
E

C
a

b

a

A
R
R
A
A

K
S
G
H
T

1

i
t
M
a
a

i
s
s
h
m
o
t
m
d
c
t
t
g
f
q
d

(

0
d

The Journal of Systems and Software 83 (2010) 2627–2641

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

ffective processing of continuous group-by aggregate queries in sensor networks

hun-Hee Leea, Chin-Wan Chunga,∗, Seok-Ju Chunb

Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
Department of Computer Education, Seoul National University of Education, Seoul 137-742, Republic of Korea

r t i c l e i n f o

rticle history:
eceived 16 April 2009
eceived in revised form 18 June 2010
ccepted 18 August 2010
vailable online 29 September 2010

a b s t r a c t

Aggregate queries are one of the most important queries in sensor networks. Especially, group-by aggre-
gate queries can be used in various sensor network applications such as tracking, monitoring, and event
detection. However, most research has focused on aggregate queries without a group-by clause.

In this paper, we propose a framework, called the G-Framework, to effectively process continuous
group-by aggregate queries in the environment where sensors are grouped by the geographical location.
eywords:
ensor network
roup-by aggregate query
aar wavelet

In the G-Framework, we can perform energy effective data aggregate processing and dissemination using
two-dimensional Haar wavelets. Also, to process continuous group-by aggregate queries with a HAVING
clause, we divide data collection into two phases. We send only non-filtered data in the first collection
phase, and send data requested by the leader node in the second collection phase. Experimental results

ork c
wo-phase collection show that the G-Framew
energy consumption.

. Introduction

Sensor networks consist of small sensors which have comput-
ng and communication facilities. With the advancement of sensor
echnology, sensors are becoming smaller and more powerful.

oreover, as the price of a sensor becomes low, we expect that
large number of sensors will be used in various sensor network

pplications.
For example, a volcanologist can use a sensor network to mon-

tor a dangerous active volcanic area. Low-priced sensors can be
cattered over the dangerous area from an airplane. Such sen-
ors become a sensor network and monitor the volcano without
umans’ help. However, sensors have very limited resources (e.g.,
emory, computation, communication and energy). Among vari-

us resources, energy is one of the very important resources since
he battery replacement is difficult or impossible in such environ-

ents. In sensor networks, since individual sensor readings are raw
ata, there are many applications using aggregate values. In many
ases, the aggregate values of many regional areas are preferred to
he aggregate value of the whole area since the aggregate value of
he whole area does not provide the detailed information. That is,

roup-by aggregate queries are useful in sensor networks. There-
ore, in this paper, we consider continuous group-by aggregate
ueries. Due to many shortcomings of the current technology, it is
ifficult to manage a large number of sensors. As one of the effective
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methods to deal with many sensors, we can use clustering in sensor
networks (Heinzelman et al., 2002; Younis and Fahmy, 2004). Since
sensor readings have spatial correlations, spatial clustering of sen-
sors has many benefits. Therefore, we deal with group-by aggregate
queries in the environment where sensors are grouped (clustered)
by the geographical location. A group-by aggregate query may have
a HAVING clause which is a predicate for the aggregation of the
group. The queries we consider in this paper are shown in Fig. 1.
However, we focus on the query in Fig. 2(a) since processing of
queries in Fig. 1 can be extended from the processing of the query
in Fig. 2(a). Also, the G-Framework can process local predicates in
a straightforward method. Each node checks whether sensor read-
ings satisfy local predicates and makes the bitmap. Then, the node
sends only the satisfied data and the bitmap. Therefore, we will not
mention local predicates in this paper for convenience of explana-
tion.

Many papers proposed the processing of aggregate queries
(Madden et al., 2002; Fan et al., 2002; Considine et al., 2004; Nath et
al., 2004; Shrivastava et al., 2004; Deligiannakis et al., 2004; Sharaf
et al., 2003, 2004). However, most of them do not consider group-
by aggregate queries. Although some papers deal with processing
group-by aggregate queries, they do not focus on processing group-
by aggregate queries by the geographical location. In this paper, we
focus on processing those queries. They can be used in many sen-
sor networks applications such as tracking, monitoring, and event

detection. To process them, we assume the following:

• Sensors are grouped according to the geographical location. See
Fig. 2(b). A group consists of a leader node and member nodes.
A leader node and member nodes are connected in one hop (the

dx.doi.org/10.1016/j.jss.2010.08.049
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
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Fig. 1. Query template.
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1.1. Contributions
Fig. 2. Query and topology.

solid lines in Fig. 2(b)). Although we assume the one hop connec-
tion, a larger group with multi-hop connections can be handled
as discussed in Section 7.
There is a tree routing topology among leader nodes (the dot-
ted lines in Fig. 2(b)). The thick arrow between groups means
the parent-child relationship. We can construct the tree routing
topology for the leader nodes by flooding.
Sensors are synchronized. To synchronize sensors in the G-
Framework, we can use the synchronization approach in Ping
(2003). In the approach, a master node is chosen as the time
coordinator, and broadcasts the time synchronization message. A
receiver node takes the message, measures the delay between the
master node and itself and synchronizes the time. The approach
in Ping (2003) is a lightweight approach (i.e., energy-efficient)
and can be applied to multi-hop networks. After a certain time,
synchronized sensors are unsynchronized due to various factors.
Therefore, we should synchronize sensors periodically.

Fig. 2 shows the query and topology we consider. The query is
o monitor the regions when their aggregate values are more than
. A group is formed according to the geographical location and has

leader node and member nodes. The leader node collects data to

ompute the aggregation of the group. This query can be used in
any sensor network applications. For example, consider building
onitoring systems which automatically control the status of the

uilding such as the room air temperature. If the room air temper-
nd Software 83 (2010) 2627–2641

ature is more than a given threshold, we want to turn on the air
conditioner. To monitor the status of each room, we install many
sensors in the building. We can then group sensors according to the
room. All sensors in the same room belong to the same group. The
leader node of a room collects sensor readings from member nodes
and sends the aggregate value to the base station. In building con-
trol systems, the base station receives the aggregate value of each
room and controls the air conditioner using the aggregate value.

To effectively1 process continuous group-by aggregate queries
in sensor networks, we consider the following two factors.

• Approximate processing: A sensor gets sensor readings from the
device. However, no matter how much the device is advanced,
there are gaps between real values and sensor readings. There-
fore, sensor readings have inevitable errors and small errors are
allowed in such environments. Given an error threshold from a
user, we will compute aggregate values of groups within the error
threshold.

• Delayed processing: Continuous queries get results succes-
sively. In monitoring applications, a user does not need results
immediately. Therefore, delayed results are allowed in such envi-
ronments. We will compute aggregate values of groups with a
delay.

Considering the above two factors, we propose a new frame-
work, called the G-Framework, to process continuous group-by
aggregate queries. In the G-Framework, we focus on reducing
the communication cost since it is the primary factor of energy
consumption. We use Haar wavelets to reduce the intra-group
communication cost and inter-group communication cost in the G-
Framework. Since Haar wavelets reduce data very effectively and
are simple, they can be adapted well in sensor networks. To com-
pute the aggregation of a group, sensor readings of member nodes
are collected in the leader node. To reduce the intra-group commu-
nication cost (i.e., communication cost between the member node
and the leader node), in the G-Framework, a member node collects
sensor readings during a fixed period instead of sending a sensor
reading immediately. Then, the member node compresses them
using one-dimensional Haar wavelets and sends important wavelet
coefficients to the leader node. The leader node receives wavelet
coefficients from member nodes and computes the aggregation of
the group.

The aggregate value of each group should be transmitted to
the base station effectively. To do that, we use two-dimensional
wavelets. The parent group receives the aggregation vectors from
the child groups and compresses them using two-dimensional Haar
wavelets. By using two-dimensional Haar wavelets, we can send
the aggregation vectors to the base station effectively.

A group-by aggregate query may have a HAVING clause. In the
G-Framework, we use two-phase collection to process a HAVING
clause effectively. To perform two-phase collection, we set the fil-
ter condition vi ≤ Fi (vi is the sensor reading of node i and Fi is the
filter value of node i) to each node i of a group according to the HAV-
ING clause. In the first collection phase, a member node sends only
sensor readings which are not valid for the filter condition. After
receiving data in the first collection, the leader node determines
sensor readings to send in the second collection phase.
Our contributions are as follows:

1 Effectively in this paper is used as the meaning of effectively in terms of energy
saving.
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Effective group-by aggregate query processing through two-
dimensional Haar wavelets: To process group-by aggregate
queries in the environment where sensors are grouped by the
geographical location, we use two-dimensional Haar wavelets
as an approximate approach. By using two-dimensional Haar
wavelets, we can aggregate data in a group and disseminate the
aggregate value to the base station effectively. Also, we derive a
mathematical formula which guarantees an error bound.
Effective HAVING clause processing through two-phase col-
lection: To process a HAVING clause effectively, we propose
two-phase collection. In the two-phase collection, we install fil-
ters in all nodes of a group. Unnecessary transmissions are filtered
in the first phase while necessary but filtered data is transmit-
ted in the second phase. Since we divide data collection into two
phases using filters, we can reduce the number of transmissions
effectively.
Dummy data adjustment in Haar Wavelets: One of the critical
problems in Haar wavelets is that the performance of the com-
pression can be bad if the number of data is not in a power of
two. To adjust the number of data in a power of two, we can fill
the remaining elements with any values (i.e., dummy data). Also,
dummy data may be contained during the inter-group merging.
The value of dummy data affects the compression quality. There-
fore, we propose a method to determine the value of dummy data
in order to improve the compression ratio under the same error
bound.
Validation of the G-framework through experimental evalua-
tions: Through experimental evaluations, we validate that in the
G-Framework, group-by aggregate queries are processed effec-
tively in terms of energy consumption. Also, we show that the
proposed dummy data adjustment algorithm improves the com-
pression ratio of Haar wavelets.

.2. Organization

The rest of the paper is organized as follows. In Section 2, we dis-
uss the related work. In Section 3, we explain Haar wavelets as the
reliminary. We describe the G-Framework to process continuous
roup-by aggregate queries in Sections 4, 5 and 6. Also, we discuss
etwork issues of the G-Framework in Section 7. Finally, we show
xperimental results in Section 8 and conclude our work in Section
.

. Related work

Much work on managing aggregate queries in sensor networks
as been reported (Madden et al., 2002; Trigoni et al., 2005; Fan et
l., 2006, 2002; Trigoni et al., 2006; Considine et al., 2004; Nath et
l., 2004; Shrivastava et al., 2004; Deligiannakis et al., 2004; Sharaf
t al., 2003; Beaver et al., 2003; Sharaf et al., 2004; Zhang and Shatz,
006). Madden et al. (2002) propose TAG (Tiny AGgregation) for in-
etwork aggregate processing. They classify aggregates in sensor
etworks and define the structure of aggregates with a merging

unction f, an initializer i, and an evaluator e to compute aggre-
ate queries in sensor networks. Approximate query processing in
ensor networks is very useful due to the property of sensor net-
orks. Therefore, many papers deal with approximate aggregate
rocessing (Considine et al., 2004; Nath et al., 2004; Shrivastava
t al., 2004; Deligiannakis et al., 2004; Sharaf et al., 2003, 2004). A
ethod to process duplicate sensitive aggregate queries in a multi-
ath routing is proposed in Considine et al. (2004). Since data can be
uplicate due to the multi-path routing, Considine et al. (2004) use
uplicate-insensitive sketches and get approximate results. Nath et
l. (2004) provide a general framework, synopsis diffusion, for the
pproximate aggregate processing in multi-path routing schemes.
nd Software 83 (2010) 2627–2641 2629

Shrivastava et al. (2004) deal with the processing of quantiles in
sensor networks. To process the quantiles, they propose a new sum-
mary structure, q-digest (quantile digest). Also, they provide error
bounds on quantile queries. Deligiannakis et al. (2004) propose an
effective hierarchical in-network data aggregation technique. To
reduce the amount of transmission, they utilize a bound filter [L,
H] in Olston et al. (2003). Each node i has its bound filter [Li, Hi]. If
the current sensor reading v in the node i is within the bound filter
(i.e., Li ≤ v ≤ Hi), the node does not send any messages to the parent
node. Otherwise, the reading is sent to the parent node. In order to
allocate the width (W = H − L) for the bound filter adaptively, they
use a gain-based approach. By keeping simple statistics, W can be
allocated adaptively.

As a class of aggregate queries, we can consider aggregate
threshold queries which evaluate f (�v) > r, where f : Rd → R is an
aggregate function and �v is a global measurement vector. Sharfman
et al. (2007) deal with this type of aggregate queries (i.e., aggre-
gate threshold queries). To process the queries effectively, they
use a geometric property which is related to the convex-hull. To
reduce the communication cost, they check f (�v) > r locally using
the property.

Most approaches on aggregate processing do not consider
group-by aggregate queries. Although TAG (Madden et al., 2002)
considers group-by aggregate queries, the approach in TAG is
straightforward. In TAG, if the aggregate value received from a child
node is in the same group as some value in the parent node, the
parent node simply combines the two values using the combining
function.

Sharaf et al. (Sharaf et al., 2004, 2003; Beaver et al., 2003) pro-
pose a group-aware construction of the routing tree and in-network
aggregation by exploiting temporal correlations. They consider
group-by aggregate queries. To construct the effective routing tree
for group-by aggregate queries, they introduce a group-aware net-
work configuration method which builds a routing tree in order for
the nodes in the same group to be on the same path. Also, they use
temporal suppression to reduce the communication cost between
the child node and the parent node. Each node keeps the last par-
tial aggregate results in the case of the non-leaf node or the last
reported reading in the case of the leaf node. If new partial aggre-
gate results or the current reported reading are within the given
relative error tct ((|Vnew − Vold|)/Vnew ≤ tct, where tct is the tempo-
ral coherency tolerance), they will be suppressed. However, Sharaf
et al. do not consider a HAVING clause. Zhang and Shatz (2006) pro-
pose a method to create a routing topology for processing group-by
aggregate queries in sensor networks, but they do not consider the
processing of group-by aggregate queries.

3. Preliminary

In the G-Framework, we adopt Haar wavelets as a data compres-
sion tool. Since wavelets (Stollnitz et al., 1996) can reduce data very
effectively, they have been used in many database areas (Matias et
al., 1998; Gilbert et al., 2001; Vitter and Wang, 1999).

The one-dimensional Haar wavelet transform consists of one
overall average and detail coefficients, which are called wavelet
coefficients. The wavelet coefficients are computed by repeating
two simple operations, averaging and differencing (Stollnitz et al.,
1996). If the values in the pair are a and b, the averaging operation
is (a + b)/2 and the differencing operation is (a − b)/2. The difference
values become detail wavelet coefficients and the average values

are used to get detail wavelet coefficients in the next level.

The detailed procedure for the Haar wavelet transformation
is shown in Fig. 3(a). From the original data S = {17, 11, 20,
16}, the detail coefficients {3 = (17 − 11)/2, 2 = (20 − 16)/2} and the
average values {14 = (17 + 11)/2, 18 = (20 + 16)/2} are computed.
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and error tree for S = {17, 11, 20, 16}.
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Fig. 3. Haar wavelet transform

gain, from the average values {14, 18}, the detail coefficient
− 2 = (14 − 18)/2} and the average value {16 = (14 + 18)/2} are
omputed. Therefore, wavelet coefficients are {16, − 2, 3, 2}.

avelet coefficients in a low level are more important than those
n a high level. To normalize such wavelet coefficients, we divide

avelet coefficients in level l by
√

2l . Detail Coefficients (Normalized)
n Fig. 3(a) shows normalized wavelet coefficients in each level. {17,
1, 20, 16} is transformed into the normalized wavelet coefficients
16, −2, 3/

√
2, 2/

√
2}.

For data reduction, some coefficients should be selected.
avelet thresholding is a way of selecting coefficients within

he available space. It is well known that the largest normal-
zed coefficients should be selected in order to minimize the L2
rror (Stollnitz et al., 1996). However, such thresholding does not
rovide the individual error. To solve this problem, a probabilis-
ic wavelet thresholding scheme is proposed in Garofalakis and
ibbons (2002), which only provides the expected value. Also,
arofalakis and Kumar (2004) propose an optimal deterministic
avelet thresholding algorithm to minimize the maximum error.
owever, the algorithm proposed in Garofalakis and Kumar (2004)
as large time complexity and space complexity. Therefore, prac-
ical wavelet thresholding algorithms for the maximum error are
roposed in Karras and Mamoulis (2005). As a wavelet thresholding
lgorithm, we use GreedyAbs in Karras and Mamoulis (2005). How-
ver, any other wavelet thresholding algorithms for the maximum
rror can also be used in the G-Framework.

To understand the properties of Haar wavelet transform, we can
uild an error tree (Matias et al., 1998) with unnormalized wavelet
oefficients. Fig. 3(b) shows the error tree for S = {17, 11, 20, 16}. The
rror tree consists of the root node and a binary tree. The overall
verage corresponds to the root node. In Fig. 3, since the overall
verage for S = {17, 11, 20, 16} is 16, the root node N1 is denoted
y 16. The detail coefficients in each level correspond to the binary
ree and the original data corresponds to the leaves in the binary
ree. In Fig. 3(b), detail coefficient {− 2} in Level 0 corresponds to
2. Detail coefficients {3, 2} in Level 1 correspond to N3 and N4,

espectively. Finally, the original data {17, 11, 20, 16} corresponds
o N5, N6, N7, and N8. We can observe that the value of a leaf node
s constructed by traversing the path from the root node to the
eaf node. While traversing the path, if the current node is the root
ode or we change the current node to its left child node, the value
f the current node is added. Otherwise, the value of the current
ode is subtracted. For example, 20 is constructed by computing
(16) −(− 2) + (2) = 20 as shown in the arrow of Fig. 3(b).

There are the standard construction and the non-standard
onstruction for constructing the two-dimensional Haar wavelet

ransform. We mention only the standard construction since we
se the standard construction in the G-Framework. Fig. 4 shows
he process of the standard construction. In the standard construc-
ion, we first apply the one-dimensional Haar wavelet transform
o each row of the original two-dimensional data. We then apply
Fig. 4. Standard construction for two-dimensional Haar wavelet transform.

the one-dimensional Haar wavelet transform to each column of
transformed two-dimensional data. In this way, we can get two-
dimensional Haar wavelet coefficients. Since the one-dimensional
Haar wavelet transform is applied to both rows and columns, the
two-dimensional Haar wavelet transform reflects correlations for
both rows and columns.

4. Framework to process group-by aggregate queries
without a HAVING clause

We first describe how to process group-by aggregate queries
without a HAVING clause in the G-Framework. The error threshold
for the aggregation of a group is given by a user. If the user gives
the maximum absolute error � as an error threshold, we guarantee
that |r − r̂| ≤ �, where r is the exact aggregate value and r̂ is the
approximate value computed from the G-Framework.

To process group-by aggregate queries without a HAVING
clause, we perform two steps, intra-group aggregation and
inter-group merging, in the G-Framework. In the intra-group aggre-
gation, the leader node of each group computes a aggregation
vector of the group, one for each epoch. Each node i in a group
has the assigned error threshold �i and it is guaranteed that the
errors for the computed aggregations are within �1 + �2 + · · · + �k, if
k is the number of nodes in the group. In the inter-group merg-
ing, the aggregation vectors from groups are merged with the error
threshold �inter and sent to the base station. To send the vectors to
the base station, we construct the tree routing topology, which is
independent of the topology in Fig. 2(b), from the base station by
flooding. In Sections 4 and 5, we assume that error thresholds �1,
�2, . . ., �k, and �inter are assigned such that �1 + �2 + · · · + �k + �inter = �.
We will explain how to assign the error thresholds (�1, �2, . . ., �k,
and �inter) effectively in Section 6. The algorithms in a member node
and a leader node are summarized in Figs. 5 and 6, respectively.
4.1. Intra-group aggregation

In order to compute the aggregation of a group, all member
nodes in the group send sensor readings to the leader node. How-
ever, if they send data to the leader node every round, much
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Fig. 5. memberNode() algorithm to process group-by aggregate queries without a
HAVING clause.
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Fig. 7. Intra-group aggregation.
ig. 6. leaderNode() algorithm to process group-by aggregate queries without a
AVING clause.

nergy will be consumed. Therefore, we use a compression scheme
o reduce the communication cost. In this section, we consider
nly one group, which has k − 1 member nodes (Node1, Node2, . . .,
odek−1) and the leader node Nodek. Also, Nodei has the allocated
rror threshold �i. We will explain how to allocate the error thresh-
ld in Section 6.

In the G-Framework, the aggregation proceeds as follows:
Sensing and collecting sensor readings: Each node Nodei

ncluding a leader node collects n sensor readings ([vi1 vi2· · ·vin],
ij is the jth sensor reading at Nodei) locally.

Compressing sensor readings: Each node Nodei transforms n
ensor readings into n wavelet coefficients using one-dimensional
aar wavelets. To reduce the communication cost, we drop unim-
ortant wavelet coefficients, which is called wavelet thresholding.
s a wavelet thresholding algorithm, we use GreedyAbs in Karras
nd Mamoulis (2005) which is efficient in both time and space
omplexity. Using GreedyAbs, we eliminate unimportant wavelet
oefficients such that |vij − v′

ij
| ≤ �i for all j, where v′

ij
is the approx-

mate data constructed from wavelet coefficients after wavelet

hresholding. At this time, the leader node Nodek does not apply
avelet thresholding since the aggregation is computed at the

eader node.
Sending wavelet coefficients to the leader node: To avoid

collision when member nodes send wavelet coefficients to the
Fig. 8. Notation in intra-group aggregation.

leader node, we use TDMA (Time Division Multiple Access). A mem-
ber node communicates with the leader node at its allocated time
slot.

As an example, Fig. 7 shows the group with 5 nodes. Each mem-
ber node has the allocated time slot. In that time slot, it sends only
important wavelet coefficients to the leader node and in other time
slots, it is in the sleep mode.

Computing and compressing the aggregation of a group:
Refer to the notation in Fig. 8. The leader node Nodek receives
only important wavelet coefficients ([w(v′

i1)w(v′
i1)· · ·w(v′

in
)])2 from

each member node Nodei. Most w(v′
ij
) for j ∈ {1, 2, . . ., n} are zero.

Only non-zero values are sent while zero values are not sent, but
zero values are set at the leader node. To compute the aggregation,
the leader node decompresses (inverse-transforms) sensor read-
ings received from Node and merges them. The jth aggregation a
i j

2 w(xij) is the jth Haar wavelet coefficient for [xi1 xi2 · · · xin].
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s computed as follows:

j = vkj +
k−1∑
i=1

v′
ij

hen, the leader node transforms [a1 a2 · · · an] into wavelet coeffi-
ients [w(a1) w(a2)· · ·w(an)] using one-dimensional Haar wavelets.
owever, since Haar wavelets have a linear property, we do not
eed to decompress wavelet coefficients in processing group-by
ggregate queries without a HAVING clause. Instead, we merge
avelet coefficients directly.

(aj) = w(vkj) +
k−1∑
i=1

w(v′
ij)

inally, we apply wavelet thresholding to wavelet coeffi-
ients [w(a1) w(a2)· · ·w(an)] using the allocated error �k in the
eader node. Wavelet coefficients after wavelet thresholding are
w(a′

1) w(a′
2)· · ·w(a′

n)]. We can easily prove that |ri − a′
i
| ≤

∑k
j=1�j

ri is the i th exact aggregate value) by the formula | A + B |≤| A | + | B |.
.2. Inter-group merging

After the intra-group aggregation, the leader node in a group
as the compressed aggregation vector [w(a′

1) w(a′
2)· · ·w(a′

n)]. The
r-group merging.

leader node can send the vector to the base station without fur-
ther processing. However, sensor readings in sensor networks have
strong spatial correlations. If we exploit spatial correlations, we can
reduce the communication cost even more.

If two nodes are close, they generally have strong spatial correla-
tions. Therefore, we merge aggregation vectors in the near groups.
We can choose the near groups as the child groups under the same
parent group. We will explain how to perform the inter-group
merging focusing on one parent group since other parent groups
are processed in the same way and the aggregation vectors after the
inter-group merging are directly sent to the base station without
further processing. We denote the leader node of the parent group
by LNode and the leader node of the i th child group by CNodei. We
assume that there are m child groups under the parent group. Refer
to the notation in Fig. 9. In Fig. 9, wc(xij) is the i th Haar wavelet

coefficient for

⎡
⎢⎣

x1j

x2j

· · ·
xmj

⎤
⎥⎦.

The leader node of the parent group (LNode) receives the com-
′ ′ ′
pressed aggregation vector [w(a
i1) w(a

i2)· · ·w(a
in

)] from the leader
node of the i th child group (CNodei). In this section, we extend the
notation a′

i
to a′

ij
. a′

ij
is the jth aggregate value received from the

i th child group. In the G-Framework, the inter-group merging is
performed as follows:
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Let p′
j
= w(a′

ij
) − w(a

ij
) and qj = �′

j
. Since the Haar wavelet trans-

form has a linear property, p′
j
= w(a′

ij
) − w(a

′′
ij
) = w(a′

ij
− a

′′
ij
).

If we let P = {p1, . . ., pn} be data reconstructed from P ′ =
{p′

1, . . . , p′
n} by wavelet inverse-transform, pj = a′

ij
− a

′′
ij
.

Fig. 10. Erro

Sending the aggregation vector of a group to the leader node
f the parent group: After the intra-group aggregation, CNodei
as the aggregation vector as one-dimensional Haar wavelet coef-
cients. CNodei sends one-dimensional Haar wavelet coefficients
w(a′

i1) w(a′
i2)· · ·w(a′

in
)] to LNode. Arranging the aggregation vec-

ors from child groups: LNode receives the aggregation vectors
one-dimensional Haar wavelet coefficients) from m child groups
nd arranges them in the form of a matrix as shown in the upper-
eft part of Fig. 9. The aggregation vector in LNode is not processed
n LNode, but in its parent group. That is, the vector in LNode is
andled the same as the vector in a child group. Therefore, the
bove matrix does not contain the aggregation vector in LNode.
ompressing the matrix using two-dimensional Haar wavelets:
ince each row was transformed, LNode transforms each column
sing one-dimensional Haar wavelets. It is called two-dimensional
aar wavelet transform. We can exploit temporal and spatial
orrelations using two-dimensional Haar wavelets. Dropping the
nimportant wavelet coefficients from the matrix: Since sensor
etworks have limited computation and memory, we propose a
imple solution for dropping two-dimensional Haar wavelet coef-
cients. If the error threshold �′

j
for the jth column is given, we

pply wavelet thresholding in each column independently such
hat |w(a′

ij
) − w(a

′′
ij
)| ≤ �′

j
for all i, where a

′′
ij

is the approximate value
onstructed from the matrix after applying wavelet thresholding in
ach column.

Let the given error threshold for the inter-group merging be
inter. We derive Theorem 1 to guarantee |a′

ij
− a

′′
ij
| ≤ �inter for all i,

from |w(a′
ij
) − w(a

′′
ij
)| ≤ �′

j
for all i, j. We define FS(i) where S = {s1,

2, . . ., sn} as below. FS(1) is the maximum value among values for
aths from the root to the leaf nodes illustrated in Fig. 10(b). The
alue for a path is computed by adding the values of the nodes on
he path from the root node to the leaf node in the error tree for S.

ith FS(i), we derive Lemma 1.

S(i) =
{

s1 + FS(2) for i = 1
si + max{FS(2i − 1), FS(2i)} for 1 < i ≤ n
0 for i > n

emma 1. Let P = {p1, p2, . . ., pn} be original data and P ′ =
w(p1), w(p2), . . . , w(pn)} be the one-dimensional Haar wavelet coef-
cients for P. For Q = {q1, q2, . . ., qn} such that qi ≥ |w(pi)| for all i ∈ {1,
, . . ., n}, max |p | ≤ F (1).
i i {q1,q2,...,qn}

roof. Fig. 10(a) shows the error tree for P. For convenience, we
onsider the case of n = 4 in Fig. 10. We build the tree of Fig. 10(b)
orresponding to the error tree of Fig. 10(a) with Q = {q1, q2, . . ., qn}.
hen, we construct the leaf nodes {q′

1, q′
2, . . . , q′

n} in Fig. 10(b) by
in Lemma 1.

the path from the root to the leaf node similarly to the error tree.
However, in the tree of Fig. 10(b), when we construct the value of
a leaf node from the path, we always add the value of the current
node whether we change the current node to its left child node or
right child node. Then, by the property of the trees in Fig. 10, |pi| ≤ q′

i
for i ∈ {1, 2, · · · , n}. Therefore, maxi|pi| ≤ maxi{q′

i
}. By the definition,

maxi{q′
i
} is F{q1,...,qn}(1). Therefore, maxi|pi| ≤ F{q1,...,qn}(1). �

Theorem 1.

maxi,j|a′
ij − a

′′
ij| ≤ F{�′

1
,�′

2
,...,�′

n}(1)

Proof. To prove maxi,j|a′
ij

− a
′′
ij
| ≤ F{�′

1
,�′

2
,...,�′

n}(1), assume that i is
fixed.

By the definition of �′
j
,

|w(a′
i1) − w(a

′′
i1)| ≤ �′

1
|w(a′

i2) − w(a
′′
i2)| ≤ �′

2
· · ·
|w(a′

in
) − w(a

′′
in

)| ≤ �′
n

′′
Fig. 11. memberNode() algorithm to process group-by aggregate queries with a
HAVING clause.



2634 C.-H. Lee et al. / The Journal of Systems and Software 83 (2010) 2627–2641

roup-

F

u
�
g
(
v
F

5
H

w
i

Fig. 12. leaderNode() algorithm to process g

By Lemma 1, maxj|pj| ≤ F{�′
1

,...,�′
n}(1). That is, maxi,j|a′

ij
− a

′′
ij
| ≤

{�′
1

,�′
2

,...,�′
n}(1)

For any i ∈ {1, 2, . . ., m}, the above equation is valid. �

In this paper, we allocate the same error threshold x in each col-
mn. By Theorem 1, maxi,j|a′

ij
− a

′′
ij
| ≤ F{x,x,...,x}(1) = x + x × log2n =

inter , where �inter is the given the error threshold for the inter-
roup merging. To guarantee that |a′

ij
− a

′′
ij
| ≤ �inter , we set x to

�inter)/(1 + log 2n). Then, we are sure that | the exact aggregate
alue − the approximate aggregate value computed from the G-
ramework | ≤

∑k
i=1�i + �inter .

. Framework to process group-by aggregate queries with a

AVING clause

The basic framework to process group-by aggregate queries
ith a HAVING clause is the same as that in Section 4. However,

f the aggregate value does not satisfy a HAVING clause, the leader
by aggregate queries with a HAVING clause.

node of a group does not need to send the aggregate value to the
base station. Considering this point, we propose a two-phase col-
lection to process a HAVING clause effectively. The algorithms in a
member node and a leader node are summarized in Figs. 11 and 12,
respectively.

5.1. Intra-group aggregation

For a two-phase collection, a member node has a filter condi-
tion. Suppose that a HAVING clause is sum(attr) > �. For an easy
explanation, we consider only the jth aggregation (i.e., j is fixed).
For evaluating the HAVING clause sum(attr) > �, we should check
whether

∑k
i=1vij > �, where vij is the jth value of attr in Nodei. To

check it locally, we set the filter condition v ≤ F to Node (F is the
ij i i i

filter value of Nodei). We allocate Fi such that
∑k

i=1Fi = �. Nodei
then checks the filter condition vij ≤ Fi.

Suppose that the filter condition in all nodes is satisfied (vij ≤ Fi

for i ∈ {1, 2, . . ., k}). Then,
∑k

i=1vij ≤
∑k

i=1Fi = �. That is, the HAVING
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Fig. 13. Intra-group aggregation.

lause is not satisfied. In this case, a node does not need to send the
ensor reading to the leader node. However, if the filter condition in
ny node is not satisfied, we should check the HAVING clause in the
eader node. The two-phase collection based on this is performed
s follows:

Sensing and collecting sensor readings: Like the processing
f group-by aggregate queries without a HAVING clause, a node
ollects its sensor readings for compression.

The first collection phase: compressing only sensor read-
ngs which are not valid for the filter condition and sending
hem: In the first collection phase, each member node Nodei sends
nly sensor readings which are not valid for the filter condition. It
xtracts non-filtered readings (vij > Fi) and transforms them into
ne-dimensional Haar wavelet coefficients. To know which wavelet
oefficients are extracted, the member node makes a bitmap. After
pplying wavelet thresholding with the error threshold �i, Nodei
ends important wavelet coefficients and the bitmap to the leader
ode in the first time slot corresponding to Nodei as shown in Fig. 13.

Broadcasting the recollection message to member nodes:
member node compresses only non-filtered sensor readings

fter extracting them. Therefore, the positions of non-filtered sen-
or readings in the n original sensor readings may be different
ccording to the node. To aggregate such sensor readings, the
eader node inverse-transforms wavelet coefficients from a mem-
er node into approximate sensor readings, while they were not

nverse-transformed in Section 4. Then, the leader node arranges
he approximate sensor readings using the bitmap and aggregates
hem. Finally, we make the bitmap for the recollection (RBitmap).
f vkj ≤ Fk for the leader node and all member nodes did not send
he jth sensor reading, we set the jth element in RBitmap to 0. Oth-
rwise, we set the jth element in RBitmap to 1. The leader node
roadcasts RBitmap for the second collection phase. If all elements

n RBitmap are 0, the leader node does not send any messages.
The second collection phase: compressing sensor readings

n the recollection messages and sending them: If a member
ode receives the recollection message, it performs the second col-

ection. In the second collection phase, the member node Nodei
xtracts only sensor readings such that

The element in RBitmap corresponding to the sensor reading is 1.
The sensor reading was not sent to the leader node in the first
collection phase.

Then, Nodei transforms the extracted sensor readings into
avelet coefficients and applies wavelet thresholding with the
rror threshold �i. The important wavelet coefficients are sent to
he leader node in the second time slot corresponding to Nodei.

Computing and compressing the aggregation of a group: The
eader node inverse-transforms wavelet coefficients received in
he second collection into approximate sensor readings. Then, the
Fig. 14. Reduced aggregation matrix.

leader node aggregates them into the previous partial aggregate
values. Then, the leader node determines whether the aggregate
value is valid for the HAVING clause and makes the bitmap for
checking which aggregate values are filtered. Finally, the leader
node transforms only the aggregation vector which is valid for the
HAVING clause into wavelet coefficients. After applying wavelet
thresholding with the error threshold �k, the wavelet coefficients
and the bitmap are sent to the leader node of the parent group.

5.2. Inter-group merging

Arranging aggregation vectors from child groups: The leader
node of the parent group (LNode) receives wavelet coefficients from
child groups and decompresses them. Then, LNode arranges the
approximate aggregation vectors using the bitmaps and makes the
aggregation matrix and the bitmap matrix as shown in Fig. 14. If the
element in the bitmap is 0, we fill the element in the aggregation
matrix with 0.

If all the elements in the column of the bitmap matrix are 0,
we can remove the column. It is called the reduced aggregation
matrix. For example, suppose that the parent group receives four
aggregation vectors from 4 child groups as shown in Fig. 14. Since
all elements in the 3rd column and 4th column of the bitmap
matrix are 0, we reduce the 4 × 6 aggregation matrix to the 4 × 4
reduced aggregation matrix. Compressing the reduced aggre-
gation matrix using two-dimensional Haar wavelets: LNode
transforms the reduced aggregation matrix using two-dimensional
Haar wavelets. It first transforms each row in the matrix using one-
dimensional Haar wavelets and then transforms each column in
the transformed matrix. However, in the reduced matrix, there
may exist dummy data such that the corresponding elements in
the bitmap matrix are 0s (e.g., (2, 3) and (4, 3) elements in the
reduced aggregation matrix of Fig. 14). If we fill such an element
with another value instead of 0, the compression quality is gen-
erally improved. Therefore, we extend a Haar wavelet transform
algorithm. The details are explained in Section 5.2.1.

Dropping the unimportant wavelet coefficients from the
matrix: To drop the unimportant Haar wavelet coefficients, we
apply wavelet thresholding for each column like the previous sec-
tion.

5.2.1. Dummy data adjustment
Since Haar wavelets are performed with the unit of a pair, the

number of data should be in a power of two. If the number of data
is not in a power of two, we fill the remaining elements with 0.

For example, since the number of data in Fig. 16 is 6, two zeros
are added in order to adjust the number of data in a power of two.
However, if we fill the remaining elements with any other values
instead of 0, we may improve the compression ratio. For example,
in Fig. 16, if we fill the remaining elements with 7((6 + 8)/2 = 7),
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Fig. 15. Dummy data adjustment algorithm.

avelet coefficients are (5.75 −1.25 −0.5 0 0 0 -1 0) while wavelet
oefficients are (4 0.5 −0.5 3.5 0 0 −1 0) in the case of filling them
ith zeros. The number of zeros in (5.75 −1.25 −0.5 0 0 0 −1 0) is
ore than that in (4 0.5 −0.5 3.5 0 0 −1 0). Through this example, we

now that we can improve Haar wavelets by filling the remaining
lements with appropriate values if the number of data is not in a
ower of two. We can consider the remaining elements as dummy
ata since the remaining elements do not affect the original data
uring compression and decompression.

Similarly, consider the 2nd row in the reduced aggregation
atrix of Fig. 14. Since the bitmap corresponding to the 3rd ele-
ent in the 2nd row is 0, we can consider it as dummy data and

ny value can be filled at the position of dummy data without a
roblem.

We propose a method to determine the value of dummy data
n order to improve the compression ratio. The idea is to fill the
ummy data with a value similar to the adjacent elements. The
ummy data adjustment algorithm is shown in Fig. 15. As the input

or the algorithm, the bitmap flag which represents whether the
lement is dummy data or not is given. The underlined statements
re the extended statements to the Haar wavelet transform algo-
ithm. Since the averaging and differencing are performed for a pair,
f there is only one dummy data in the pair, we fill the dummy data

Fig. 16. Example 1 for the dummy data adjustment.
Fig. 17. Example 2 for the dummy data adjustment.

with the non-dummy element in the pair (Lines 10–11). However,
if both elements in the pair are dummy, we fill the dummy data in
the next level of the wavelet transform (Line 12).

For example, in Fig. 17, the 3rd element is dummy and the adja-
cent element (the 4th element) is 4. Therefore, we fill it with 4 and
transform (4 4 4 4) instead of (4 4 0 4). We can know that wavelet
coefficients after applying the dummy data adjustment algorithm
have more zeros than before applying the algorithm. It means that
the number of the dropped coefficients after applying the dummy
data adjustment algorithm is more than before applying the algo-
rithm, and the compression ratio is improved in the case of applying
the algorithm.

6. Dynamic error and filter allocation

Since the environments in sensor networks are dynamic, we
propose a method to allocate errors and filters dynamically.
For dynamic allocation, we apply the gain-based approach in
Deligiannakis et al. (2004) to the G-Framework. Deligiannakis et
al. (2004) propose a hierarchical in-network aggregation technique
using bound filters. Given the width of the bound W, they guarantee
L ≤ v ≤ H, where v is the aggregate value computed from the hier-
archical in-network aggregation and W = H − L. To guarantee the
aggregate value with the bound [L, H], each node Nodei has the fil-
ter in the form [Li, Hi] with the width Wi = Hi − Li. Note that �Wi = W.
If the current sensor reading lies in [Li, Hi], the node suppresses it.
Otherwise, the node sends the data to the parent node. The parent
node has the filter in the form [Li, Hi] for the child node. If the child
node does not send the data, the parent node predicts the sensor
reading of the child node as (Hi + Li)/2. If the parent node receives
the sensor reading vi of the child node, the parent node changes the
filter of the child node into [vi − Wi/2, vi + Wi/2]. To allocate the
width dynamically, Deligiannakis et al. (2004) reduce the width Wi
in each node periodically by shrinkFactor (Wi:= Wi × shrinkFactor)
and then, allocate the remaining width (1 − shrinkFactor) × W to
nodes based on the potential gain. The potential gain Gaini of node
i is defined with Cshrink and Cexpand.

Gaini = ıG = Cshrink − Cexpand

Cshrink is the number of messages over the bound if the width of the
bound is shrunk (Wi : = shrinkFactor × Wi) and Cexpand is the number
of messages over the bound if the width of the bound is expanded
(Wi : = Wi + dW, where dW is an increment factor). Then, the remain-
ing width is allocated in proportion to Gaini of node i.

6.1. Dynamic error allocation

Given an error threshold �, we guarantee that | exact aggregate
value − approximate aggregate value | ≤ �. In the G-Framework,
since we drop wavelet coefficients according to the error threshold,
we should allocate the error threshold effectively. This is similar to

the allocation of the width in Deligiannakis et al. (2004). We should
allocate �1, �2, . . ., �k, and�inter with the given error threshold �
such that � = �1 + �2 + · · · + �k + �inter, where �inter is F{�′

1
,�′

2
,...,�′

n}(1)
in Theorem 1. Initially, each error threshold is allocated uniformly
such that �1 = �2 = · · · = �k = �inter = �/(k + 1). For periodical dynamic



ems and Software 83 (2010) 2627–2641 2637

e
r

�

�

W
i
b
t

g

T
t
o
(
t
o

•

•
•

b
(
C

6

∑
t
v
d
b
t

t

F

T

g

W
v
a
c
s
(
a

C.-H. Lee et al. / The Journal of Syst

rror updates, we shrink errors by shrinkFactor and allocate the
emaining error threshold using the gain.

If g1, g2, . . ., gk, and g0 = ginter are the gains for �1, �2, . . ., �k, and
0 = �inter, respectively, we update �i based on gi.

i := �i × shrinkFactor + � × (1 − shrinkFactor) × gi

k∑
j=0

gj

e let Cshrink be the sum of the number of retained coefficients
n the node i if the error threshold is shrinkFactor × �i and Cexpand
e the sum of the number of the retained coefficients if the error
hreshold is �i + dW. The gain gi of node i is computed as follows:

i = weighti × (Cshrink − Cexpand)
(�i + dW) − (�i × shrinkFactor)

he difference between the error threshold �i + dW for Cexpand and
he error threshold �i × shrinkFactor for Cshrink varies depending
n the node. Therefore, to normalize (Cshrink − Cexpand), we divide
Cshrink − Cexpand) by ((�i + dW) − (�i × shrinkFactor)). Also, we mul-
iply the gain with the weight due to the different communication
verhead. We define weight as follows:

weight0 = the number of hops between the leader node of the
parent group and the base station.
For i ∈ {1, 2, . . ., k − 1}, weighti = 1
weightk = the number of hops between the leader node of the
child group and the leader node of the parent group

Also, we let dW = ((1 − shrinkFactor) × �)/(k + 1) since the num-
er of nodes is k + 1 and the error threshold to be allocated is
1 − shrinkFactor) × �. After updating the error threshold, Cshrink and
expand are initialized.

.2. Dynamic filter allocation

Given � in a HAVING clause, we should allocate � such that
k
i=1Fi = �. For an effective filter value allocation, we compute

he gain for the filter similar as in Section 6.1. Initially, each filter
alue Fi is allocated uniformly such that F1 = F2 = · · · = Fk = �/k. For a
ynamic filter value allocation, we periodically shrink filter values
y shrinkFactorFilter. Then, filter values are allocated according to
he gain.

If g′
1, g′

2, . . . , andg′
k

are the gains for F1, F2, . . ., andFk, respec-
ively, we update Fi based on g′

i
.

i := Fi × shrinkFactorFilter + � × (1 − shrinkFactorFilter) × g′
i

k∑
j=1

g′
j

he gain of node i is computed as follows:

′
i =

(C ′
shrink

− C ′
expand

)

(Fi + dW ′) − (Fi × shrinkFactorFilter)

e define C ′
shrink

as the sum of the number of data which is not
alid for the filter condition vi ≤ Fi × shrinkFactorFilter and C ′

expand
s the sum of the number of data which is not valid for the filter
ondition vi ≤ Fi + dW ′. We let dW′ = ((1 − shrinkFactorFilter) × �)/k
ince the number of nodes is k and the error to be allocated is
1 − shrinkFactorFactor) × �. After updating the filter value, C ′

shrink
nd C ′

expand
are initialized.
Fig. 18. Example for a group which is connected in one or two hops.

7. Discussion

Although we propose an effective framework to process group-
by aggregate queries in this paper, we should consider some
network issues. First, in sensor network applications, the leader
node and member nodes in a group can be connected in multi-
hops. In the G-Framework, although we assumed that the leader
node and member nodes are connected in one hop, we can process
group-by aggregate queries in the case that a group is connected in
multi-hops. If the leader node and member nodes are in two or more
hops, we can extend the internal node to perform processing. The
internal node aggregates its own data and the data received from
child nodes. Thus, any member node connected to the leader node
in one hop or multi-hops sends one compressed aggregation vec-
tor instead of multiple vectors. Because of that, the G-Framework
will not show a bad performance in spite of multi-hop transmis-
sions. Fig. 18 shows a group which is connected in one or two hops.
Nodes 6, 7 and 8 compress their own data using one-dimensional
wavelets. Then, Nodes 6, 7 and 8 send their compressed data to
Nodes 2, 3, and 4, respectively. Nodes 2, 3 and 4 aggregate their
own data and the data received from Nodes 6, 7 and 8, respectively
and send the aggregate data to Node 1.

Second, the leader node consumes more energy than member
nodes. Therefore, we need to rotate the leader node in a group.
We can rotate the leader node as follows: Periodically, the leader
node collects the amount of the remaining energy for each member
node. Then, the current leader node assigns the member node with
the largest energy or itself to the next leader node. When a new
leader node is assigned, the topology structure in a group can be
constructed by flooding which is used in TAG (Madden et al., 2002).
In the future, we plan to extend our paper in two points. First, we
will propose effective intra-group aggregation in the case of multi-
hop groups. Although we can process the intra-group aggregation
in the case of multi-hop groups as mentioned above, it will not
be effective as the maximum hop count increases. Therefore, we
plan to extend the intra-group aggregation in the case of multi-
hop groups. Second, we will adapt and implement our approach in
a real environment. Then, we will discuss the lessons learned from
the implementation.
8. Experiments

In order to validate the effectiveness of the G-Framework, we
conduct experimental evaluations.
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Fig. 19. Topology.

.1. Experimental environment

To evaluate the performance of the G-Framework, we imple-
ent the G-Framework on our own simulation environment. As the

omparison system, we implement the method in Deligiannakis et
l. (2004) denoted by the Hierarchical on our own simulation envi-
onment and adapt it for group-by aggregation queries. However,
n the Hierarchical, we do not extend to check a HAVING clause in
he leader node of a group but process the clause at the base station
ince we do not know whether the dropped aggregate value is due
o the suppression or due to the HAVING clause. As a topology for
xperimental evaluations, we use the 9 × 9 grid topology in Fig. 19.
n the G-Framework, query processing is performed with the unit of
group. Therefore, the experimentation is not affected on the total
etwork size. Through the small network 9 × 9 grid, we can vali-
ate the effectiveness of the G-Framework. One group consists of
nodes as a 3 × 3 grid. The center node in a 3 × 3 grid (i.e., the dark
ray node in Fig. 19) is the leader node of the group. Also, since the
nter-group merging is achieved only in a parent group, we con-
ider a flat topology in which there is only a parent-child group
elationship. The center group in the 9 × 9 grid topology is a par-
nt group and other groups are child groups. Also, since data in the
arent group is processed in its parent group, we do not consider

ensor readings in the nodes of the parent group.

Since the major factor in consuming energy is the communica-
ion, we use the amount of transmission as a performance measure.
lso, the hop count is considered as a distance measure in the sim-
lation environment. We set the number of hops from a member

Fig. 20. Param
nd Software 83 (2010) 2627–2641

node to its leader node to 1, the number of hops from CNodei to
LNode to 3 and the number of hops from LNode to the base station
to 20. Since the Hierarchical does not need the processing in the
parent group, the aggregation value in the leader node of a group
is directly sent to the base station. Therefore, we set the number of
hops from CNodei to the base station to 23. As the header informa-
tion, we simply use the source address and destination address. The
size of source address is 4 bytes and the size of destination address
is 4 bytes.

Basically, communications are based on TDMA. Each node has
various allocated slots and tasks corresponding to the slots. We can
adapt more effective protocols that have been studied in network
areas. However, it is out of scope of this paper. We focus on data
management issues rather than the communication among nodes.
The simulation environments are summarized in Fig. 20.

We generate synthetic data based on real data. As real data, we
use the 10,000 wind speed readings (Earth climate and weather, in
press) which are collected at one place every minute. We assume
that the wind blows from the east to the west, the wind speed gets
weaker as it goes to the west, and the real data is measured in the
right side of the 9 × 9 grid topology. Therefore, we generate sensor
readings in nodes with the following formula.

v′
xy(t) = v(t) + a

r
+ bı,

v′
xy(t) is the wind speed at t time at (x, y), v(t) is the real wind speed

at t time, a and b are constants, ı is a random value in [0, 1), and r
is the distance on the x-coordinate between the location where the
real data is measured and the (x, y).

For convenience, we assume that a packet has a simple header
information which consists of a source address and a destination
address. In the G-Framework, we send wavelet coefficients in a
node as one packet. Sending data as one packet consumes less
energy than multiple packets due to the header information. There-
fore, we can have the additional benefit in the communication cost.
To show the effectiveness of the G-Framework without the addi-
tional benefit, we measure the total transmission cost in both the
case of including the header information and the case of not includ-
ing the header information. In this section, we tag “ H” after the
name if we include the header information in measuring the total
transmission cost and “ NH” if we do not include it.

8.2. Experimental results
We conduct experimental evaluations with two types of queries,
a group-by aggregate query without a HAVING clause and a group-
by aggregate query with a HAVING clause, as shown in Fig. 21. We
show experimental results for the query of Fig. 21(a) in Section 8.2.1
and those for the query of Fig. 21(b) in Section 8.2.2.

eters.
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Fig. 21. Queries for experimental evaluations.
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dummy data adjustment in the following experiments.
Fig. 25 shows the experimental results according to the error

threshold when n is 16 and � is 80. In the G-Framework and the
Hierarchical, the amount of transmission decreases as the error
threshold increases as we expect. The G-Framework shows better
ig. 22. Experiment for dummy data adjustment algorithm for group-by aggregate
ueries without a HAVING clause.

.2.1. Group-by aggregate queries without a HAVING clause
We first show the effectiveness of the dummy data adjustment

lgorithm in Fig. 22.3 The error bound is set to 10 in the experiment
f Fig. 22. Both the G-Framework with the dummy data adjustment
nd the G-Framework without the dummy data adjustment show
he tendency that the amount of transmission decreases as n (the
umber of data collected at one node to be processed together)

ncreases. If n is large, we have more possibility to reduce data.
herefore, as n increases, we can reduce data more effectively.

However, the performance of the G-Framework without the
ummy data adjustment is not smooth and shows a good perfor-
ance only when n is a power of two. This is because the Haar
avelet transform is performed in the unit of a power of two. The
erformance of the G-Framework with the dummy data adjust-
ent is always better than or equal to that of the G-Framework
ithout the dummy data adjustment. Also, the amount of trans-
ission in the G-Framework with the dummy data adjustment goes

own softly since the dummy data is filled with a proper value. The
esult for the case of including the header information and that for
he case of not including the header information are similar.

Fig. 23 shows the amount of transmission according to the
rror threshold when n is 16. The x-axis of Figs. 23 and 25, as
scale, represents the absolute error in the upper part as well

s the relative error (absolute error/maximum value × 100) in the
ower part. The G-Framework H and the G-Framework NH have
etter performance than the Hierarchical H and the Hierarchi-

al NH, respectively. In the G-Framework and the Hierarchical,
he performance becomes good as the error threshold increases.
he gap between the G-Framework H and the Hierarchical H is
ig compared to the gap between the G-Framework NH and the

3 We do not perform error and filter updates in experiments of Figs. 22 and 24 in
rder to show the effectiveness of the dummy data adjustment algorithm.
Fig. 23. Total transmission according to the error threshold for group-by aggregate
queries without a HAVING clause.

Hierarchical NH. This is because, in the G-Framework, we have the
additional benefit for sending many coefficients as one packet.

8.2.2. Group-by aggregate queries with a HAVING clause
Fig. 24 shows the effectiveness of the dummy data adjust-

ment algorithm. The error bound is set to 10 in the experiment
of Fig. 24. In group-by aggregate queries with a HAVING clause, we
can improve the compression ratio using the dummy data adjust-
ment algorithm. Like the previous section, the performance of the
G-Framework with the dummy data adjustment is better than that
without the dummy data adjustment and changes softly. In group-
by aggregate queries with a HAVING clause, data in a member node
is sent to the leader node in only the case that the filter condition is
satisfied. Therefore, although n increases, the amount of transmis-
sion does not always decrease. We use the G-Framework with the
Fig. 24. Experiment for dummy data adjustment algorithm for group-by aggregate
queries with a HAVING clause.
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ig. 25. Total transmission according to the error threshold for group-by aggregate
ueries with a HAVING clause.

erformance than the Hierarchical. While the gap between the G-
ramework H and the G-Framework NH is small, the gap between
he Hierarchical H and the Hierarchical NH is big like Fig. 23. Also,
ince we use a two-phase collection to process group-by aggregate
ueries with a HAVING clause, the performance gap between the
-Framework and the Hierarchical in Fig. 25 is bigger than that in
ig. 23.

Finally, we conduct experiments on according to the filter value
n Fig. 26 when n is 16 and � (error threshold) is 10. The x-axis of
ig. 26 represents the filter value � in the upper part as well as the
atio N1/N2 (N1 is the number of aggregate values which satisfies
he HAVING clause and N2 is the total number of aggregate values)
n the lower part. The G-Framework shows better performance than
he Hierarchical. In the Hierarchical, since a HAVING clause can not
e processed as in-network processing, the filter value does not

ave an effect on the Hierarchical. Therefore, the performance of the
ierarchical approach is constant, and the G-Framework generally
ecomes good as the filter value increases.

Consequently, through the experimental evaluations, we show
hat the G-Framework effectively processes group-by aggregate

Fig. 26. Total transmission according to the filter value.
nd Software 83 (2010) 2627–2641

queries without a HAVING clause and with a HAVING clause. Also,
using the dummy data adjustment, we can improve the compres-
sion ratio of Haar wavelets.

9. Conclusion

Continuous group-by aggregate queries can be used in many
sensor networks applications. To process group-by aggregate
queries in sensor networks, we propose the G-Framework. In the
G-Framework, using two-dimensional Haar wavelets, we reduce
the communication cost in the intra-group aggregation as well as
in the inter-group merging. Also, in the G-Framework, group-by
aggregate queries with a HAVING clause can be processed effec-
tively in terms of energy consumption. Since sensor readings in
sensor networks are dynamic, the dynamic property in sensor net-
works is considered in the G-Framework. Finally, we validate the
effectiveness of the G-Framework by experimental evaluations.
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