x is a duplicate in S.

Definition 5. The set S′(⊂S) is a duplicate-freemaximal set in S if S′ is a duplicate-free set in S and for all x∈S−S′, x is a duplicate in S.

Wewant to find the duplicate-freemaximal set S′ (i.e., a non-duplicate RFID data stream) for an RFID data stream S. However, it
is difficult to find the duplicate-free maximal set in data streams with a small amount of space. Since some applications allow
errors, we consider a method to find an approximation of the duplicate-free maximal set. Especially, we limit allowable errors as
false positive errors in this paper. Therefore, our problem is defined as follows: Given space m and a massive RFID data stream S,
find a duplicate-free set Ŝ using space m such that j Ŝ−S′j=jS′j is minimized, where S′ is the duplicate-free maximal set in S.

5. Time Bloom Filters

To eliminate duplicates in RFID data streams, we first devise a simple approach based on Bloom Filters, called the Time Bloom
Filter. From Definition 3, we know that RFID data x may not be a duplicate according to x.Time even if there exists RFID data with
the same TagID in an RFID data stream. Therefore, we can use the time information in detecting RFID duplicates. While each entry
in the Bloom Filter is set to zero or one, each entry in the Time Bloom Filter is set to the detected time of an RFID tag. That is, the
Time Bloom Filter uses an integer array instead of a bit array.

The Time Bloom Filter is depicted in Fig. 3(a). The Time Bloom Filter uses k independent hash functions (h1,h2,⋯,hk) with range
{0,⋯,m−1} like the Bloom Filter. The value of the i-th cell in the Time Bloom Filter is denoted byM[i]. In order to store RFID data x
in the Time Bloom Filter, we find k cells that correspond to h1(x.TagID),⋯,hk(x.TagID). The Time Bloom Filter then sets k cells to the
detected time of RFID data x (i.e., x.Time). If the cells are already set to the detected time of the previous RFID data, the Time Bloom
Filter overwrites it with the detected time of the current RFID data.3

To knowwhether some RFID data x is a duplicate, we check k cells corresponding to h1(x.TagID),⋯,hk(x.TagID). If there exists at least
one cell such that x.Time−M[hi(x.TagID)]Nτ,weare sure thatRFIDdata x is not aduplicate sinceduplicatedata existswithin τ time. In the

(a) Time Bloom Filter (b) Time Interval Bloom Filter

Fig. 3. The structures of the Time Bloom Filter and the Time Interval Bloom Filter.

3 We assume RFID data streams arrive at the server in time order for convenience.

1074 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Time Bloom Filter, we can regard the condition x.Time−M[hi(x.TagID)]≤τ as 1 in the Bloom Filter and the condition x.Time−
M[hi(x.TagID)]Nτ as 0 in the Bloom Filter. Note that the evaluation of the condition of the Time Bloom Filter changes as time goes by.

Fig. 4 shows the algorithm to eliminate duplicates in RFID data streams using the Time Bloom Filter. The algorithm can
find the duplicate-free set with a small amount of memory. All cells in the Time Bloom Filter are initially set to 0. When RFID
data x arrives at the server, x passes through the Time Bloom Filter. By the Time Bloom Filter, x will be filtered. In other words, x
will be dropped or sent to the application. First, when x passes through the Time Bloom Filter, we check the condition x.Time−
M[hi(x.TagID)]≤τ for all i∈ {1,2,⋯,k} to know whether x is a duplicate or not (Line 1). Since all cells are initially set to 0, if the
value of at least one cell is 0, x is not a duplicate regardless of the condition. If the condition x.Time−M[hi(x.TagID)]≤τ is
satisfied and the value of M[hi(x.TagID)] is not 0 for all i∈{1,2,⋯,k}, x will be probably a duplicate. Then, we drop it (Line 2).
Otherwise, we send the non-duplicate data to the application (Lines 3–4). Finally, we update cells to x.Time whenever x is a
duplicate or not (Line 5). If we update cells only when that data is not a duplicate, we cannot remove duplicate data of the same
TagID that is generated repeatedly at intervals that are less than or equal to τ.

Example 1. Fig. 5 shows the state of the Time Bloom Filter after an RFID data stream S={s1,s2,s3} passes through the Time
BloomFilter, where s1=(ID1, Loc1, 10), s2=(ID2, Loc2, 120), and s3=(ID1, Loc1, 130). Suppose hash functions are as shown in Fig. 5,
the size of an array in the Time Bloom Filter is 8, k is 3, and τ is 100. To explain the Time Bloom Filter, we assume h2(ID1)=h1(ID2).

Consider how the Time Bloom Filter operates for an RFID data stream S={s1,s2,s3}. When s1 arrives at the Time Bloom Filter, it
checks whether s1 is a duplicate or not. Since all values in M[0],M[5],and M[2] are initially 0, s1 is not a duplicate. Therefore, s1 is
sent to the application. The Time Bloom Filter then sets M[0],M[5],and M[2] to 10 in Fig. 5(a). When s2 passes through the Time
Bloom Filter, it is sent to the application since it is not a duplicate. The Time Bloom Filter setsM[5],M[7],and M[3] to 120 as shown
in Fig. 5(b). In the case of M[5], the Time Bloom Filter sets it to 120 although 10 was set previously. When s3 passes through the
Time Bloom Filter, it is not a duplicate since 130−M[0]Nτ and 130−M[2]Nτ (M[0], and M[2] are values in Fig. 5(b)). s3 is sent to
the application and the Time Bloom Filter sets M[0],M[5],and M[2] to 130 in Fig. 5(c). In this example, since all elements are not
duplicates, the application receives all data.

We can derive the false positive probability for the Time Bloom Filter in a similar way as the Bloom Filter [4]. We provide the
false positive probability for the Time Bloom Filter in Theorem 1.

Fig. 4. Duplicate elimination algorithm of the Time Bloom Filter.

(a) (b) (c)

Fig. 5. The state of the Time Bloom Filter in Example 1.

1075C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Theorem 1. The false positive probability for the Time Bloom Filter is 1− 1−1
m

� �kn′� �k

, where k is the number of hash functions,

m is the number of cells, and n′ is the number of non-duplicate RFID data within τ time.

Proof. In order to derive the false positive probability, we assume that a non-duplicate RFID data stream comes to the Time Bloom
Filter. In real applications, RFID data hasmany duplicates. However, duplicate RFID data sets the same cells in the Time Bloom Filter
since they have the same TagID. Also, they set cells to a similar time since they are usually time clustered. Therefore, the state of
the Time Bloom Filter after passing through the original RFID data is similar to that of the Time Bloom Filter after passing through
non-duplicate RFID data removing duplicates from the original RFID data. Therefore, it is reasonable to assume that non-duplicate
RFID data comes to the Time Bloom Filter.

Consider, in the past, some RFID data passed through the Time Bloom Filter. Now, for any element x, we want to know the false
positive probability. Since duplicates are defined within τ time, data that passed through the Time Bloom Filter before τ time is
meaningless. Thus, we consider only data within τ time with respect to x.Time.

Let p1 be the probability that x.Time−M[hi(x.TagID)]≤τ for 1≤ i≤k and p2 be the probability that x is a duplicate. Then,

The false positive probability for x = p1−p2

To derive p1, we first derive the probability that x.Time−M[u]≤τ for some u. We assume that hash functions have unform

distributions. For RFID data y within τ time, the probability that hi(y.TagID)≠u for some i is 1−1
m. The probability that

hi(y.TagID)≠u for all i∈{1,2,⋯,k} is 1−1
m

� �k
.

Since n′ is the number of RFID data which comes to the Time Bloom Filter within τ time, the probability of x.Time−M[u]Nτ

is 1−1
m

� �k� �n′
. The probability of x.Time−M[u]≤τ is 1− 1−1

m

� �kn′
. Therefore, the probability p1 that x.Time−M[hi(x.TagID)]≤τ

for all i∈{1,2,⋯,k} is 1− 1−1
m

� �kn′� �k

.

M[0] 0 7

M[1] 5 15

M[2] 10 30

M[3] 13 30

M[4] 5 25

M[5] 10 20

M[6] 10 10

M[7] 20 25

Start
Time

h1(x.TagID)

End
Time

intersection

h2(x.TagID)

h3(x.TagID)

h4(x.TagID)

0 5 10 15 20 25 30

M[0] 10 25

M[1] 0 20

M[2] 3 15

M[3] 10 30

M[4] 5 30

M[5] 0 15

M[6] 10 10

M[7] 20 25

Start
Time

h1(x.TagID)

End
Time

intersection

h2(x.TagID)

h3(x.TagID)

h4(x.TagID)

0 5 10 15 20 25 30

(a) The case where the intersection is not empty

(b) The case where the intersection is empty

Fig. 6. An example for the intersection of time intervals in the Time Interval Bloom Filter.

1076 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Since we assume that a non-duplicate RFID data stream comes to the Time Bloom Filter, p2 is equals to 0. Therefore, the false

positive probability for the Time Bloom Filter is 1− 1− 1
m

� �kn′
 !k

. □

6. Time interval bloom filters

In the previous section, we introduced Time Bloom Filters. However, since they are a simple extension of Bloom Filters, we
devise Time Interval Bloom Filters to improve Time Bloom Filters. Since detection regions are distributed with proper ranges and
RFID tags are detected only within or around detection regions, duplicate RFID data is location-clustered, and therefore time-
clustered. That is, if some RFID tag is detected, RFID data with the same TagID will be detected many times during a period. Thus,
we can represent the range of detected times of RFID data with the same TagID as a short time interval.

Fig. 3(b) shows the structure of the Time Interval Bloom Filter. The start time and the end time of the i-th cell are denoted by
M[i].StartTime andM[i].EndTime, respectively. StartTime and EndTime are initially set to 0 and−1, respectively. Consider how the
Time Interval Bloom Filter keeps StartTime and EndTime in a cell. For an easy explanation, we assume that the number of hash
functions is 1 and one cell in the Time Interval Bloom Filter is set by only one TagID.When RFID data xwith TagID=1 arrives at the
Time Interval Bloom Filter first, we set both StartTime and EndTime of the cell corresponding to TagID=1 to x.Time. That is, the
initial time interval is a time point. When another RFID data y with TagID=1 arrives at the Time Interval Bloom Filter, we change
only EndTime of the cell corresponding to TagID=1 to y.Time. Thus, the Time Interval Bloom Filter keeps the time interval
corresponding to TagID=1 in the cell. For RFID data x, if x.Time−EndTime is more than τ, x.Time−StartTime is also more than τ.
Such a time interval is useless. In this case, we set both StartTime and EndTime to x.Time again to initialize the time interval.

Since one cell may be set by various RFID datawith different TagID, the time interval for each TagIDmay bemixed. However, the
interval [StartTime,EndTime] in the cell includes detected times of all RFID data with TagID corresponding to the cell.

To knowwhether someRFIDdata x is a duplicate, we checkwhether the intersection of all time intervals corresponding to h1(x),h2
(x),⋯,hk(x) is empty. If some RFID datawith TagID=x.TagID arrived at the Time Interval Bloom Filter, all time intervals corresponding
to x.TagID should have included the detected time of that data and the intersectionwould have not been empty. Therefore, when the
intersection is empty,weare sure that anyRFIDdatawith TagID=x.TagIDdidnot arrive at theTime IntervalBloomFilterwithin τ time.

Fig. 6 illustrates how to determinewhether some RFID data x is a duplicate. The coordinate on the right side of the Time Interval
Bloom Filter of Fig. 6 represents the time intervals corresponding to RFID data x. In Fig. 6(a), the intersection for four time intervals
is [10,15]. Therefore, it is not empty and x is considered as a duplicate. In Fig. 6(b), the intersection for four time intervals is empty.
Therefore, the Time Interval Bloom Filter reports that x is not a duplicate.

Fig. 7 shows the algorithm to eliminate duplicates using the Time Interval Bloom Filter. If RFID data x arrives at the Time Interval
Bloom Filter, we first check whether x is a duplicate or not. To do this, we check whether the intersection of intervals

Fig. 7. Duplicate elimination algorithm of the Time Interval Bloom Filter.

1077C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

corresponding to h1(x),h2(x),⋯,hk(x) is not empty (Lines 1–7). If the intersection (intersectInterval in Line 6) is located in the time
before x.Time−τ (i.e., x.Time− intersectInterval.EndTimeNτ), we regard it as empty since duplicates are defined within τ time.
Therefore, when intersectInterval is not empty and x.Time− intersectInterval.EndTime≤τ, x is a duplicate and is dropped (Lines 7–8).
Otherwise, x is sent to the application (Line 9–10).

We then update StartTime and EndTime (Lines 11–20). If StartTime=0 (a case where data corresponding to the cell is first
inserted) or x.Time−EndTimeNτ, we initialize both StartTime and EndTime to x.Time (Lines 13–17). Otherwise, we update
EndTime and extend time intervals (Lines 18–19).

Example 2. Consider an RFID data stream {(ID1, Loc1, 10), (ID1, Loc1, 11), (ID2, Loc2, 14), (ID3, Loc3, 15), (ID2, Loc4, 17), (ID2,
Loc2, 18)}. Before explaining the operations of the Time Interval Bloom Filter, we explain those of the Time Bloom Filter. Fig. 8
shows the state of the Time Bloom Filter after the RFID data stream passes through the Time Bloom Filter. Suppose hash functions
are as shown in Figs. 8 and 9, the size of an array in filters is 8, k is 3, and τ is 100. To explain the Time Interval Bloom Filter, we
assume h1(ID1)=h2(ID4), h1(ID2)=h1(ID4), and h3(ID3)=h3(ID4). If (ID4,Loc4,20) passes through the Time Bloom Filter in

M[13]

15M[12]

18M[11]

M[10]

15M[9]

18M[8]

M[4]

11M[5]

M[6]

15M[7]

18M[3]

11M[2]

M[1]

11M[0]

Time

h 1(ID1)

h 2(ID1)

h 3(ID1)

h 1(ID2)

h 2(ID2)

h 3(ID2)

h 1(ID3)

h 2(ID3)

h 3(ID3)

h 1(ID4)

h 2(ID4)

h 3(ID4)

Fig. 8. The state of the Time Bloom Filter in Example 2.

15

14

15

14

15

10

14

10

10

M[13]

15M[12]

18M[11]

M[10]

15M[9]

18M[8]

M[4]

11M[5]

M[6]

15M[7]

18M[3]

11M[2]

M[1]

11M[0]

Time

h1(ID1)

h2(ID1)

h3(ID1)

h1(ID2)

h2(ID2)

h3(ID2)

h1(ID3)

h2(ID3)

h3(ID3)

h1(ID4)

h2(ID4)

h3(ID4)

Fig. 9. The state of the Time Interval Bloom Filter in Example 2.

1078 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Fig. 8, the Time Bloom Filter reports that it is a duplicate since 20−M[h1(ID4)]≤τ, 20−M[h2(ID4)]≤τ and 20−M[h3(ID4)]≤τ.
However, it is not a duplicate. That is, it is a false positive.

Meanwhile, the Time Interval Bloom Filter keeps the start time and the end time. Fig. 9 shows the state of the Time Interval
Bloom Filter after the RFID data stream above passes through the Time Interval Bloom Filter. Consider the case where (ID4,
Loc4,20) passes through the Time Interval Bloom Filter in Fig. 9. The intersection of three intervals corresponding to ID4 (i.e.,
[10,11], [14,18], [15]) is empty. Therefore, the Time Interval Bloom Filter reports that it is not a duplicate and it is really not a
duplicate.

For the Time Interval Bloom Filter, it is difficult to derive the false positive probability since the false positive probability must
be computed from the intersection of the time intervals. Instead of deriving the false positive probability for the Time Interval
Bloom Filter, we provide Theorem 2. From Theorem 2, we know that the Time Interval Bloom Filter is better than the Time Bloom
Filter in terms of the false positive probability.

Theorem 2. Consider the Time Bloom Filter and the Time Interval Bloom Filter which have the same number of cells and the same
configuration for hash functions. Then, for any RFID data streams, the number of false positives of the Time Interval Bloom Filter is
less than or equal to that of the Time Bloom Filter.

Proof. Assume that the sameRFIDdata streamcomes to theTimeBloomFilter and theTime Interval BloomFilter. Since falsepositives are
generated onlywhen the TimeBloomFilter or the Time Interval BloomFilter reports that a givendata is a duplicate,we prove that for any
element x, if the Time Interval Bloom Filter reports that x is a duplicate, then the Time Bloom Filter also reports that x is a duplicate.

Suppose that the Time Interval Bloom Filter reports that x is a duplicate. Then,

intersectInterval≠ ϕ and

x:Time−intersectInterval:EndTime≤ τ:
ð1Þ

Since intersectInterval is not empty in the Time Interval Bloom Filter, all lines corresponding to x in the Time Interval Bloom
Filter (i.e., [si,ei] for 1≤ i≤k) include intersectInterval. Therefore,

ei ≥ intersectInterval:EndTime for 1≤ i≤ k
also; si ≤ intersectInterval:StartTimeð Þ ð2Þ

See how to update cells in the Time Bloom Filter and the Time Interval Bloom Filter (i.e., Line 5 in Fig. 4 and Lines 11–20 in
Fig. 7). We can easily know that ei in the Time Interval Bloom Filter is equal to mi in the Time Bloom Filter, where ei is defined in
Line 4 of Fig. 7 and mi is M[hi(x.TagID)] in the Time Bloom Filter.

Thus, by the Eq. (2)

mi = ei ≥ intersectInterval:EndTime

By multiplying −1 in both sides

−mi ≤−intersectInterval:EndTime

By adding x.Time in both sides,

x:Time−mi ≤ x:Time−intersectInterval:EndTime

Since x.Time− intersectInterval.EndTime≤τ by Eq. (1),

x:Time−mi ≤ τ

That is, all conditions in Line 1 of Fig. 4 are satisfied. Therefore, the Time Bloom Filter reports that x is a duplicate. □

6.1. Space optimization

If the number of cells of the Time Bloom Filter is equal to that of the Time Interval Bloom Filter, the Time Interval Bloom Filter requires
twice asmuch space as the TimeBloomFilter. However, since only the time intervalwithin τ time is useful, we can optimize space for the
Time Interval Bloom Filter.We keep StartTime and EndTime−StartTime(DiffTime) instead of StartTime and EndTime as shown in Fig. 10.
Since the space for DiffTime is less than that for EndTime, we can reduce the space. However, DiffTime may be more than τ while the
algorithm to eliminate duplicates using the Time Interval Bloom Filter in Fig. 7 runs. Therefore, we revise the algorithm in order to keep
DiffTime less thanor equal to τ. Using the revised algorithm in Fig. 11,we can always keepDiffTime less thanor equal to τ.Wewill explain
it later. StartTime and EndTime require much space in reality compared with DiffTime, because they record in most cases month, date,
hour, minute, and second. Since τ is a small value, we do not need much space to store DiffTime.

1079C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

The duplicate elimination algorithm of the Time Interval Bloom Filter with space optimization is shown in Fig. 11. All StartTime
and DiffTime are initially set to 0 and−1, respectively. Like the algorithm TIBF(), the algorithm TIBF_OPT() first checks whether x
is a duplicate or not, then it drops x or sends x to the application (Line 1–10). In TIBF_OPT(), EndTime can be calculated easily from
StartTime+DiffTime (Line 4).

To keep DiffTime less than or equal to τ, TIBF_OPT() update cells differently from TIBF() (Lines 11–28). When StartTime=0 or
x.Time−(StartTime+DiffTime)Nτ, we set StartTime to x.Time and DiffTime to 0 in order to initialize time intervals in the Time
Interval Bloom Filter (Lines 13–17). Otherwise, we change StartTime and DiffTime. In the case that x.Time−StartTimeNτ, the part of
the time interval is useless. To remove the useless part, we set StartTime to x.Time−τ and DiffTime to τ (Line 22–23). If x.Time−
StartTime≤τ, we set only DiffTime to x.Time−StartTime (Lines 25–26).

Fig. 11. Duplicate elimination algorithm of the Time Interval Bloom Filter with space optimization.

M[0]

M[1]

M[2]

…

StartTime EndTime StartTime DiffTime

(a) Time Interval Bloom Filter (b) Time Interval Bloom Filter

M[0]

M[1]

M[2]

…

with space optimization

Fig. 10. Space optimization in the Time Interval Bloom Filter.

1080 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

7. Parameter setting

The false positive probability of Bloom Filters is 1− 1−1
m

� �kn� �k

and k is set to ln2ð Þ⋅ m
n

� �
to minimize false positive errors,

wherem is the number of cells and n is the number of elements in a set. Similarly, we can find k for Time Bloom Filters to minimize

false positive errors. The false positive probability of Time Bloom Filters is 1− 1−1
m

� �kn′� �k

, where n′ is the number of non-

duplicate RFID data within τ time. Therefore, when k = ln2ð Þ m
n′

� �
, the false positive probability is minimized.

In this paper, we do not provide the false positive probability for Time Interval Bloom Filters. Instead, we provide Theorem 2. By
Theorem 2, if the Time Bloom Filter and the Time Interval Bloom Filter have the same number of cells and the same configuration
for hash functions, the Time Interval Bloom Filter is better than the Time Bloom Filter in terms of false positive errors. If we set k in

the Time Interval Bloom Filter to ln2ð Þ m
n′

� �
like the Time Bloom Filter, the Time Bloom Filter and the Time Interval Bloom Filter

have the same configuration for hash functions. Therefore, when we set k in the Time Interval Bloom Filter to ln2ð Þ m
n′

� �
, we

guarantee that the Time Interval Bloom Filter is better than the Time Bloom Filter if the Time Bloom Filter and the Time Interval
Bloom Filter have the same number of cells.

Thus, for both Time Bloom Filters and Time Interval Bloom Filters, we set k to ln2ð Þ m
n′

� �
, where n′ is the number of non-

duplicate RFID data within τ time.

8. Experiments

In order to measure the effectiveness of our approaches, we conducted an experimental evaluation. There are some works
which deal with the duplicate RFID data elimination problem, however, to the best of our knowledge, our work is the first to
systematically deal with an approximate duplicate elimination in RFID data streams. Therefore, we compared our two approaches,
the Time Bloom Filter and the Time Interval Bloom Filter. Also, we included Bloom Filters to observe their behavior when applied
to the RFID data stream. We experimented on a Pentium 3GHz PC with 1 GB main memory using Java.

8.1. Data sets

Since there does not exist a well-known RFID data set, we made a synthetic data generator similar to [15]. To simulate the
detection of an RFID tag, we used the detection model in [15].

If the distance between a tag and an RFID reader is far enough, the tag is not detected. As the tag approaches the RFID reader,
the tag is detected with the probability proportional to the distance. The region is called the minor detection region as shown in
Fig. 12 [15]. When the tag and the RFID reader are in a close distance, the detection probability is constant. The region is called the
major detection region.

Tag
Reader

Tag generation at the departure Tag removal at the destination

Reader

Fig. 13. The tag generation model.

Probability
of detection

Distance between
tag and reader

Major
detection
region

Minor
detection
region

Fig. 12. The detection model.

1081C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Since our goal is to test whether duplicate data is eliminated effectively, we assume that tagsmove in a straight line as shown in
Fig. 13. Tags are generated at only the departure and thenmove in a straight line with the velocity that is assigned randomly when
tags are generated. We assign the same velocity for tags generated at the same time since tags generally move together in real
applications. If a tag reaches the destination, the tag will disappear. Also, in a straight line, there are many detection locations and there
mayexistmultiple readers at detection locations inorder to improve thedetection ratio.Wegenerate 107, 2×107, 3×107, 4×107, 5×107,
and 6×107 tuples both in the case where there exists a single RFID reader at a detection location and in the case where there exist three
RFID readers at a detection location.We call the former data SData and the latter dataMData. MData hasmore duplicate data than SData.

8.2. Experimental results

We evaluate the Time Bloom Filter and the Time Interval Bloom Filter4 with respect to a processing rate and an error rate. We
show experimental results according to the number of tuples in Section 8.2.1 and those according to the space size in Section 8.2.2.

4 The Time Interval Bloom Filter in this section uses space optimization.

0

10

20

30

40

50

1 2 3 4 5 6

pr
oc

es
si

ng
 r

at
e

(u
ni

t:
10

00
0

tu
pl

es
/s

ec
)

The number of tuples (unit: 10,000,000)

BF TBF TIBF

Fig. 14. The processing rate for SData according to the number of tuples.

0

10

20

30

1 2 3 4 5 6

pr
oc

es
si

ng
 r

at
e

(u
ni

t:
10

00
0

tu
pl

es
/s

ec
)

The number of tuples (unit: 10,000,000)

BF TBF TIBF

Fig. 15. The processing rate for MData according to the number of tuples.

1082 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

8.2.1. Experiments according to the number of tuples
Figs. 14 and 15 show the processing rate according to the number of tuples. A processing rate is the number of tuples that are

processed in a unit time. We fix the amount of allowable memory to 4×107 bits. The Bloom Filter (BF) shows the best processing
rate among all approaches for SData as shown in Fig. 14 since it has the simplest structure. In the Bloom Filter, the processing rate
increases when the number of tuples increases. k in the Bloom Filter decreases when the number of tuples increases because k is

set to ln2ð Þ· m
n

� �
. If k is small, we will set and scan a few cells in the Bloom Filter. Thus, in the Bloom Filter, the processing rate

increases as the number of tuples increases. However, in the Time Bloom Filter (TBF) and the Time Interval Bloom Filter (TIBF),
since k is not affected by the number of tuples, the processing rate is constant. In MData (Fig. 15), the processing rate shows a
similar result as SData (Fig. 14). The processing rates in the Time Bloom Filter and the Time Interval Bloom Filter are constant and
that in the Bloom Filter increases as the number of tuples increases. Also, in the case of the Bloom Filter, the processing rate for

MData is less than that for SData because k for MData is larger than k for SData. Note that k is set to ln2ð Þ· m
n

� �
, where m is the

number of cells and n is the number of distinct elements in a set.
To validate the effectiveness of the Time Bloom Filter and the Time Interval Bloom Filter, we evaluate the error rate according to

the the number of tuples. The error rate of the Bloom Filter is much worse than those of other approaches for both SData (Fig. 16)
and MData (Fig. 17) as we expected. The error rate of the Time Interval Bloom Filter is the best among all approaches and is less

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

E
rr

or
 R

at
e

The number of tuples (unit: 10,000,000)

BF TBF TIBF

Fig. 16. The error rate for SData according to the number of tuples.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

E
rr

or
 R

at
e

The number of tuples (unit: 10,000,000)

BF TBF TIBF

Fig. 17. The error rate for MData according to the number of tuples.

1083C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

than 0.007% in all cases. The error rate of the Time Bloom Filter is a little worse than that of the Time Interval Bloom Filter. The error
rates of all approaches increase as the number of tuples increases.

8.2.2. Experiments according to the space size
We evaluate the processing rate and the error rate according to space size given the number of tuples is 4×107. Figs. 18 and 19

show how the processing rate changes as the space size increases. In the Bloom Filter, the Time Bloom Filter, and the Time Interval
Bloom Filter, since k is set proportional to the space size, the processing rate shows a tendency to decrease as the space size
increases.

While the processing rate of the Bloom Filter for SData (Fig. 18) is much better than other approaches, the processing rate of the
Bloom Filter for MData (Fig. 19) is a little better than the Time Bloom Filter and the Time Interval Bloom Filter. This is because k of
the Bloom Filter for MData increases much more than that for SData compared to the Time Bloom Filter and the Time Interval
Bloom Filter.

The error rate according to the space size is shown in Figs. 20 and 21. In the Bloom Filter, the error rate stays almost constant as
the space increases since most of entries in the Bloom Filter are set to 1. However, the error rate of the Time Bloom Filter, the Time

0

10

20

30

40

50

1 2 3 4 5 6

pr
oc

es
si

ng
 r

at
e

(u
ni

t:
10

00
0

tu
pl

es
/s

ec
)

Space size (unit: 10,000,000 bits)

BF TBF TIBF

Fig. 18. The processing rate for SData according to the space size.

0

10

20

30

40

50

1 2 3 4 5 6

pr
oc

es
si

ng
 r

at
e

(u
ni

t:
10

00
0

tu
pl

es
/s

ec
)

Space size (unit: 10,000,000 bits)

BF TBF TIBF

Fig. 19. The processing rate for MData according to the space size.

1084 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

Interval Bloom Filter decreases considerably as the space increases. As shown in Figs. 20 and 21, the error rate of the Time Interval
Bloom Filter is better than other approaches in many cases. Since the Bloom Filter cannot change the cell dynamically, the error
rate is high even for the case of the small number of tuples.

8.2.3. Optimal k
Like the Bloom Filter, k affects the error rate of the Time Bloom Filter and the Time Interval Bloom Filter. To investigate whether

the setting of k proposed in Section 7 is valid, we evaluate the error rate as k changes from 1 to 10. Figs. 22 and 23 show the error
rate according to k given that space size is 3×107 bits and the number of tuples is 3×107. In Figs. 22 and 23, the thick circle means
the k value evaluated by the formula in Section 7 and the double circle means the k value evaluated by applying the formula of
Bloom Filters.

In Figs. 22 and 23, all k values corresponding to the thick circles are considered good choices in terms of error rates. However,
the error rates corresponding to the double circles are much worse than the optimal error rates. We evaluated the error rate
according to k for various space sizes and data sizes. As a result, we conclude that the proposed k value in Section 7 is considered as
a good choice in most cases although it is not always optimal.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

E
rr

or
 R

at
e

Space size (unit: 10,000,000 bits)

BF TBF TIBF

Fig. 20. The error rate for SData according to the space size.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

E
rr

or
 R

at
e

Space size (unit: 10,000,000 bits)

BF TBF TIBF

Fig. 21. The error rate for MData according to the space size.

1085C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

9. Conclusion

Generally, RFID data streams include numerous duplicate data. Since RFID data is produced in a stream, it is difficult to
eliminate duplicate RFID data in one pass with a small amount of memory. Thus, we propose approximate duplicate elimination
methods, Time Bloom Filters and Time Interval Bloom Filters, based on Bloom Filters. In the Time Bloom Filter, we replace a bit
array in the Bloom Filter with an array of time information since the definition of duplicates in RFID data is related to the detected

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10
k

E
rr

or
 R

at
e

TBF TIBF

Fig. 22. The error rate for SData according to k.

0

0.04

0.08

0.12

0.16

1 2 3 4 5 6 7 8 9 10
k

E
rr

or
 R

at
e

TBF TIBF

Fig. 23. The error rate for MData according to k.

1086 C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

time. Also, to reduce false positives, the Time Interval Bloom Filter uses a time interval. Finally, experimental results show that the
proposed approaches can remove duplicate RFID data in one pass with a small error.

Acknowledgments

Wewould like to thank the editor and anonymous reviewers. This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0000377).

References

[1] Manage data successfully with RFID anywhere edge processing, http://www.ianywhere.com/developer/rfidanywhere/rfidanywhereedgeprocessing.pdf.
[2] Y. Bai, F. Wang, P. Liu, Efficiently filtering RFID data streams, VLDB Workshop on Clean Databases, 2006.
[3] C. Ban, B. Hong, D. Kim, Time parameterized interval R-tree for tracing tags in RFID systems, DEXA, 2005, pp. 503–513.
[4] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors, Communication of the ACM 13 (7) (1970) 422–426.
[5] C. Bornhövd, T. Lin, S. Haller, J. Schaper, Integrating automatic data acquisition with business processes — experiences with SAP's Auto-ID infrastructure,

VLDB, 2004, pp. 1182–1188.
[6] Z. Cao, C. Suttony, Y. Diao, P. Shenoy, Distributed inference and query processing for RFID tracking and monitoring, PVLDB 4 (5) (2011) 326–337.
[7] B. Carbunar, M.K. Ramanathan, M. Koyutürk, C. Hoffmann, A. Grama, Redundant reader elimination in RFID systems, IEEE SECON, 2005, pp. 176–184.
[8] S.S. Chawathe, V. Krishnamurthy, S. Ramachandran, S. Sarma, Managing RFID data, VLDB, 2004, pp. 1189–1195.
[9] A. Chebotko, S. Lu, X. Fei, F. Fotouhi, RDFProv: a relational RDF store for querying and managing scientific workflow provenance, Data & Knowledge

Engineering 69 (8) (2010) 836–865.
[10] F. Deng, D. Rafiei, Approximately detecting duplicates for streaming data using stable bloom filters, SIGMOD, 2006, pp. 25–36.
[11] H. Garcia-Molina, J.D. Ullman, J. Widom, Database System Implementation, Prentice Hall International, Inc., Upper Saddle River, New Jersey, 2000, p. 07458.
[12] H. Gonzalez, J. Han, X. Li, FlowCube: constructuing RFID FlowCubes for multi-dimensional analysis of commodity flows, VLDB, 2006, pp. 834–845.
[13] H. Gonzalez, J. Han, X. Li, D. Klabjan, Warehousing and Analyzing Massive RFID Data Sets, ICDE, 2006.
[14] Y. Hu, S. Sundara, T. Chorma, J. Srinivasan, Supporting RFID-based item tracking applications in Oracle DBMS using a bitmap datatype, VLDB, 2005,

pp. 1140–1151.
[15] S.R. Jeffery, M.N. Garofalakis, M.J. Franklin, Adaptive cleaning for RFID data streams, VLDB, 2006, pp. 163–174.
[16] C.-H. Lee, C.-W. Chung, Efficient storage scheme and query processing for supply chain management using RFID, SIGMOD, 2008, pp. 291–302.
[17] C.-H. Lee, C.-W. Chung, RFID data processing in supply chain management using a path encoding scheme, IEEE Transactions on Knowledge and Data

Engineering (TKDE) 23 (5) (2011) 742–758.
[18] J. Lu, X. Meng, T.W. Ling, Indexing and querying XML using extended Dewey labeling scheme, Data & Knowledge Engineering 70 (1) (2011) 35–59.
[19] H. Mahdin, J. Abawajy, An approach to filtering duplicate RFID data streams, Communications in Computer and Information Science 124 (2010) 125–133.
[20] A. Metwally, D. Agrawal, A.E. Abbadi, Duplicate detection in click streams, WWW, 2005, pp. 12–21.
[21] J. Rao, S. Doraiswamy, H. Thakkar, L.S. Colby, A deferred cleansing method for RFID data analytics, VLDB, 2006, pp. 175–186.
[22] F. Wang, P. Liu, Temporal management of RFID data, VLDB, 2005, pp. 1128–1139.
[23] X. Wang, Q. Zhang, Y. Jia, Efficiently filtering duplicates over distributed data streams, International Conference on Computer Science and Software

Engineering (CSSE), 2008, pp. 631–634.

Chun-Hee Lee received a PhD degree in computer science from the Korea Advanced Institute of Science and Technology (KAIST),
Korea, in 2010. His research interests include sensor network, stream data management, and graph databases.

Chin-Wan Chung received a B.S. degree in electrical engineering from Seoul National University, Korea, in 1973, and a Ph.D. degree in
computer engineering from the University of Michigan, Ann Arbor, USA, in 1983. From 1983 to 1993, he was a Senior Research
Scientist and a Staff Research Scientist in the Computer Science Department at the General Motors Research Laboratories (GMR). Since
1993, he has been a professor in the Department of Computer Science at the Korea Advanced Institute of Science and Technology
(KAIST), Korea. He was in the program committees of major database andWeb conferences including ACM SIGMOD, VLDB, IEEE ICDE,
and WWW. He was an associate editor of ACM TOIT, and is an associate editor of WWW Journal. He will be the general chair of
WWW2014. His current research interests include the semantic Web, social networks, mobile Web, sensor networks and stream data
management, and multimedia databases.

1087C.-H. Lee, C.-W. Chung / Data & Knowledge Engineering 70 (2011) 1070–1087

http://www.ianywhere.com/developer/rfidanywhere/rfidanywhereedgeprocessing.pdf
Unlabelled image

	An approximate duplicate elimination in RFID data streams
	1. Introduction
	1.1. Organization

	2. Related work
	3. Preliminary
	4. Problem statement
	5. Time Bloom Filters
	6. Time interval bloom filters
	6.1. Space optimization

	7. Parameter setting
	8. Experiments
	8.1. Data sets
	8.2. Experimental results
	8.2.1. Experiments according to the number of tuples
	8.2.2. Experiments according to the space size
	8.2.3. Optimal k

	9. Conclusion
	Acknowledgments
	References

