
Information Processing Letters 85 (2003) 7–12

www.elsevier.com/locate/ipl

Efficient extraction of schemas for XML documents

Jun-Ki Min, Jae-Yong Ahn, Chin-Wan Chung∗

Division of Computer Science, Department of Electrical Engineering & Computer Science,
Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701, Republic of Korea

Received 5 February 2002; received in revised form 31 May 2002

Communicated by K. Iwama

Abstract

In this paper, we present a technique for efficient extraction of concise and accurate schemas for XML documents. By
restricting the schema form and applying some heuristic rules, we achieve the efficiency and conciseness. The result of an
experiment with real-life DTDs shows that our approach attains high accuracy and is 20 to 200 times faster than existing
approaches.
 2002 Elsevier Science B.V. All rights reserved.

Keywords:XML; Automatic schema extraction; DTD; XML schema; Databases

1. Introduction

There has been an increasing interest in XML (eX-
tensible Markup Language) [4], since it is spotlighted
as the standard for data representation and exchange in
the Web. To describe the schema (i.e., the summary of
structure) of XML documents, many languages such
as Document Type Definition (DTD) [4], Document
Content Description (DCD) [3], and XML Schema [6]
have been proposed.

The schema for XML documents serves several
important purposes as follows:

• To enable the designer to describe the structure of
XML documents.

* Corresponding author.
E-mail addresses:jkmin@islab.kaist.ac.kr (J.-K. Min),

jyahn@islab.kaist.ac.kr (J.-Y. Ahn), chungcw@islab.kaist.ac.kr
(C.-W. Chung).

• To transform XML documents to different types
of data such as relational data.

• To enable the efficient XML query processing
such as query pruning and rewriting.

In spite of its importance, unfortunately, the schema
is not mandatory for XML documents and many
XML documents in the Web do not have the ac-
companying schemas. These XML documents cannot
take advantages of the schema. Therefore, automatic
schema extraction tools have been introduced such as
XTRACT [7], DDbE [2], and DTD-Miner [8]. How-
ever, the quality of the schema inferred by some tools
is poor and some tools consume too much time to get
the result.

Our contributions. In this paper, we describe our ap-
proach to an efficient extraction of schemas for XML
documents. To achieve the efficiency, we devise a re-
stricted representation form (i.e.,restricted element
content model) of the schema and make some heuristic

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00345-9



8 J.-K. Min et al. / Information Processing Letters 85 (2003) 7–12

rules for the schema generation. Our restricted element
content model is transformed into DTD, directly. Also,
it can be transformed into simplified XML Schema
which does not contain some information such as in-
heritance, polymorphism, and name space informa-
tion.

2. Problem statement

Generally, the languages specifying schemas for
XML documents, such as DTD and XML Schema, de-
scribe the structure of an element by specifying the
regular expression that its subelement (i.e., child-level
element) sequences have to conform to. The genera-
tion of the regular expression from examples has been
well studied in the field of machine learning [1,5].
However, Angluin [1] showed that the whole class of
regular languages cannot be polynomially identified
in the limit of the representation of deterministic fi-
nite automata (DFA). Also, without prior information,
it is very difficult to find the intention of the XML
document generator. Consider the XML document in
Fig. 1.

Intuitively, naive schema information forauthorel-
ement in Fig. 1 is a simple description of all subele-
ment names, that is (first|last)∗. Although this ap-
proach suggests concise schema information, the order
information among siblings is lost. On the other hand,
the most accurate schema information is to merge
all subelement sequences with or (|) operator, that is
((first last)|(last first)). However, this approach tends
to be voluminous. As theconcisenessand theaccuracy
are contradicting each other, finding the right balance
is a difficult task. Thus, our goal is to efficiently derive
a concise and accurate regular expression that subele-
ment sequences for an element conform to.

〈book〉
〈title〉 title1 〈/title〉
〈author〉

〈first〉 first1 〈/first〉 〈last〉 last1〈/last〉
〈/author〉
〈author〉

〈last〉 last2〈/last〉 〈first〉 first2 〈/first〉
〈/author〉

〈/book〉

Fig. 1. An example of XML document.

In this paper, we do not consider the problem of
inferring attribute information of an element and that
of the derivation of the primitive type (e.g., integer,
float, string) for the value of an element, since they are
straightforward tasks.

3. Schema extraction

3.1. Restricted element content model

As mentioned early, many researchers already have
recognized the difficulties of inferring the regular ex-
pression from examples. Like most related literature,
we restrict the form of the regular expression. The el-
ement content model [4] describes the content of an
element in XML documents. First of all, for simplic-
ity, we encode each tag name (i.e., an element) that ap-
pears in XML documents to a unique symbol. Also, to
extract the content information efficiently, we restrict
the element content model as follows.

Definition 1 (Element Content Model).

(Element Content Model)

E := (T1 . . . Tk)
〈min,max〉

(Term)

Ti := (
s

opt
i1 . . . s

opt
ij

)〈min,max〉 //sequence of symbols

or
(
s

opt
i1

∣
∣. . .

∣
∣sopt

ij

)〈min,max〉
//choice of symbols

wheremin= 0 or 1, max� 1, andopt= trueor false.

Our element content model can be transformed into
both DTD and XML Schema since the model keeps
the occurrence information usingmin and max, and
correlated symbols are united as atermwhich can be
naturally transformed into a complex type in the XML
Schema. The model keeps the maximum occurrence
information usingmaxand the optional or mandatory
occurrence of a term or a content usingmin. However,
note that, our element content model does not contain
inheritance, polymorphism, and namespace informa-
tion for XML Schema since the derivation of these in-
formation from XML document is very difficult and
impossible in some cases. Theopt flag of a symbol
denotes the optional representation of the symbol in a
term (i.e.,opt= false means mandatory). For brevity,



J.-K. Min et al. / Information Processing Letters 85 (2003) 7–12 9

we omitopt, min andmaxif opt is false, andmin and
maxare both 1.

For example, a regular expression(a b∗ c?)∗
can be represented asE = (T1 T2 T3)

〈0,∞〉, where
T1 = (a), T2 = (b)〈0,∞〉, and T3 = (copt) by using
our element content model. However, our element
content model cannot represent all kinds of regular
expressions. For example, regular expressions such as
(a (b|c+) d)∗ cannot be represented by our model,
since(b|c+) cannot be represented in a term. Instead,
with a little loss of accuracy, it can be represented as
((a) (b|c)〈1,∞〉 (d))〈0,∞〉.

To achieve theconciseness, we enforce theNo
Duplication Typeproperty to the element content
model.

Property 1 (No Duplication Type). Let an element
content modelE be(T1 . . . Tk)

〈min,max〉 and

σ(Tx) = {sxy | sxy is a symbol inTx

which is a term inE}.
Disjoint Term: If i �= j for 1 � i, j � k, thenσ(Ti)∩

σ(Tj ) = ∅.
Disjoint Symbol: For each termTl in E such thatσ(Tl)

= {sl1 . . . sln}, if a �= b for 1 � a, b � n, then
sla �= slb.

The informal description of Property 1 is that
the same symbol must not appear more than once
in an element content model. Even though Prop-
erty 1 is a validity constraint for themixed con-
tent in DTD, according to our analysis of real-life
DTDs and XML Schemas in [9], most of DTDs and
XML Schemas satisfy Property 1. Also, DTD and
XML Schema impose that the element content model
should be deterministic, that is, a subelement in a
subelement sequence can be validated using DTD
or XML Schema without looking ahead (i.e., the 1-
unambiguity constraint). Property 1 is a sufficient con-
dition of the 1-unambiguity imposed by DTD and
XML Schema.

3.2. Extraction of schema for an element

Our schema extraction algorithm consists of several
important steps as shown in Fig. 2. We apply bottom-
up approach. An element content model is made for

Algorithm

1. Collect all subelement sequences of elemente into a
setI

2. Extract an element content modelEI for e

2.1. Partition each sequence inI
2.2. Infer an element content model for each sequence
2.3. Consolidateall element content models intoEI

3. TranslateEI to DTD form or XML Schema form

Fig. 2. Procedural overview.

each subelement sequence of elemente, and then all
element content models are consolidated for element
e. For example, the element content model forbookin
Fig. 1 is (title author〈1,2〉), whereas that forauthor is
(first|last)〈1,2〉 which is consolidated from two models
(first last) and (last first).

We start by partitioning an input sequence. In the
partitioning step, a sequenceN is decomposed into
subsequencesN1,N2, . . . ,Nk . A subsequenceNi has
following properties: a symbol inNi does not appear
more than once unless it appears consecutively and a
symbol appearing consecutively such asaaaais a sub-
sequenceNi with only that symbol, whereNi keeps
the repeating number of the symbol such as(a)〈1,4〉.

Example 1. Given a sequenceabcbcddefefddgggabcbc,
the result of partitioning is:

(abc), (bc), (d)〈1,2〉, (ef ), (ef ),

(d)〈1,2〉, (g)〈1,3〉, (abc), (bc).

Note that the condition of whether a symbol inNi

occurs only once can be checked in O(d) whered is
the number of distinct symbols inN . Therefore, the
time complexity of the partitioning procedure can be
easily shown to be O(d|N |) where|N | is the length of
a sequenceN .

The second step is the inference of the element
content model for a single input sequence using
the result of the partitioning procedure. The main
role of this step is to fold the subsequences having
repeating parts using the maximum number of repeat.
Considering Example 1,(abc) and (bc) are merged
into (a)(bc)〈1,2〉.

First, we show some heuristic rules followed by
an example for folding a repeating partNa of a
subsequence into a termTi in an element content



10 J.-K. Min et al. / Information Processing Letters 85 (2003) 7–12

model E. Note that, to obtain a larger number of
repeats forTi andNa , we use the max function when
maxof E is greater than 1.

Folding Rules fold(Ti,Na).
Assume thatTi is a sequence of symbols (calledseq-
term),(sopt

i1 . . . s
opt
ij )〈n,x〉 or a choice of symbols (called

or-term),(sopt
i1 | . . . |sopt

ij )〈n,x〉, andNa = (n1 . . .nb)
〈1,r〉.

F1. If σ(Na) � σ(Ti), fold(Ti,Na) is undefined.
F2. Let Ti be anor-term.

fold(Ti ,Na) = (
s

opt
i1

∣
∣. . .

∣
∣sopt

ij

)〈n,x ′〉
,

where if max of E is 1, thenx ′ = x + rb else
x ′ = max(x, rb) since a symbol inNa is repeated
at mostrb times.

F3. Let Ti be aseq-term. If maxof E is 1 andx is 1,
and there is(sopt

i1 . . . s
opt
ik ) such that

σ
(
s

opt
i1 . . . s

opt
ik

) ∩ σ(Na) = ∅,

fold(Ti ,Na)

= (
s

opt
i1 . . . s

opt
ik

)
fold

(
(s

opt
ik+1 . . . s

opt
ij )〈n,1〉,Na

)
.

F4. Let Ti be aseq-term. If maxof E is greater than
1 orx > 1 or si1 ∈ σ(Na), and, for∀nm ∈ σ(Na),
if nm = sik thennm+1 = sil for k < l,

fold(Ti ,Na) = (
s

opt|optional1
i1 . . . s

opt|optionalj
ij

)〈n,x ′〉
,

where ifsip /∈ σ(Na) for 1 � p � j , thenoptionalp
= true elseoptionalp = false, and ifmaxof E is
1, thenx ′ = x + r elsex ′ = max(x, r).

F5. Let Ti be aseq-term. If maxof E is greater than 1
or x > 1 or si1 ∈ σ(Na), and∃nm,nq ∈ σ(Na)

such thatnm = sik and nq = sil for k > l and
m < q ,

fold(Ti ,Na) = (
s

opt
i1

∣
∣. . .

∣
∣sopt

ij

)〈n,x ′〉
,

where if maxof E is 1, thenx ′ = jx + rb else
x ′ = max(jx, rb).

Example 2 shows some representative applications
of Folding Rules.

Example 2. Supposemaxof E is 1.

(1) Application of F2:

fold
(
(a|b|c)〈1,5〉, (bc)

) = (a|b|c)〈1,7〉.

(2) Application of F3:

fold
(
(abcd), (bc)

)= (a)fold
(
(bcd), (bc)

)
.

(3) Application of F4:

fold
(
(abcd)〈1,5〉, (bc)

) = (aoptbcdopt)〈1,6〉.

(4) Application of F5:

fold
(
(ab)〈1,2〉, (ba)

) = (a|b)〈1,6〉.

However, applying just above rules cannot preserve
the disjoint termcondition of Property 1. Consider-
ing Example 1,(abc), (bc), (d)〈1,2〉, (ef ), (ef ) fold
into an element content modelE = (T1 T2 T3 T4)

〈1,1〉
whereT1 = (a)〈1,1〉, T2 = (bc)〈1,2〉, T3 = (d)〈1,2〉, and
T4 = (ef )〈1,2〉. Subsequently, we try to insert the next
subsequence(d)〈1,2〉 into E. However, the symbold
already appeared inT3. In this case, there are alterna-
tives to insert(d)〈1,2〉 into E. One is making anor-
term such as((a)〈1,1〉(bc)〈1,2〉(d|e|f )〈1,8〉)〈1,1〉. The
other is making optional terms such as((a)〈0,1〉(bc)〈0,2〉
(d)〈1,2〉(ef )〈0,2〉)〈1,2〉. Generally, symbols in anor-
term appear closely. Thus, based on the locality, we
choose one from the two alternatives according to a
parameterThresHold. The following rules describe
how to merge or insert a subsequenceNa into an ele-
ment content modelE.

Relaxed Transformation Rules
Assuming thatE is (T1 . . . Tj . . .Tk)

〈min,max〉, we try
to mergeNa into Tj which was inserted or folded at
the previous step. LetN ′

a be a prefix ofNa such that
all symbols inN ′

a are in someTi of E or none of the
symbols inN ′

a appears inE.

R1. If none of the symbols inN ′
a appears inE, N ′

a is
inserted at the(j + 1)th position asTj+1. In this
case, ifmaxof E is greater than 1,minof Tj+1 is
set to 0 becauseN ′

a did not appear in the previous
steps.

R2. If 0 < j − i < ThresHold, Ti . . .Tj are re-
placed by a newTi = (si1| . . . |sim)〈n,x〉 where
⋃j

l=i σ (Tl) = σ(newTi), n = ∏j
l=i (min of Tl ),

andx = ∑j
l=i (maxof Tl · number of symbols in

Tl).
R3. If j − i � ThresHold, min’s of T1 . . . Ti−1 and

Tj+1 . . . Tk are set to 0 andmaxof E is increased
by 1.



J.-K. Min et al. / Information Processing Letters 85 (2003) 7–12 11

R4. If j − i � 0, min’s of Tj+1 . . . Ti−1 are set to 0.

For R2, R3, and R4,fold(Ti,N
′
a) is applied. And then,

the above rules are applied for the remainder ofNa ,
repeatedly.

Finally, if there is no more subsequence,min’s of
Tj+1 . . . Tk are set to 0.

The following example shows how to applyRe-
laxed Transformation RulesandFolding Ruleson Ex-
ample 1.

Example 3. Given subsequences,(abc), (bc), (d)〈1,2〉,
(ef ), (ef ), (d)〈1,2〉, (g)〈1,3〉, (abc), (bc) andThres-
Hold 2, an element content modelE is obtained as
follows:

Insert(abc): E = ((abc))

// by applyingR1
Insert(bc): E = ((a)(bc)〈1,2〉)

// R4, F3, F4
Insert(d)〈1,2〉: E = ((a)(bc)〈1,2〉(d)〈1,2〉)

// R1
Insert(ef ): E = ((a)(bc)〈1,2〉(d)〈1,2〉(ef ))

// R1
Insert(ef ): E = ((a)(bc)〈1,2〉(d)〈1,2〉(ef )〈1,2〉)

// R4, F4
Insert(d)〈1,2〉: E = ((a)(bc)〈1,2〉(d|e|f )〈1,8〉)

// R2, F2
Insert(g)〈1,3〉: E = ((a)(bc)〈1,2〉(d|e|f )〈1,8〉(g)〈1,3〉)

// R1
Insert(abc): E = ((a)(bc)〈1,2〉(d|e|f )〈1,8〉(g)〈1,3〉)〈1,2〉

// R3, F3, R5 and F4, since(abc) is divided
into (a)(bc)

Insert(bc): E = ((a)(bc)〈1,2〉(d|e|f )〈1,8〉(g)〈1,3〉)〈1,2〉
// R4, F4

Finally, E = ((a)(bc)〈1,2〉(d|e|f )〈0,8〉(g)〈0,3〉)〈1,2〉
The DTD form ofE is ((a)(bc)+(d|e|f )∗(g)∗)+

Next, we consolidate all element content models
into the final element content modelEI by factor-
ing andor-ing. Intuitively, we greedily factor shared
common prefix or suffix terms and merge remain-
ders byor-ing. For example, for element content mod-
els ((a)〈n1,x1〉(b)〈n2,x2〉(d)〈n3,x3〉)〈n4,x4〉 and((a)〈n5,x5〉
(c)〈n6,x6〉(d)〈n7,x7〉)〈n8,x8〉, the consolidation step gen-
erates

(
(a)〈MIN(n1,n5),MAX (x1,x5)〉

(b|c)〈MIN(n2,n6),MAX (x2,x6)〉

(d)〈MIN (n3,n7),MAX (x3,x7)〉)〈MIN (n4,n8),MAX (x4,x8)〉.

Due to the space constraints, we omit the detailed
behavior (which is a simplification of the factoring
algorithm in XTRACT [7]).

4. Experiment

To show the efficiency and accuracy, we compare
the resulting DTDs of our approach with XTRACT
and DDbE. Since the detailed mechanism of DTD-
Miner was not described in [8], we did not include
DTD-Miner in the experimental study. For the ex-
periment, we implemented our approach in Java and
used the XML4J parser1 to parse XML documents.
XTRACT was originally written in C++ and, there-
fore, we had to implement it in Java to make a
fair comparison in view of efficiency. During the
implementation of XTRACT in Java, we simplified
the MDL Subsystem of XTRACT using the greedy
method instead of the Facility Location Problem
(FLP) approximation. Thus, our implementation of
XTRACT may consume less time than the Java im-
plementation of the original XTRACT algorithm.

As the dataset, we used the real-life DTDs which
were used in the experiment of XTRACT [7]. The
original DTDs are shown in the second column of
Table 1. In order to evaluate the accuracy of DTD,
we generated 1000 elements for each DTD using
the XML Generator from IBM.2 The experiment was
performed on Pentium III-866 MHz platform with
MS-Windows XP and 256 MBytes of main memory.

In Table 1, we show the obtained DTD for each
dataset consisting of 1000 elements. The resulting
DTDs of XTRACT are obtained from [7]3 and other
DTDs are obtained by our experiment. Since we used
DDbE version 2, some DTDs obtained by DDbE are
different from these reflect in [7]. As shown in Table 1,
our approach generates the same or better DTDs
compared with XTRACT. DDbE usually generates too
complex results and could not generate the fifth DTD.

1 Available at http://www.alpahworks.ibm/tech/xml4j.
2 Available at http://www.alpahworks.ibm/tech/xmlgenerator.
3 The sixth DTD was not reported in [7].



12 J.-K. Min et al. / Information Processing Letters 85 (2003) 7–12

Table 1
Generated DTDs

No. Original DTD Our approach XTRACT DDbE ver2

1 a|b|c|d|e (a|b|c|d|e) a|b|c|d|e (a|b|c|d|e)
2 (a|b|c|d|e)∗ (a|b|c|d|e)∗ (a|b|c|d|e)∗ ((a|(e|b|c|a|d|(d+c))|(e|a|(e|c|d|(e+b+))|c|b|(e+b+)

|d|(d+c))|d|e|b|c|(e+b+)|(dcb)|(d+c))∗)

3 ab∗c∗ (ab∗c∗) (ab∗c∗) (a(b|c)+)

4 a∗b?c?d? (a∗b?c?d?) a∗b?c?d? (((a|b)|c|d|a|((b|c)|d|b|c)|b)+)

5 (a(bc)+d)∗ (a(bc)+d)∗ (a(bc)∗d)∗ –
6 (ab?c∗d?)∗ (a(b|c|d)∗)∗ – ((((ac+ac+d)|(a+b)|a)| . . . |(c+dab))∗)

Table 2
DTD generation time (sec)

No. Our approach Simple XTRACT DDbE ver2

1 0.4 25.8 228
2 0.65 25.6 229
3 1.27 25.0 230
4 0.5 24.1 231
5 2.33 131 –
6 1.89 – 267

In Table 2, we show the time for DTD generation
for each approach. Our approach generates DTDs in a
few seconds and shows the best performance. On the
contrary, XTRACT is at least 20 times slower than
our approach and DDbE is about 200 times slower.
As shown above, our approach achieves remarkably
better performance than other methods. Furthermore,
it generates the most accurate results.

5. Conclusion

Despite the importance of the schema, many XML
documents do not have accompanying schema. Thus,
many approaches for automatic schema extraction
have been proposed. However, the quality of schema
inferred by some approaches is poor and some ap-
proaches consume too much time to get the result.
In this paper, we describe an efficient extraction of
concise and accurate schema. To achieve the concise-
ness, we devise a restricted element content model.
And to achieve the efficiency, we apply some heuristic
rules, calledRelaxed Transformation RulesandFold-
ing Rules. The result of our experiment with real-life

DTDs shows that our approach achieves high accuracy
and is 20 to 200 times faster than existing approaches.

Acknowledgements

We would like to thank Professor Kazuo Iwama,
editor, for his help and the anonymous referees for
their valuable comments. This work was supported by
the Brain Korea 21 Project.

References

[1] D. Angluin, Equivence queries and approximate fingerprints,
in: Proceedings of the Workshop on Computational Learning
Theory, 1989.

[2] L. Berman, A. Diaz, Data Descriptors by Example
(DDbE), IBM alphaworks, http://www.alphaworks.ibm.com
/tech/DDbE, 2001.

[3] T. Bray, C. Frankston, A. Malhatro, Document Content De-
scription for XML, W3C submission, http://www.w3.org/TR/
NOTE-dcd, 1998.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, Extensible
Markup Language (XML) 1.0, W3C Recommendation,
http://www.w3.org/TR/REC-xml, 1998.

[5] A. Brazma, Efficient identification of regular expressions from
representative examples, in: Proceedings of ACM COLT, 1993.

[6] D.C. Fallside, XML Schema. Part 0, W3C recommendation,
http://www.w3.org/TR/xmlschema-0, 2001.

[7] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim,
XTRACT: A system for extracting document type descriptors
from XML documents, in: Proceeding of ACM SIGMOD, 2000.

[8] C.H. Moh, E.P. Lim, W.K. Ng, DTD-miner: A tool for mining
DTD from XML documents, in: Proceeding of International
Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems (WECWIS), 2000.

[9] Robin Cover. The XML cover pages http://www.oasis-open.
org/cover/xml.html, 2001.


