
39

Enumerating Trillion Subgraphs On Distributed Systems

HA-MYUNG PARK, Seoul National University
FRANCESCO SILVESTRI, University of Padova

RASMUS PAGH, IT University of Copenhagen

CHIN-WAN CHUNG, Chongqing University of Technology and KAIST

SUNG-HYON MYAENG, KAIST
U KANG, Seoul National University

How can we �nd pa�erns from an enormous graph with billions of vertices and edges? �e subgraph

enumeration, which is to �nd pa�erns from a graph, is an important task for graph data analysis with

many applications including analyzing the social network evolution, measuring the signi�cance of motifs in

biological networks, observing the dynamics of Internet, etc. Especially, the triangle enumeration, a special

case of the subgraph enumeration where the pa�ern is a triangle, has many applications such as identifying

suspicious users in social networks, detecting web spams, and �nding communities. However, recent networks

are so large that most of the previous algorithms fail to process them. Recently, several MapReduce algorithms

have been proposed to address such large networks; however, they su�er from the massive shu�ed data

resulting in a very long processing time.

In this paper, we propose scalable methods for enumerating trillion subgraphs on distributed systems.

We �rst propose PTE (Pre-partitioned Triangle Enumeration), a new distributed algorithm for enumerating

triangles in enormous graphs by resolving the structural ine�ciency of the previous MapReduce algorithms.

PTE enumerates trillions of triangles in a billion scale graph by decreasing three factors: the amount of

shu�ed data, total work, and network read. We also propose PSE (Pre-partitioned Subgraph Enumeration), a
generalized version of PTE for enumerating subgraphs that match an arbitrary query graph. Experimental

results show that PTE provides 79 times faster performance than recent distributed algorithms on real world

graphs, and succeeds in enumerating more than 3 trillion triangles on the ClueWeb12 graph with 6.3 billion

vertices and 72 billion edges. Furthermore, PSE successfully enumerates 265 trillion clique subgraphs with 4

vertices from a subdomain hyperlink network, showing 47 times faster performance than the state of the art

distributed subgraph enumeration algorithm.

CCS Concepts: •Information systems →Data mining; •�eory of computation →Parallel algorithms;
Distributed algorithms; MapReduce algorithms; Graph algorithms analysis;

�is work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by

the Korea government(MSIT) (No.R0190-15-2012, High Performance Big Data Analytics Platform Performance Acceler-

ation Technologies Development). �e ICT at Seoul National University provides research facilities for this study. �e

Institute of Engineering Research at Seoul National University provided research facilities for this work. Chin-Wan Chung

was supported in part by 2018 Seed Money Project of Chongqing Liangjiang KAIST International Program, Chongqing

University of Technology, and in part by Chongqing Research Program of Basic Research and Frontier Technology (No.

cstc2017jcyjAX0089). Francesco Silvestri was partially supported by project SID2017 of the University of Padova.

Author’s addresses: H.-M. Park, hamyung.park@kaist.ac.kr, F. Silvestri, silvestri@dei.unipd.it, R. Pagh, pagh@itu.dk, C.-W.

Chung, chung cw@kaist.ac.kr, S.-H. Myaeng, myaeng@kaist.ac.kr, U Kang (corresponding), ukang@snu.ac.kr .

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM. 1556-4681/2017/3-ART39 $15.00

DOI: 0000001.0000001

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:2
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Additional Key Words and Phrases: triangle enumeration; subgraph enumeration; big data; graph algorithm;

scalable algorithm; distributed algorithm; network analysis

ACM Reference format:
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U Kang. 2017.

Enumerating Trillion Subgraphs On Distributed Systems. ACM Trans. Knowl. Discov. Data. 9, 4, Article 39
(March 2017), 31 pages.

DOI: 0000001.0000001

1 INTRODUCTION
How can we �nd pa�erns from an enormous graph with billions of vertices and edges? �e problem

of subgraph enumeration is to discover every subgraph that match a given query graph from a large

graph one by one. Subgraph enumeration is a very important task for graph data analysis with

many applications including analyzing the social network evolution [Kairam et al. 2012], measuring

the signi�cance of motifs in biological networks [Grochow and Kellis 2007], and observing the

dynamics of Internet [Gregori et al. 2013]. If the query graph is a triangle, which is a graph of three

vertices connected to each other, we call the problem triangle enumeration. Triangle enumeration

itself has abundant applications of anomaly detection such as detecting suspicious accounts like

advertisers or fake users in social networks [Kang et al. 2014b; Yang et al. 2014], uncovering hidden

thematic layers on the web [Eckmann and Moses 2002], discovering roles [Chou and Suzuki 2010],

detecting web spams [Becche�i et al. 2010], �nding communities [Berry et al. 2011; Radicchi et al.

2004], etc. A challenge in subgraph enumeration is handling big real world networks, such as social

networks and WWW, which have millions or billions of vertices and edges. For example, Facebook

and Twi�er have 1.86 billion
1
and 313 million active users

2
, respectively, and there exist at least 1

trillion unique URLs are on the web
3
.

Even recently proposed algorithms, however, fail to enumerate subgraphs from such large graphs.

�e algorithms have been proposed in di�erent ways: I/O e�cient algorithms [Hu et al. 2013;

Kim et al. 2014; Pagh and Silvestri 2014], distributed memory algorithms [Arifuzzaman et al. 2013;

Gonzalez et al. 2012; Shao et al. 2014], and MapReduce algorithms [Afrati et al. 2013; Cohen 2009;

Lai et al. 2015; Park and Chung 2013; Park et al. 2014; Plantenga 2013; Sun et al. 2012; Suri and

Vassilvitskii 2011]. �ese algorithms have a limited scalability. �e I/O e�cient algorithms use only

a single machine, and thus they cannot process a graph exceeding the external memory space of

the machine. �e distributed memory algorithms use multiple machines but cannot process a graph

whose intermediate data exceed the capacity of distributed-memory. �e state of the art MapReduce

algorithm [Park et al. 2014] for triangle enumeration, named CTTP, signi�cantly increases the size

of a processable dataset; CTTP reduces the amount of intermediate data in a MapReduce round by

dividing the entire task into several sub-tasks and processing them in separate MapReduce rounds.

Even CTTP, however, takes a very long time to process an enormous graph because, in every round,

it reads the entire dataset and shu�es a lot of edges. Indeed, shu�ing a large amount of data in a

short time interval causes network congestion and heavy I/O to disks which decrease the scalability

and the fault tolerance, and prolong the running time signi�cantly. �us, it is desirable to shrink

the amount of shu�ed data.

In this paper, we propose scalable methods for enumerating trillion subgraphs on distributed

systems. We �rst propose PTE (Pre-partitioned Triangle Enumeration), a new distributed algorithm

1
h�p://newsroom.�.com/company-info

2
h�ps://about.twi�er.com/company

3
h�p://googleblog.blogspot.kr/2008/07/we-knew-web-was-big.html

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://newsroom.fb.com/company-info
https://about.twitter.com/company
http://googleblog.blogspot.kr/2008/07/we-knew-web-was-big.html

Enumerating Trillion Subgraphs On Distributed Systems 39:3

for enumerating triangles in an enormous graph by resolving the structural ine�ciency of the

previous MapReduce algorithms. PTE uses the same vertex coloring technique as CTTP (or

TTP [Park and Chung 2013]) to divide the entire task into sub-tasks, but avoids the massive

intermediate data problem by pre-partitioning the graph in advance. A�er that we propose PSE

(Pre-partitioned Subgraph Enumeration), a generalized version of PTE for enumerating subgraphs

that match an arbitrary query graph. We show that PTE and PSE successfully enumerate trillions

of subgraphs including triangles in a billion scale graph by decreasing three factors: the amount of

shu�ed data, total work, and network read. �e main contributions of this paper are summarized

as follows:

• We propose PTE, a new distributed algorithm for enumerating triangles in an enormous

graph, which is designed to minimize the amount of shu�ed data, total work, and network

read.

• We propose PSE, a generalized version of PTE for enumerating subgraphs that match an

arbitrary query graph. PSE inherits the advantages of PTE mentioned above.

• We prove the e�ciency of the proposed algorithms: PTE operates in O(|E |) shu�ed data,

O(|E |3/2/
√
M) network read, and O(|E |3/2) total work, the worst case optimal, where |E |

is the number of edges of a graph and M is the available memory size of a machine.

PSE requires O(|E |) shu�ed data and O(|E |(|Vq |
√
|E |/M − 1) |Vq |−2) network read when

P ≤
∑ |Vq |

k=1

(|Vq |√ |E |/M
k

)
where |Vq | is the number of vertices in a query graph and P is the

number of processors. Otherwise, PSE requires O(P |E |) network read.

• Our algorithms are experimentally evaluated using large real world networks. �e results

demonstrate that PTE outperforms the best previous distributed algorithms by up to 79

times (see Figure 9). Moreover, PTE successfully enumerates more than 3 trillion triangles

in the ClueWeb12 graph containing 6.3 billion vertices and 72 billion edges. Previous

algorithms such as GraphLab, GraphX, CTTP, and TwinTwig fail to process the graph

because of massive intermediate data. Furthermore, PSE successfully enumerates 265

trillions of clique subgraphs with 4 vertices from a subdomain hyperlink network, showing

47 times faster performance than the state of the art distributed subgraph enumeration

algorithm.

�e codes and datasets used in this paper are provided in h�p://datalab.snu.ac.kr/pse. �is paper

is an extension of the original conference paper [Park et al. 2016b] and generalizes the triangle

enumeration algorithm proposed in the conference paper for subgraph enumeration. �e remaining

part of the paper is organized as follows. In Section 2, we review previous studies related to the

triangle and subgraph enumeration. In Section 3, we formally de�ne the problem and introduce

important concepts and notations used in this paper. We introduce the details of our algorithms in

Section 4. �e experimental results are given in Section 5. Finally, we make conclusions in Section 6.

�e symbols frequently used in this paper are summarized in Table 1.

2 RELATEDWORK
In this section, we discuss related works. We �rst describe several triangle enumeration algorithms

to handle large graphs, including recent MapReduce algorithms related to our work. We also outline

the MapReduce model and emphasize the importance of shrinking the amount of shu�ed data in

improving the performance. A�er that, we describe VF2 [Cordella et al. 2004], the state-of-the-art

in-memory algorithm for subgraph enumeration, which PSE uses as a module. �en, we introduce

distributed algorithms for subgraph enumeration.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://datalab.snu.ac.kr/pse

39:4
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang
Table 1. Table of symbols.

Symbol De�nition

G = (V ,E) Simple graph with the set V of vertices and the set E of edges.

u,v,n Vertices.

i, j,k Vertex colors.

(u,v) Edge between u and v where u ≺ v .
(u,v,n) Triangle with vertices u, v , and n where u ≺ v ≺ n.
(i, j,k), (i, j) Subproblems.

d(u) Degree (number of neighbors) of u.
id(u) Vertex number of u, a unique identi�er.
≺ Total order on V . u ≺ v means u precedes v .
ρ Number of vertex colors.

ξ Coloring function: V → {0, · · · , ρ − 1}. ξ (u) is the color of vertex u.
Ei j Set of edges (u,v) where (ξ (u), ξ (v)) = (i, j) or (j, i).
E?i j Set of edges (u,v) where (ξ (u), ξ (v)) = (i, j).

M Available memory size of a machine.

P Number of processors in a distributed system.

2.1 I/O E�icient Triangle Algorithms
Recently, several triangle enumeration algorithms have been proposed in I/O e�cient ways to

handle graphs that do not �t into the main memory [Hu et al. 2013; Kim et al. 2014; Pagh and

Silvestri 2014]. Hu et al. [2013] propose Massive Graph Triangulation (MGT) which bu�ers a

certain number of edges in the memory and �nds all triangles containing one of these edges by

traversing every vertex. Pagh and Silvestri [2014] propose a cache oblivious algorithm which colors

the vertices of a graph hierarchically so that it does not need to know the cache structure of a

system. Kim et al. [2014] present OPT which is a parallel external-memory algorithm exploiting

the features of a solid-state drive (SSD). DUALSIM [Kim et al. 2016] is the state-of-the-art parallel

external-memory algorithm for enumerating subgraphs that match an arbitrary query graph;

DUALSIM is generalized from OPT.

�ese algorithms, however, cannot process a graph exceeding the external memory space of a

single machine. Moreover, these algorithms cannot output all triangles if a graph has too many

triangles; for example, the ClueWeb12 graph has 3 trillion triangles requiring 70 Terabytes of

storage, and the SubDomain graph has 266 trillion clique subgraphs of 4 vertices (see Section 5). We

note that single machine algorithms are collaborators of our algorithms rather than competitors; a

single machine algorithm is used as a module of PTE and PSE.

2.2 Distributed-Memory Triangle Algorithms
�e triangle enumeration problem has been recently targeted in the distributed-memory model

which assumes a multi-processor system where each processor has its own memory. We call a

processor with a memory a machine. Arifuzzaman et al. [2013] propose a distributed-memory

algorithm based on Message Passing Interface (MPI). �e algorithm divides a graph into over-

lapping subgraphs and �nds triangles in each subgraph in parallel. GraphLab-PowerGraph (or

GraphLab) [Gonzalez et al. 2012], which is an MPI-based distributed graph computation framework,

provides an implementation for triangle enumeration. GraphLab copies each vertex and its outgoing

edges γ times on average to multiple machines where γ is determined by the characteristic of the

input graph and the number of machines. Since γ |E | data are replicated in total, GraphLab fails

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:5

when γ |E |/P ≥ M where P is the number of processors and M is the available memory size of a

machine. GraphX, a graph computation library for Spark, also provides an implementation of the

same algorithm as in GraphLab; thus it has the same limitation in scalability. PDTL [Giechaskiel

et al. 2015], a parallel and distributed extension of MGT, shows the impressive speed but has limited

scalability: 1) every machine must hold a copy of the entire graph, 2) a part of PDTL runs on a

single machine, which can be a performance bo�leneck, and 3) it stores entire triangles in a single

machine. In summary, all the previous distributed memory algorithms are limited in handling large

graphs.

2.3 MapReduce
MapReduce [Dean and Ghemawat 2004] is a programmingmodel supporting parallel and distributed

computation to process large data. MapReduce is highly scalable and easy to use, and thus has been

used for various important graph mining and data mining tasks such as radius calculation [Kang

et al. 2011, 2009; Park et al. 2018], graph queries [Kang et al. 2012b], triangle counting [Kang

et al. 2014b; Park and Chung 2013; Park et al. 2014], visualization [Kang et al. 2014a], connected

components [Park et al. 2016], and tensor decomposition [Jeon et al. 2016a,b; Kang et al. 2012a;

Park et al. 2016a; Sael et al. 2015; Shin et al. 2017]. A MapReduce round transforms an input set of

key-value pairs to an output set of key-value pairs by three steps: it �rst transforms each pair of the

input to a set of new pairs by a user-de�ned function (map step), groups the pairs by keys so that

all values with the same key are aggregated together (shu�e step), and processes the aggregated

pairs for each key using another user-de�ned function to output a new result set of key-value pairs

(reduce step).
�e amount of shu�ed data signi�cantly a�ects the performance of a MapReduce task because

shu�ing includes heavy tasks of writing, sorting, and reading the data [Herodotou 2011]. In detail,

each map worker bu�ers the pairs from the map step in memory (collect). �e bu�ered pairs are

partitioned into R regions and wri�en to local disks periodically where R is the number of reduce

workers (spill). Each reduce worker remotely reads the bu�ered data from the local disks of the

map workers via a network (shu�e). When a reduce worker has read all the pairs for its partition,

it sorts the pairs by keys so that all values with the same key are grouped together (merge and

sort). Because of such heavy I/O and network tra�c, a large amount of shu�ed data decreases the

performance signi�cantly. �us, it is desirable to shrink the amount of shu�ed data as much as

possible.

2.4 MapReduce Triangle Algorithms
Several triangle computation algorithms have been designed in MapReduce. We review the algo-

rithms in terms of the amount of shu�ed data. �e �rst MapReduce algorithm, which is proposed

by Cohen [2009], is a variant of node-iterator [Schank 2007], a well-known sequential algorithm. It

shu�es O(|E |3/2) length-2 paths (also known as wedges) in a graph. Suri and Vassilvitskii [2011]

reduce the amount of shu�ed data to O(|E |3/2/
√
M) by proposing a graph partitioning based algo-

rithm Graph Partition (GP). Considering types of triangles, Park and Chung [2013] improve GP

by a constant factor in their algorithm, Triangle Type Partition (TTP). �at is, TTP also shu�es

O(|E |3/2/
√
M) data during the process. Aforementioned algorithms cause an out-of-space error

when the size of shu�ed data is larger than the total available space. Park et al. [2014] avoid the

out-of-space error by introducing a multi-round algorithm, namely Colored TTP (CTTP). CTTP

limits the shu�ed data size of a round, and thus signi�cantly increases the size of processable data.

However, CTTP still shu�es the same amount of data as TTP does, that is, O(|E |3/2/
√
M). Note

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:6
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

a b

dc

matching sequence:

partial order:

a < b a < c
a < d b < c

a → b → c → d

(a) A query graph

1 2

54 3

a

a b a b

c

a b

c d

a

b

a

b

c

a

A data graph

A subgraph
is matched

matched vertex
candidate vertex
vertex

Truncated by
symmetry
breaking

(b) Search states of the graph matching process.

Fig. 1. An example of PSE’s matching process for a square query graph based on VF2 and symmetry breaking.

that our proposed algorithm in this paper shrinks the amount of shu�ed data to O(|E |), improving

the performance signi�cantly.

�e MapReduce algorithms above can be implemented on general distributed systems, using a

distributed join algorithm like the one proposed in [Barthels et al. 2017]. Even on general distributed

systems, however, they still su�er from the massive shu�ed data problem. �ey join huge amount

of data as they shu�e in MapReduce, and the join operation is as expensive as shu�ing.

2.5 VF2: A Single Machine Subgraph Enumeration Algorithm
VF2 is an in-memory subgraph enumeration algorithm. VF2 matches query vertices to the vertices

of a data graph in a matching sequence. While the matching sequence in VF2 can be arbitrary, our

proposed subgraph enumeration algorithm PSE (Section 4.5) uses a topologically sorted sequence

of query vertices’ partial order that is determined by a process called symmetry breaking [Grochow

and Kellis 2007], to remove duplicate outputs and improve the performance. In the data graph, the

neighbors of already matched vertices are candidates for matching the next query vertex. VF2’s

feasibility rules truncate some candidates that have no chance to match the query in the future.

Figure 1 shows an example of VF2’s matching process. �e query is a square graph with matching

sequence a → b → c → d . �e data graph has �ve vertices labeled with numbers from 1 to 5. �e

vertices are in a total order according to the numbers. VF2 �rst matches the �rst query vertex a to

any vertex; in this example, a is matched to vertex 1 and the matched vertex is marked red. �e

neighbors (vertices 2 and 4) of vertex 1 become candidates, which are orange-colored. �e next

query vertex b is matched to one of the candidates; in this example, we match vertex 2 �rst. �en,

the neighbors (vertices 3 and 5) of vertex 2 are added as candidates. A�er that, query vertex c is
matched to vertex 4. We note that the query vertex c is not matched to candidates 3 and 5 by a

feasibility rule that states c and a are connected. By matching query vertex d to query vertex 5, VF2

�nds a subgraph that matches the query graph. If the current state has no more candidates to match,

VF2 then goes back to the previous state and visits another candidate. �is process continues until

all search states are visited. Symmetry breaking prevents duplicate output; a�er matching query

vertices a and b to vertices 1 and 4, respectively, symmetry breaking stops matching c to 2 due to

the partial order b < c; the vertex matched to c must be later than the vertex matched to b in the

total order of vertices. As a result, subgraph (1, 4, 2, 5), a duplicate of (1, 2, 4, 5), is not output.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:7

PSE, the proposed subgraph enumeration algorithm, uses VF2 as a module to enumerate sub-

graphs in each subproblem. ESCAPE [Pinar et al. 2017] is another single machine algorithm;

however, the algorithm aims to count all subgraphs with �ve vertices rather than enumerating

subgraphs with a speci�c graph pa�ern, and thus does not solve the exact problem that PSE solves.

2.6 Distributed Subgraph Enumeration Algorithms
Several subgraph enumeration algorithms have been proposed based on join techniques. Given

a query graph q, they decompose it into a set {q1, · · · ,qk } of sub-queries. �ey �nd the matches

{G(q1), · · · ,G(qk)} of the sub-queries from a data graph G and join them to get the matches G(q)
of the original query q. �e performance highly depends on which sub-queries the query is

decomposed into. Two basic sub-queries are an edge and a star, which is a tree graph of depth

1. We call the methods using the basic sub-queries EdgeJoin [Plantenga 2013] and StarJoin [Sun

et al. 2012], respectively. Both methods, however, have problems when they process very large data

graphs. EdgeJoin requires a lot of iterative join operations as many times as |Eq |−1 where |Eq | is the
number of edges in the query graph q; as a join operation requires one MapReduce round, EdgeJoin
performs a lot of MapReduce rounds. On the other hand, StarJoin generates massive intermediate

results for high order stars. For example, if a sub-query qi is a star with |Eqi | edges and a data

graph has a high degree vertex with k incident edges, StarJoin generates at least

(k
|Eqi |

)
matches as

an intermediate result. MultiwayJoin [Afrati et al. 2013] makes up for the weak point of EdgeJoin;
this method performs all join operations using only a single MapReduce round. MultiwayJoin can

be e�cient when the size of a query graph is small (e.g., a triangle), but this method generates a

tremendous amount of intermediate data during the shu�e step if a query graph has many nodes.

�e state of the art distributed algorithm for subgraph enumeration is TwinTwigJoin [Lai et al.

2015]. �is algorithm is a special type of StarJoin where the maximum number of edges in a star

(sub-query) is limited to 2. By limiting the number of edges, TwinTwigJoin reduces the amount of

intermediate data from StarJoin, and requires fewer join operations than EdgeJoin does.

3 PRELIMINARIES
In this section, we de�ne the problem that we are going to solve, introducing several terms and

notations formally. We also describe two previously introduced major algorithms for distributed

triangle enumeration, which are closely related to both PTE and PSE.

3.1 Problem Definition
A simple graph is an undirected graph that contains no duplicate edges or loops, where a loop is

an edge both of whose endpoints are the same vertex. A triangle is a set of three vertices fully

connected to each other. We de�ne the problem of triangle enumeration as follows:

De�nition 3.1. (Triangle enumeration) Given a simple graph G = (V ,E), the problem of triangle
enumeration is to discover every triangle in G.

Now we de�ne subgraph enumeration, for which triangle enumeration is a special case with a

triangle as the query graph.

De�nition 3.2. (Graph isomorphism) Two graph G1 = (V1,E1) and G2 = (V2,E2) are isomorphic,

if and only if |V1 | = |V2 |, |E1 | = |E2 |, and there exists a mapping function ζ : V1 → V2 such that

(ζ (u), ζ (v)) ∈ E2 for every (u,v) ∈ E1.

De�nition 3.3. (Subgraph enumeration) Given a simple graph G = (V ,E) and a query graph

q = (Vq ,Eq), the problem of subgraph enumeration is to discover every subgraph s of G such that s
is isomorphic to the query graph q.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:8
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

For simplicity, we call a subgraph isomorphic to a given query graph q a match. Note that we
do not require an algorithm to retain or emit each triangle or subgraph into any memory system,

but to call a local function enum(·) with the triangle or the subgraph as the parameter. In other

words, an algorithm does not have to keep all subgraphs in the memory at once, which can cause

an out-of-space error.

On a vertex set V , we de�ne a total order to uniquely express an edge or a triangle.

De�nition 3.4. (Total order on V) �e order of two vertices u and v is determined as follows:

• u ≺ v if d(u) < d(v) or (d(u) = d(v) and id(u) < id(v))

where d(u) is the degree, and id(u) is the unique identi�er of a vertex u.

We denote by (u,v) an edge between two vertices u and v , and by (u,v,n) a triangle consisting
of three vertices u, v , and n. Unless otherwise noted, the vertices in an edge (u,v) have the order
of u ≺ v , and we presume it has a direction, from u to v , even though the graph is undirected.

Similarly, the vertices in a triangle (u,v,n) also has the order of u ≺ v ≺ n, and we give each edge

a name to simplify the description as follows (see Figure 2):

De�nition 3.5. For a triangle (u,v,n) where the vertices are in the order of u ≺ v ≺ n, we call
(u,v) pivot edge, (u,n) port edge, and (v,n) starboard edge.4

u

v
n

port edge

starboard edge

pivot edge

Fig. 2. A triangle with directions by the total order on the three vertices.

3.2 Triangle Enumeration in TTP and CTTP
Park and Chung [2013] propose a MapReduce algorithm, named Triangle Type Partition (TTP), for

enumerating triangles. We introduce TTP brie�y because of its relevance to our work, and we

show that it shu�es a huge amount of data, O(|E |3/2/
√
M).

TTP divides the entire problem into subproblems and solves them independently using multiple

machines. To divide the problem, TTP �rst colors each vertex with one of ρ = O(
√
|E |/M) colors

randomly by a hash function ξ : V → {0, · · · , ρ − 1}. Let Ei j with i, j ∈ {0, · · · , ρ − 1} and i ≤ j be
the set {(u,v) ∈ E | i = min(ξ (u), ξ (v)) and j = max(ξ (u), ξ (v))}. A triangle is classi�ed as type-1
if all the vertices in the triangle have the same color, type-2 if there are exactly two vertices with

the same color, and type-3 if no vertices have the same color. TTP divides the entire problem into(ρ
2

)
+

(ρ
3

)
subproblems of two types:

(i, j) subproblem, with i, j ∈ {0, · · · , ρ−1} and i < j , is to enumerate triangles in an edge-induced

subgraph on E ′i j = Ei j ∪ Eii ∪ Ej j , together with any vertices that are their endpoints. It

�nds every triangle of type-1 and type-2 where the vertices are colored with i and j . �ere

are

(ρ
2

)
subproblems of this type.

(i, j,k) subproblem, with i, j,k ∈ {0, · · · , ρ − 1} and i < j < k , is to enumerate triangles in an

edge-induced subgraph on E ′i jk = Ei j ∪ Eik ∪ Ejk . It �nds every triangle of type-3 where

the vertices are colored with i , j and k . �ere are

(ρ
3

)
subproblems of this type.

4
Port and starboard are nautical terms for le� and right, respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:9

Each map task of TTP gets an edge e ∈ E and emits key-value pairs 〈(i, j); e〉 and 〈(i, j,k); e〉
for every E ′i j and E ′i jk containing e , respectively. �us, each reduce task gets a pair 〈(i, j);E ′i j 〉 or

〈(i, j,k);E ′i jk 〉, and �nds all triangles in the edge-induced subgraph. For each edge, a map task emits

ρ − 1 key-value pairs (Lemma 2 in [Park and Chung 2013]); that is, O(|E |ρ) = O(|E |3/2/
√
M) pairs

are shu�ed in total. TTP fails to process a graph when the shu�ed data size is larger than the

total available space. CTTP [Park et al. 2014] avoids the failure by dividing the tasks into multiple

rounds and limiting the shu�ed data size of a round. However, CTTP still shu�es exactly the

same pairs as TTP; hence CTTP also su�ers from the massive shu�ed data resulting in a very long

running time.

4 PROPOSED METHOD
In this section, we propose scalable methods for enumerating trillion subgraphs on distributed

systems. Before considering arbitrary query graphs, we �rst focus on triangles, the simplest non-

trivial subgraphs, to simplify the problem. A�er that we extend the proposed method to handle

general subgraphs as well. �ere are several challenges in designing an e�cient and scalable

distributed algorithm for triangle enumeration.

(1) Minimize shu�led data. Massive data are shu�ed for dividing the problem into sub-

problems by the previous algorithms. How can we minimize the amount of shu�ed data?

(2) Minimize redundant computation. �e previous algorithms contain several kinds of

redundant operations (details in Section 4.2). How can we remove the redundancy?

(3) Minimize network read. In previous algorithms, each subproblem reads necessary sets

of edges via network, and the amount of network read is determined by the number of

vertex colors. How can we decrease the number of vertex colors to minimize network read?

We have the following main ideas to address the above challenges, which are described in detail

in later subsections.

(1) Separating graph partitioning from dividing the problem decreases the amount of

shu�ed data to O(|E |) from O(|E |3/2/
√
M) of the previous MapReduce algorithms (Sec-

tion 4.1).

(2) Considering the color-direction of edges removes redundant operations and minimizes

computations (Section 4.2).

(3) Carefully scheduling triangle computations in subproblems reduces the amount of

network read by decreasing the number of vertex colors (Section 4.3).

In the following we �rst describe PTEBASE which exploits pre-partitioning to decrease the shu�ed

data (Section 4.1). �en, we describe PTECD to explain how to minimize redundant computation in

PTEBASE (Section 4.2). A�er that, we propose our desired method PTESC reducing the amount of

network read in PTECD (Section 4.3), and provide theoretical analysis of the methods (Section 4.4).

We then describe how to generalize PTE for enumerating subgraphs that match an arbitrary query

graph by proposing PSE (Pre-partitioned Subgraph Enumeration) (Section 4.5). Implementation

issues are discussed in the end (Section 4.6). Note that although we describe our methods using

MapReduce primitives for simplicity, the methods are general enough to be implemented in any

distributed framework (discussions in Section 4.6 and experimental comparisons in Section 5.2.4).

4.1 PTEBASE: Pre-partitioned Triangle Enumeration
In this section we propose PTEBASE which recti�es the massive shu�ed data problem of previous

MapReduce algorithms. �e main idea is partitioning an input graph into sets of edges before

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:10
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Algorithm 1: Graph Partitioning

/* ψ is a meaningless dummy key */

Map : input 〈ψ ; (u,v) ∈ E〉
1 emit 〈(ξ (u), ξ (v)); (u,v)〉

Reduce : input 〈(i, j);E?i j 〉
2 emit E?i j to a distributed storage

Algorithm 2: Triangle Enumeration (PTEBASE)

/* ψ is a meaningless dummy key */

Map : input 〈ψ ;problem = (i, j) or (i, j,k)〉
1 initialize E ′

2 if problem is of type (i, j) then
/* Ei j = E?i j ∪ E

?
ji, and Eii = E?ii */

3 read Ei j , Eii , Ej j
4 E ′← Ei j ∪ Eii ∪ Ej j

5 else if problem is of type (i, j,k) then
/* Ei j = E?i j ∪ E

?
ji, Eik = E?ik ∪ E

?
ki, and Ejk = E?jk ∪ E

?
k j */

6 read Ei j , Eik , Ejk
7 E ′← Ei j ∪ Eik ∪ Ejk

8 enumerateTriangles(E ′)

/* enumerate triangles in the edge-induced subgraph on E */

9 Function enumerateTriangles(E)
10 foreach (u,v) ∈ E do
11 foreach n ∈ {nu |(u,nu) ∈ E} ∩ {nv |(v,nv) ∈ E} do
12 if ξ (u) = ξ (v) = ξ (n) then
13 if (ξ (u) = i and i + 1 ≡ j mod ρ) or (ξ (u) = j and j + 1 ≡ i mod ρ) then
14 enum((u,v,n))

15 else
16 enum((u,v,n))

generating subgraphs, and storing the sets in a distributed storage like Hadoop Distributed File
System (HDFS) of Hadoop, or Resilient Distributed Dataset (RDD) of Spark. We observe that the

subproblems of TTP require each set Ei j of edges as a unit. It implies that if each edge set Ei j is
directly accessible from a distributed storage, we do not need to shu�e the edges as TTP does.

Consequently, we partition the input graph into ρ +
(ρ
2

)
=

ρ(ρ+1)
2

sets of edges according to the

vertex colors in each edge; ρ and

(ρ
2

)
are for Ei j when i = j and i < j, respectively. Each edge

(u,v) ∈ Ei j keeps the orderu ≺ v . Each vertex is colored by a coloring function ξ which is randomly

chosen from a pairwise independent family of functions [Wegman and Carter 1981]. �e pairwise

independence of ξ guarantees that edges are evenly distributed. PTEBASE sets ρ to d
√
6|E |/Me to

�t the three edge sets for an (i, j,k) subproblem into the memory of size M in a processor: the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:11

Eik

Ejk

Eij

u

v

n

a

b

(a)

E?
ik

E?
jk

E?
ij

u

v
n

(b)

Fig. 3. (a) An example of finding type-3 triangles containing an edge (u,v) ∈ Ei j in an (i, j,k) subproblem.
PTEBASE finds the triangle (u,v,b) by intersecting u’s neighbor set {v,a,b} and v’s neighbor set {n,b}.
However, it is unnecessary to consider the edges in Ei j since the other two edges of a type-3 triangle
containing (u,v)must be in Eik and Ejk , respectively. (b) enumerateTrianglesCD(E

?
i j, E?ik, E?jk) in PTECD

finds every triangle whose pivot edge, port edge, and starboard edge have the same color-directions as those
of E?i j , E

?
ik , and E?jk , respectively. The arrows denote the color-directions.

expected size of an edge set is 2|E |/ρ2, and the sum 6|E |/ρ2 of the size of the three edge sets should
be less than or equal to the memory sizeM .

A�er the graph partitioning, PTEBASE reads edge sets and �nds triangles in each subproblem. In

each (i, j) subproblem, it reads Ei j , Eii , and Ej j , and enumerates triangles in the union of the edge

sets. In each (i, j,k) subproblem, similarly, it reads Ei j , Eik , and Ejk , and enumerates triangles in

the union of the edge sets. �e edge sets are read from a distributed storage via a network, and the

total amount of network read is O(|E |ρ) (see Section 3.2). Note that the network read is di�erent

from the data shu�e; the data shu�e is a much heavier task since it requires data collecting and

writing in senders, data transfer via a network, and data merging and sorting in receivers (see

Section 2.3). However, the network read contains data transfer via a network only.

PTEBASE is described in Algorithms 1 and 2. �e graph partitioning is done by a pair of map

and reduce steps (Algorithm 1). In the map step, PTEBASE transforms each edge (u,v) into a pair
〈(ξ (u), ξ (v)); (u,v)〉 (line 1). �e edges of the pairs are aggregated by the keys; and for each key

(i, j), a reduce task receives E?i j and emits it to a separate �le in a distributed storage (line 2), where

E?i j is {(u,v) ∈ E |(ξ (u), ξ (v)) = (i, j)}. Note that E
?
i j ∪ E

?
ji = Ei j . �anks to the pre-partitioned edge

sets, the triangle enumeration is done by a single map step (see Algorithm 2). Each map task reads

edge sets needed to solve a subproblem (i, j) or (i, j,k) (lines 3, 6), makes the union of the edge sets

(lines 4, 7), and enumerates triangles with a sequential algorithm enumerateTriangles (line 8).

Although any sequential algorithm for triangle enumeration can be used for enumerateTriangles,
we use CompactForward [Latapy 2008], one of the best sequential algorithms, with a modi�cation

(lines 9-16); while the original CompactForward algorithm sorts the neighbors of each vertices by

degree, we skip this sorting procedure because the edges are already ordered by the degrees of their

vertices. Given a set E ′ of edges, enumerateTriangles runs in O(|E ′ |3/2) total work, the same as

that of CompactForward. Note that we propose a specialized algorithm to reduce the total work

in Section 4.2. Note also that although every type-1 triangle appears ρ − 1 times, PTEBASE emits

the triangle only once: for each type-1 triangle of color i , PTEBASE emits the triangle if and only if

i + 1 ≡ j mod ρ given a subproblem (i, j) or (j, i) (lines 12-14). Anyway, PTEBASE still computes a

type-1 triangle multiple times redundantly. We completely eliminate the redundant computation in

Section 4.2.

4.2 PTECD: Reducing the Total Work
PTECD improves on PTEBASE to minimize the amount of computations by exploiting color-direction.
We �rst give an example (Figure 3(a)) to show that the function enumerateTriangles in Algorithm 2

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:12
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Algorithm 3: Triangle Enumeration (PTECD)

/* ψ is a meaningless dummy key */

Map : input 〈ψ ;problem = (i, j) or (i, j,k)〉
1 if problem is of type (i, j) then
2 read E?i j , E

?
ji , E

?
ii , E

?
j j

/* enumerate Type-1 triangles */

3 if i + 1 = j then
4 enumerateTrianglesCD(E?ii , E

?
ii , E

?
ii)

5 else if j = ρ − 1 and i = 0 then
6 enumerateTrianglesCD(E?j j , E

?
j j , E

?
j j)

/* enumerate Type-2 triangles */

7 foreach (x ,y, z) ∈ {(i, i, j), (i, j, i), (j, i, i), (i, j, j), (j, i, j), (j, j, i)} do
8 enumerateTrianglesCD(E?xy , E

?
xz , E

?
yz)

9 else if problem is of type (i, j,k) then
10 enumerateType3Triangles((i, j,k))

/* enumerate every triangle (u,v,n) such that ξ (u) = i, ξ (v) = j and ξ (n) = k */

11 Function enumerateTrianglesCD(E?i j , E
?
ik , E

?
jk)

12 foreach (u,v) ∈ E?i j do
13 foreach n ∈ {nu |(u,nu) ∈ E

?
ik } ∩ {nv |(v,nv) ∈ E

?
jk } do

14 enum((u,v,n))

15 Function enumerateType3Triangles(i, j, k)
16 read E?i j , E

?
ik , E

?
ji , E

?
jk , E

?
ki , E

?
k j

17 foreach (x ,y, z) ∈ {(i, j,k), (i,k, j), (j, i,k), (j,k, i), (k, i, j), (k, j, i)} do
18 enumerateTrianglesCD(E?xy , E

?
xz , E

?
yz)

performs redundant operations. Let us consider �nding type-3 triangles containing an edge

(u,v) ∈ Ei j in an (i, j,k) subproblem. enumerateTriangles �nds such triangles by intersecting

the two outgoing neighbor sets of u and v . In Figure 3(a), the neighbor sets are {v,a,b} and {n,b},
and we �nd the triangle (u,v,b). However, it is unnecessary to consider edges in Ei j (that is, (u,v),
(u,a), (v,n)) since the other two edges of a type-3 triangle containing (u,v) must be in Eik and

Ejk , respectively. �e redundant operations can be removed by intersecting u’s neighbors only
in Eik and v’s neighbors only in Ejk instead of looking at all the neighbors of u and v . In the

�gure, the two neighbor sets are both {b}; and we �nd the same triangle (u,v,b). PTECD removes

the redundant operations by adopting a new function enumerateTrianglesCD (lines 11-14 in

Algorithm 3). We de�ne the color-direction of an edge (u,v) to be from ξ (u) to ξ (v); and we also

de�ne the color-direction of E?i j to be from i to j . �en, enumerateTrianglesCD(E?i j , E
?
ik , E

?
jk) �nds

every triangle whose pivot edge, port edge, and starboard edge have the same color-directions as

those of E?i j , E
?
ik , and E?jk , respectively (see Figure 3(b)). Note that the algorithm does not look at

any edges in Ei j for the intersection in the example of Figure 3(a) by separating the input edge sets.

Redundant operations of another type appear in (i, j) subproblems. PTEBASE outputs a type-1

triangle exactly once but still computes it multiple times: type-1 triangles with a color i appears

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:13

i ≺ j ≺ k j ≺ i ≺ k k ≺ i ≺ j i ≺ k ≺ j j ≺ k ≺ i k ≺ j ≺ i

Eij

Eik

Ejk

(a) �e six color-directions of a type-3 triangle in an (i, j,k) subproblem.

Eii Ejj

Eij

i ≺ i ≺ j i ≺ j ≺ i j ≺ i ≺ i j ≺ j ≺ i j ≺ i ≺ j i ≺ j ≺ j

(b) �e six color-directions of a type-2 triangle in an (i, j) subproblem.

Fig. 4. The color-directions of a triangle according to its type. The function enumerateTrianglesCD is called
for each color-direction; that is, PTECD calls it 6 times for type-3 triangles and type-2 triangles, respectively.

ρ − 1 times in (i, j) or (j, i) subproblems for j ∈ {0, · · · , ρ − 1} \ {i}. PTECD resolves the duplicate

computation by performing enumerateTrianglesCD(E?ii , E
?
ii , E

?
ii) exactly once for each vertex

color i , thereby making every type-1 triangle appears only once.

Algorithm 3 shows PTECD using the new function enumerateTrianglesCD. To �nd type-3

triangles in each (i, j,k) subproblem, PTECD calls the function enumerateTrianglesCD 6 times for

all possible color-directions (lines 10, 15-18) (see Figure 4(a)). To �nd type-2 triangles in each (i, j)
subproblem, similarly, PTECD calls enumerateTrianglesCD 6 times (lines 7-8) (see Figure 4(b)). For

type-1 triangles whose vertices have a color i , PTECD performs enumerateTrianglesCD(E?ii , E
?
ii ,

E?ii) only if i + 1 ≡ j mod ρ given a subproblem (i, j) or (j, i) so that enumerateTrianglesCD(E?ii ,
E?ii , E

?
ii) operates exactly once (lines 3-6). As a result, the algorithm emits every triangle exactly

once.

Removing the two types of redundant operations, PTECD decreases the number of operations for

intersecting neighbor sets by more than 2− 2

ρ times from PTEBASE in expectation. As we will see in

Section 5.2.1, PTECD decreases the operations by up to 6.83× than PTEBASE on real world graphs.

Theorem 4.1. PTECD decreases the number of operations for intersecting neighbor sets by more
than 2 − 2

ρ times compared to PTEBASE in expectation.

Proof. To intersect the sets of neighbors of u and v in an edge (u,v) such that ξ (u) = i , ξ (v) = j
and i , j , the function enumerateTriangles in PTEBASE performs d?i j (u) + d

?
ik (u) + d

?
ji (v) + d

?
jk (v)

operations while enumerateTrianglesCD in PTECD performs d?ik (u) + d
?
jk (v) operations for each

color k ∈ {0, · · · , ρ − 1} \ {i, j} where d?i j (u) is the number of u’s neighbors in E?i j . �us, PTEBASE

performs (ρ − 2) × (d?ξ (u)ξ (v)(u) + d
?
ξ (v)ξ (u)(v)) additional operations compared to PTECD for each

(u,v) ∈ Eout where Eout is the set of edges (u,v) ∈ E such that ξ (u) , ξ (v); that is,

(ρ − 2) ×
∑

(u,v)∈Eout

(
d?ξ (u)ξ (v)(u) + d

?
ξ (v)ξ (u)(v) +O(1)

)
(1)

We put O(1) because an operation is necessary for checking the existence of the neighbors but

d?ξ (u)ξ (v)(u) + d
?
ξ (v)ξ (u)(v) can be smaller than 1. Given an edge (u,v) such that ξ (u) = ξ (v) = i ,

PTEBASE performs d?ii (u)+d
?
i j (u)+d

?
ii (v)+d

?
i j (v) operations for each color j ∈ {0, · · · , ρ − 1} \ {i};

meanwhile, PTECD performs d?i j (u) + d
?
i j (v) operations for each color j ∈ {0, · · · , ρ − 1}. �us,

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:14
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

PTEBASE performs (ρ − 2) × (d?ξ (u)ξ (v)(u) + d?ξ (v)ξ (u)(v)) more operations than PTECD for each

(u,v) ∈ Ein where Ein is E \ Eout ; that is,

(ρ − 2) ×
∑

(u,v)∈Ein

(
d?ξ (u)ξ (v)(u) + d

?
ξ (v)ξ (u)(v) +O(1)

)
(2)

We addO(1) by the same reason as in Equation (1). �en, the total number of additional operations
performed by PTEBASE, compared to PTECD, is the sum of (1) and (2):

(ρ − 2) ×
∑
(u,v)∈E

(
d?ξ (u)ξ (v)(u) + d

?
ξ (v)ξ (u)(v) +O(1)

)
(3)

�e expected value of d?ξ (u)ξ (v)(u) is d
?(u)/ρ where d?(u) is the number of neighbors v of u such

that u ≺ v , since the coloring function ξ is randomly chosen from a pairwise independent family

of functions. �us, (3) becomes as follows:

(ρ − 2)

ρ
×

∑
(u,v)∈E

(
d?(u) + d?(v) +O(ρ)

)
(4)

Meanwhile, the number of operations by PTECD is

∑
(u,v)∈E

(
d?(u) + d?(v) +O(ρ)

)
as we will see

in �eorem 4.5. �us, PTECD reduces the number of operations by 2 − 2

ρ times from PTEBASE in

expectation. �

4.3 PTESC: Reducing the Network Read
PTESC further improves on PTECD to reduce the amount of network read by scheduling calls of

the function enumerateTrianglesCD. Reading each E?i j in ρ − 1 subproblems, PTECD (as well as

PTEBASE) reads O(|E |ρ) data via a network in total. For example, E?
01

is read in every (0, 1,k)
subproblem for 2 ≤ k < ρ, and the (0, 1) subproblem. It implies that the amount of network read

depends on ρ, the number of vertex colors. PTEBASE and PTECD set ρ to d
√
6|E |/Me as mentioned

in Section 4.1. In PTESC, we reduce it to d
√
5|E |/Me by se�ing the sequence of triangle computation

as in Figure 5 which represents the schedule of data loading for an (i, j,k) subproblem. We denote

by ∆i jk the set of triangles enumerated by enumerateTrianglesCD(E?i j ,E
?
ik ,E

?
jk). PTECD handles

the triangle sets one by one from le� to right in the �gure. �e check-marks (X) show the relations

between edge sets and triangle sets. For example, E?i j , E
?
ik , and E

?
jk should be retained in the memory

together to enumerate ∆i jk . When we restrict to read an edge set only once in a subproblem, the

shaded areas in Figure 5 represent when the edge sets are in the memory. For example, E?i j is read

∆i jk ∆ik j ∆jik ∆jki ∆ki j ∆k ji

E?i j X X X

E?ik X X X
E?ji X X X

E?jk X X X

E?ki X X X
E?k j X X X

Fig. 5. The schedule of data loading for an (i, j,k) subproblem. PTESC enumerates triangles in columns one
by one from le� to right. Each check-mark (X) shows the relations between edge sets and triangle types.
Each shaded area denotes when the edge set is in the memory, when we restrict to read an edge set only
once in a subproblem.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:15

Algorithm 4: Type-3 triangle enumeration in PTESC

1 Function enumerateType3Triangles(i, j, k)
2 read E?i j , E

?
ik , E

?
ji , E

?
jk , E

?
k j

3 foreach (x ,y, z) ∈ {(i, j,k), (i,k, j), (j, i,k)} do
4 enumerateTrianglesCD(E?xy , E

?
xz , E

?
yz)

5 release E?ik
6 read E?ki
7 foreach (x ,y, z) ∈ {(j,k, i), (k, i, j), (k, j, i)} do
8 enumerateTrianglesCD(E?xy , E

?
xz , E

?
yz)

before ∆i jk , and is released a�er ∆ki j . �en, we can easily see that the maximum number of edge

sets retained in the memory together is 5, and it leads to se�ing ρ to d
√
5|E |/Me. �e procedure

of type-3 triangle enumeration with the scheduling method is described in Algorithm 4 which

replaces the function enumerateType3Triangles in Algorithm 3. Note that the number 5 of edge

sets loaded in the memory at a time is optimal as shown in the following theorem.

Theorem 4.2. Given an (i, j,k) subproblem, the maximum number of edge sets retained in the
memory at a time cannot be smaller than 5, if each edge set can be read only once.

Proof. Suppose that there is a schedule to make the maximum number of edge sets retained

in the memory at a time less than 5. We �rst read 4 edge sets in the memory. �en, 1) any edge

set in the memory cannot be released until all triangles containing an edge in the set have been

enumerated, and 2) we cannot read another edge set until we release one in the memory. �us, for

at least one edge set in the memory, it should be able to process all triangles containing an edge in

the edge set without reading an additional edge set. However, it is impossible because enumerating

all triangles containing an edge in an edge set requires 5 edge sets but we have only 4 edge sets.

�us, there is no schedule to make the maximum number of edge sets retained in the memory at a

time less than 5. �

For example, the triangles in ∆i jk , ∆ik j , and ∆ki j , which are related to an edge set E?i j , require

E?i j , E
?
ik , E

?
jk , E

?
k j , and E

?
ki .

4.4 Analysis
In this section we analyze the proposed algorithm in terms of the amount of shu�ed data, network

read, and total work. We �rst prove the claimed amount of shu�ed data generated by the graph

partitioning in Algorithm 1.

Theorem 4.3. �e amount of shu�ed data for partitioning a graph isO(|E |)where |E | is the number
of edges in the graph.

Proof. �e pairs emi�ed from the map operation is exactly the data to be shu�ed. For each

edge, a map task emits one pair; accordingly, the amount of shu�ed data is the number |E | of edges
in the graph. �

We emphasize that while the previous MapReduce algorithms shu�e O(|E |3/2/
√
M) data, we

reduce it to be O(|E |). Instead of data shu�e requiring heavy disk I/O, network read, and massive

intermediate data, we only require the same amount of network read, bounded by O(|E |3/2/
√
M).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:16
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Theorem 4.4. PTE requires O(|E |3/2/
√
M) network read.

Proof. We �rst show that every E?i j for (i, j) ∈ {0, · · · , ρ − 1}
2
are read ρ − 1 times. It is clear

that E?i j such that i = j is read ρ − 1 times in (i,k) or (k, i) subproblems for k ∈ {0, · · · , ρ − 1} \ {i}.

We now consider E?i j for i , j. Without loss of generality, we assume i < j. �en, E?i j is read ρ − 2

times in (i, j,k) or (i,k, j) or (k, i, j) subproblems where k ∈ {0, · · · , ρ − 1} \ {i, j}, and once in an

(i, j) subproblem; ρ − 1 times in total. �e total amount of data read by PTE is as follows:

(ρ − 1)

ρ−1∑
i=0

ρ−1∑
j=0

|E?i j | = |E |(ρ − 1) = |E |

(√
5|E |

M
− 1

)
= O

(
|E |3/2
√
M

)
where |E?i j | is the number of edges in E?i j . �

Finally, we prove the claimed total work of the proposed algorithm.

Theorem 4.5. PTE requires O(|E |3/2) total work.

Proof. Intersecting two sets requires comparisons as many times as the number

of elements in the two sets. Accordingly, the number of operations performed by

enumerateTrianglesCD(E?i j ,E
?
ik ,E

?
jk) is∑

(u,v)∈E?
i j

(
d?ik (u) + d

?
jk (v) +O(1)

)
where d?ik (u) is the number of u’s neighbors in E?ik . We put O(1) since d?ik (u) + d

?
jk (v) can be

smaller than 1. PTESC (as well as PTECD) calls enumerateTrianglesCD for every possible triple

(i, j,k) ∈ {0, · · · , ρ − 1}3; thus the total number of operations is as follows:

ρ−1∑
i=0

ρ−1∑
j=0

ρ−1∑
k=0

∑
(u,v)∈E?

i j

(
d?ik (u) + d

?
jk (v) +O(1)

)
=

∑
(u,v)∈E

(
d?(u) + d?(v) +O(ρ)

)
=O(|E |ρ) +

∑
(u,v)∈E

(
d?(u) + d?(v)

)
�e le� termO(|E |ρ) isO(|E |3/2/

√
M) for checking all edges in each subproblem, which occurs also

in PTEBASE. �e right summation is the number of operations for intersecting neighbors, and it is

O(|E |3/2) when the vertices are ordered by De�nition 3.4 because the maximum value of d?(u) for

every u ∈ V is 2

√
|E | as proved in [Schank 2007].

�

Note that it is the worst case optimal and the same as one of the best sequential algorithms [Latapy

2008].

4.5 Generalization for Enumerating Arbitrary Graph Pa�erns
�is section proposes PSE (pre-partitioned subgraph enumeration), a distributed algorithm that

enumerates all subgraphs that match an arbitrary query graph, as well as a triangle, by generalizing

PTE.

As in a triangle enumeration problem, if vertices are labeled with colors, a subgraph enumeration

problem can be divided into subproblems that are independent of each other. PSE �rst partitions

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:17

the graph into ρ +
(ρ
2

)
edge sets like PTE where ρ is the number of vertex colors; each edge set

is Ei j for (i, j) ∈ {0, · · · , ρ − 1}
2
such that i ≤ j. We describe how to set the value ρ soon. Given

a query graph q with |Vq | vertices, the subgraph enumeration problem is divided into

∑ |Vq |
k=1

(ρ
k

)
subproblems; each subproblem (τ1, · · · ,τk) is to enumerate every subgraph whose vertices have

exactly the colors in {τ1, · · · ,τk } where τ1 < · · · < τk . For example, when |Vq | = 3 and ρ = 4, the

subproblems are (0), (1), (2), (3), (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (0, 1, 2), (0, 1, 3), (0, 2, 3), and
(1, 2, 3). Once all the subproblems are solved, we can enumerate all subgraphs that match the query

graph, without duplicates. A subgraph that matches the query graph appears in one and only one

subproblem related to the color set that contains only the vertex colors of the subgraph. In other

words, the correctness of the algorithm follows since each subgraph with a color set {τ1, · · · ,τk } is
emi�ed only in the subproblem (τ1, · · · ,τk). We explicitly note the correctness in the following

theorem.

Theorem 4.6. PSE enumerates exactly one instance of each subgraph that matches a query graph if
there exists a method that correctly solves a given subproblem (τ1, · · · ,τk) for any k ∈ {1, · · · , |Vq |}.

�e ρ value is determined so that all the edge sets of a subproblem �t into the main memory of a

processor, and the parallelism is maximized. A subproblem (τ1, · · · ,τk) requires an edge set Ei j for
each color pair (i, j) ∈ {τ1, · · · ,τk }

2
such that i ≤ j, and thus the number of required edge sets for

the subproblem is k +
(k
2

)
where k is for the case that the two colors are the same and

(k
2

)
is for the

other cases. �e k +
(k
2

)
edge sets should �t into the memory of sizeM in a processor, that is,

k ×
|E |

ρ2
+

(
k

2

)
×
2|E |

ρ2
=
k2 |E |

ρ2
≤
|Vq |

2 |E |

ρ2
≤ M

as the expected size of an edge set Ei j is |E |/ρ
2
if i = j and 2|E |/ρ2 if i , j. Accordingly, ρ should

be larger than |Vq |
√
|E |/M . At the same time, ρ should be determined so that the parallelism is

maximized. Otherwise, if the number of subproblems is less than the number P of processors, some

processors are not used while others are busy. �erefore, ρ should be set to satisfy the following

expression:

P ≤

|Vq |∑
k=1

(
ρ

k

)
When ρ ′ is the minimum integer value satisfying this expression, the number ρ of vertex colors

is determined to be larger than both |Vq |
√
|E |/M and ρ ′. At the same time, we should choose ρ as

small as possible to minimize the amount of network read as we will discuss in �eorem 4.7. �at

is,

ρ =
⌈
max(|Vq |

√
|E |/M, ρ ′)

⌉
(5)

Reducing the network read. For a subproblem (τ1, · · · ,τk), if k = |Vq |, no match from the subprob-

lem contains intra-edge, whose two end vertices have the same color; this is because each vertex

within the match has a distinct color and the data graph G is a simple graph without a self-loop.

Using this feature, PSE reduces the amount of network read by reading Ei j only if i , j when it

solves a subproblem with k = |Vq |. �at is, in this case, PSE requires

(|Vq |
2

)
edge sets instead of

|Vq | +
(|Vq |

2

)
edge sets where each edge set is Ei j for (i, j) ∈ {τ1, · · · ,τk }

2
such that i < j.

An edge set Ei j is required by every subproblem whose color set contains both i and j. PSE
reduces the amount of network read by solving subproblems sharing the same edge sets on the

same processor as much as possible. We say that a subproblem A dominates another subproblem
B if the edge sets required by A are su�cient to solve B. We note that every subproblem with

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:18
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

k < |Vq | − 1 colors is dominated by one or more subproblems with |Vq | − 1 colors. Accordingly, PSE
groups the subproblems with k ≤ |Vq | − 1 colors into

(ρ
|Vq |−1

)
groups, and processes subproblems

in the same group on the same processor. Meanwhile, each subproblem with k = |Vq | colors
forms a separate group with only this subproblem. When ρ = 4 and |Vq | = 3, the problem is

divided into

(ρ
|Vq |−1

)
+

(ρ
|Vq |

)
subproblem groups, and one possible example is as follows: {(0, 1), (0)},

{(0, 2), (2)}, {(0, 3), (3)}, {(1, 2), (1)}, {(1, 3)}, {(2, 3)}, {(0, 1, 2)}, {(0, 1, 3)}, {(0, 2, 3)}, and {(1, 2, 3)}.
�e subproblems can be grouped in several ways. In this example, subproblem (0) is grouped with

subproblem (0, 1), but may also be grouped with (0, 2) or (0, 3). It is important to evenly distribute

subproblems to groups for the parallelism. We describe how PSE groups the subproblems a�er the

following theorem on the total amount of network read occurred by PSE.

Theorem 4.7. PSE requires at most
(ρ−1
|Vq |−2

)
× |E | network read.

Proof. An edge set Ei j can be classi�ed into two cases: i = j and i , j. We �rst consider an

edge set Eii whose two colors are the same. We remind that the edge set Eii is not necessary for

the subproblems with |Vq | colors as mentioned already. In other words, no subproblem group

with |Vq | colors requires the edge set Eii . �e edge set Eii is required by subproblem groups with

|Vq | − 1 colors including the color i; there are
(ρ−1
|Vq |−2

)
such groups. �us, every edge set Eii is read

by

(ρ−1
|Vq |−2

)
subproblem groups, incurring the following amount of network read:

ρ−1∑
i=0

|Eii | ×

(
ρ − 1

|Vq | − 2

)
(6)

We now consider an edge set Ei j such that i , j. Every subproblem group having the colors i

and j together requires the edge set Ei j . �ere are

(ρ−2
|Vq |−2

)
such groups with |Vq | colors and

(ρ−2
|Vq |−3

)
groups with |Vq | − 1 colors. �us, every edge Ei j with i , j is read by

(ρ−2
|Vq |−2

)
+

(ρ−2
|Vq |−3

)
subproblem

groups, and the sum is

(ρ−1
|Vq |−2

)
according to the Pascal’s rule.

ρ−2∑
i=0

ρ−1∑
j=i+1

|Ei j | ×

(
ρ − 1

|Vq | − 2

)
(7)

As shown in Equations (6) and (7), an edge set Ei j is always required by

(ρ−1
Vq−2

)
subproblem

groups regardless of whether i = j or i , j. �e union of all edge sets is exactly the original edge

set E. �us, the amount of network read is

(6) + (7) =

(
ρ − 1

|Vq | − 2

)
× |E |

and the theorem follows. �

By applying Equation (5) to �eorem 4.7, the amount of network read becomes

O(|E |(|Vq |
√
|E |/M − 1) |Vq |−2) if P ≤

∑ |Vq |
k=1

(|Vq |√ |E |/M
k

)
, i.e. ρ = |Vq |

√
|E |/M . If P >∑ |Vq |

k=1

(|Vq |√ |E |/M
k

)
, i.e. ρ = ρ ′, PSE requires O(P |E |) network read as

(ρ′−1
|Vq |−2

)
≤

∑ |Vq |
k=1

(ρ′
k

)
= O(P).

Ensuring the parallelism. It is crucial to evenly distribute subproblems to groups for the parallelism.

However, because each subproblem can belong to di�erent restricted groups, it is easy to distribute

unevenly if we are not careful. PSE ensures that all the groups have a similar number of subproblems.

To accomplish this goal, PSE assigns the subproblems to the groups as follows. PSE �rst assigns a

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:19

subproblem with |Vq | − 1 or |Vq | colors to each group. Each remaining subproblem is assigned to a

dominating group; if a subproblem in a groupA dominates a subproblem B, we say that the groupA
dominates the subproblem B. For example, group {(0, 1), (0)} dominates subproblems (0), (1), and

(0, 1). We note that subproblems with |Vq | colors do not dominate any other subproblems, and thus

no subproblem is assigned to a group with |Vq | colors. All groups are initially marked as not full.

(1) Among groups that are not full, PSE selects a min-group, which is a group with the least

number of subproblems. If there are two or more min-groups, PSE selects one randomly. If

the selected group dominates no remaining subproblem, we mark the group full and do (1)

again.

(2) Among unassigned subproblems dominated by the selected group, PSE selects one domi-

nated by the least number of min-groups. If two or more subproblems are in the tie, PSE

randomly selects one of them.

(3) PSE assigns the selected subproblem to the selected group and repeats (1) and (2) until all

the subproblems are assigned.

We consider an example with |Vq | = 3 and ρ = 4. Let us assume that there are six groups

{(0, 1), (0)}, {(0, 2)}, {(0, 3)}, {(1, 2)}, {(1, 3), (3)}, and {(2, 3)}, and two remaining subproblems (1)

and (2); the groups with |Vq | colors are omi�ed. �e min-groups are {(0, 2)}, {(0, 3)}, {(1, 2)}, and
{(2, 3)}. PSE selects one min-group randomly, and we assume that group {(1, 2)} is selected in

this example. PSE then selects subproblem (1) as it is dominated by only one min-group {(1, 2)}
while subproblem (2) is dominated by three min-groups {(0, 2)}, {(1, 2)}, and {(2, 3)}. Since PSE
assigned subproblem (1) to group {(1, 2)}, the subproblem (2) can be assigned to group {(0, 2)} or
{(2, 3)}; the maximum number of subproblems in a group is then 2. If PSE assigned subproblem

(2) to group {(1, 2)}, however, subproblem (1) must be assigned to one of the groups {(0, 1), (0)},
{(1, 2), (2)}, and {(1, 3), (3)}; the group with subproblem (1) must have 3 subproblems. In other

words, the subproblems are unevenly distributed.

Solving subproblems. One advantage of PSE is that it can use any single-machine algorithm for the

subgraph enumeration, which has been studied in depth for a long time, to solve each subproblem.

If we adopt a single-machine algorithm carelessly, however, some matches may be enumerated

multiple times. For example, let us assume that we are solving a subproblem (τ1, · · · ,τk) where
k < |Vq |. We read the edge sets required by the subproblem and �ndmatches using a single-machine

algorithm from the edge induced subgraph built from the edge sets. �en, we get all the subgraph

matches having color set {τ1, · · · ,τk }. �e problem is that the single machine algorithm also �nds

matches whose color set is a subset of {τ1, · · · ,τk }, and thus some matches are enumerated multiple

times. One easy way to workaround this problem is adding a �ltering process that checks whether

each match has exactly the same colors as the subproblem; if a match does not have any of the

colors in the subproblem, the match is not enumerated. �is method eliminates duplicate outputs

but still performs much redundant computation.

PSE uses the dominance between subproblems to reduce redundant computation; if a subproblem

A dominates a subproblem B, a single machine algorithm for the subproblem A also computes all

matches of the subproblem B. We note that, in a group, every subproblem is dominated by the

subproblem with the largest number of colors in the group. In order to solve all subproblems in a

group, PSE executes a single-machine algorithm only once on the edge-sets for the subproblem

with the largest number of colors in the group. PSE �lters matches that are not of the group’s

subproblems to prevent duplicate output.

�e pseudo code of PSE is listed in Algorithm 5. PSE consists of a single map function. �e input

parameters of the map function are a subproblem group д and the query graph q. Let Cд be the

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:20
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Algorithm 5: Subgraph Enumeration (PSE)

/* ψ is a meaningless dummy key */

/* д is a subproblem group */

/* q is the query graph */

Map : input 〈ψ ;д〉, q = (Vq ,Eq)
1 initialize E ′

2 Cд ← {cp = color set of p | p ∈ д}

3 c ←
⋃

cp ∈Cд cp
4 Let |c | be the number of colors in c

5 if |c | = |Vq | then
6 foreach (i, j) ∈ c2 such that i < j do
7 read Ei j
8 E ′← E ′ ∪ Ei j

9 else
10 foreach (i, j) ∈ c2 such that i ≤ j do
11 read Ei j
12 E ′← E ′ ∪ Ei j

13 S ← enumerateSubgraphs(E ′, q)
14 foreach s ∈ S do
15 Let cs be the color set of s

16 if cs ∈ Cд then
17 enum(s)

set of the subproblems’ color sets (line 2), and c be the union of the color sets in Cд (line 3). PSE
reads several edge sets for solving the subproblems from a distributed storage (lines 5-12); PSE

reads every edge set Ei j such that (i, j) ∈ c2 and i ≤ j , but if the number |c | of colors in c equals the
number |Vq | of vertices in the query graph, PSE does not read edge sets that consist of only a single

vertex color. �en, from the union E ′ of the edge sets, PSE �nds all subgraphs that match the query

graph q (line 13). Among the subgraphs found, PSE enumerates only the subgraphs whose color

set is in Cд , for correctness (lines 14-17). Note that, since this �ltering is performed as a pipelined

task in distributed systems, the set S of subgraphs does not remain in the memory all at once.

4.6 Implementation
In this section, we discuss practical implementation issues of PTE and PSE. We focus on the most

famous distributed computing frameworks, Hadoop and Spark. Note that PTE and PSE can be

implemented for any distributed framework which supports map and reduce functionalities.

PTE on Hadoop. We describe how to implement PTE on Hadoop which is the de facto standard of

the MapReduce framework. �e graph partitioning method (Algorithm 1) of PTE is implemented as

a single MapReduce round. �e result of the graph partitioning method has a custom output format

that stores each edge set as a separate �le in Hadoop Distributed File System (HDFS); and thus each

edge set is accessible by the path of the �le. Each edge set E?i j is stored in an adjacency list format

where the source vertex color is i and the destination vertex color is j so that for a vertex u of the

color i , we can directly access its neighbors v such that u ≺ v . �e triangle enumeration method

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:21

(Algorithm 2 or 3) of PTE is implemented as a single map step where each map task processes

an (i, j) or (i, j,k) subproblem. For this purpose, we generate a text �le where each line is (i, j) or
(i, j,k), and make each map task read a line and solve the subproblem.

PSE on Hadoop. From an algorithmic point of view, the graph partitioning of PSE is identical to

that of PTE. However, we implement the graph partitioning of PSE slightly di�erently to improve the

performance. While we only need to access succeeding (�) neighbors of each vertex to enumerate

triangles using PTE, we should access preceding (≺) neighbors as well as succeeding neighbors

to enumerate subgraphs that match an arbitrary query graph. �is is due to the requirement of

VF2, the single machine algorithm used in PSE, which visits all neighbors of each vertex. �erefore,

creating adjacency lists to directly access all neighbors of each vertex improves the performance.

In the map function of the graph partitioning of PTE (Algorithm 1), each edge is emi�ed only once

with its color, i.e., 〈(ξ (u), ξ (v)); (u,v)〉. For PSE, we emit each edge one more time in the opposite

direction, i.e., 〈(ξ (v), ξ (u)); (v,u)〉, so that each vertex can access both succeeding and preceding

neighbors. Each reduce function with key (i, j) receives edge set Ei j if i ≤ j or Eji if i > j , and stores
it in the format of a directed adjacency list Ai j or Aji , respectively, where all j-color neighbors of
each i-color vertex are directly accessible in Ai j . �e subgraph enumeration method (Algorithm 5)

is implemented as a single map step where each map task processes a subproblem group. For this

purpose, we generate a seed �le which contains a list of subproblem groups. Each map task reads

and solves a subproblem group.

PTE and PSE on Spark. We describe how to implement PTE and PSE on Spark, which is another

popular distributed computing framework. �e reduce operation of the graph partitioning method

(Algorithm 1) is replaced by a pair of partitionBy and foreachPartition operations of general Resilient
Distributed Dataset (RDD). �e partitionBy operation uses a custom partitioner that partitions

edges according to their vertex colors. For each partition, the foreachPartition operation stores an

edge set as an adjacency list into HDFS. We generate a new RDD where each element is a pair of a

key of a subproblem group and the list of the subproblems. �e new RDD is specially partitioned

so that each partition is in charge of a subproblem group.

5 EXPERIMENTS
In this section, we experimentally evaluate our algorithms and compare them to recent single

machine and distributed algorithms. We aim to answer the following questions.

Q1 How much do the three methods of PTE contribute to the performance improvement? (Sec-

tion 5.2.1)

Q2 What is the performance of PSE? (Section 5.2.2)

Q3 What about the machine scalability of PTE and PSE? (Section 5.2.3)

Q4 How does the performance of PTE and PSE change depending on the underlying distributed

framework (MapReduce or Spark)? (Section 5.2.4)

5.1 Setup
5.1.1 Datasets. We use real world datasets to evaluate the proposed algorithms. �e datasets are

summarized in Table 2. Ski�er is an Internet topology graph. Youtube, LiveJournal, Orkut, Twi�er
and Friendster are friendship networks of online social services of the same names, respectively.

SubDomain is a hyperlink network among domains where an edge exists if there is at least one

hyperlink between two subdomains. YahooWeb, ClueWeb09, and ClueWeb12 are page level hyperlink
networks on the Web. Each dataset is preprocessed to be a simple graph. We reorder the vertices in

each edge (u,v) to be u ≺ v using an algorithm in [Cohen 2009]. �ese tasks are done in O(E).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:22
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Table 2. A summary of datasets.

Dataset (Abbreviation) Vertices Edges

Ski�er (SK)
5

1.7M 11M

Youtube (YT)
6

3.2M 12M

LiveJournal (LJ)
5

4.8M 43M

Orkut (OK)
5

3.1M 117M

Twi�er (TWT)
7

42M 1.2B

Friendster (FS)
5

66M 1.8B

SubDomain (SD)
8

101M 1.9B

YahooWeb (YW)
9

1.4B 6.4B

ClueWeb09 (CW09)
10

4.8B 7.9B

ClueWeb12 (CW12)
11

6.3B 72B

5.1.2 �ery Graphs. �e �ve query graphs in Figure 6 are used in the experiments. �e query

graphs are a triangle, a square, a square with a diagonal edge, and two cliques with four and �ve

vertices, respectively. We name the query graphs as tri, sqr, sqr-dgn, clq4, and clq5, respectively.
�e number of subgraphs matching each query graph in each dataset is listed in Table 5. A dash

mark (-) means that the number is not known.

(a) tri (b) sqr (c) sqr-dgn (d) clq4 (e) clq5

Fig. 6. �ery graphs.

5.1.3 Experimental Environment. We implement PTE and PSE on Hadoop (open source version

of MapReduce) and Spark. Results described in Sections 5.2.1, 5.2.2 and 5.2.3 are from Hadoop

implementations; we also describe the Spark results in Section 5.2.4. We compare PTEs and PSE

to previous triangle and subgraph enumeration algorithms: CTTP [Park et al. 2014], MGT [Hu

et al. 2013], TwinTwig [Lai et al. 2015], and the triangle counting implementations on GraphLab

and GraphX. CTTP is the state of the art MapReduce algorithm. MGT is an I/O e�cient external

memory algorithm. GraphX is a graph processing API on Spark, a distributed computing framework.

GraphLab is another distributed graph processing framework using MPI. TwinTwig is the state

of the art MapReduce algorithm for subgraph enumeration. PSE is compared only to TwinTwig

because other systems above do not support enumeration of graph pa�erns other than a triangle.

�e algorithms are summarized in Table 3.

5
h�p://snap.stanford.edu

6
h�p://konect.uni-koblenz.de

7
h�p://an.kaist.ac.kr/traces/WWW2010.html

8
h�p://webdatacommons.org/hyperlinkgraph

9
h�p://webscope.sandbox.yahoo.com

10
h�p://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Web+Graph

11
h�p://www.lemurproject.org/clueweb12/webgraph.php

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

http://snap.stanford.edu
http://konect.uni-koblenz.de
http://an.kaist.ac.kr/traces/WWW2010.html
http://webdatacommons.org/hyperlinkgraph
http://webscope.sandbox.yahoo.com
http://boston.lti.cs.cmu.edu/clueweb09/wiki/tiki-index.php?page=Web+Graph
http://www.lemurproject.org/clueweb12/webgraph.php

Enumerating Trillion Subgraphs On Distributed Systems 39:23

Table 3. A summary of algorithms.

Problem Triangle Enumeration Subgraph Enumeration

Algorithm PTE CTTP MGT GraphLab GraphX PSE TwinTwig

Property Proposed MapReduce

External

memory

Distributed

memory

Distributed

memory

Proposed MapReduce

Table 4. Cluster specification.

Hardware So�ware

Machines 20 Hadoop v2.7.3

Spark v1.5.2

GraphLab-PowerGraph v2.2

MPICH v3.2

CPU

Intel Xeon E5-2620v3

(hexa-core at 2.4GHz)

RAM 32GB

Table 5. The number of subgraphs that match each query in each dataset. A dash mark (-) means that the
number is not known.

Dataset tri clq4 sqr-dgn sqr clq5

SK 28 769 868 148 834 439 20 522 838 735 62 769 198 018 1 183 885 507

YT 12 323 043 29 933 904 3 547 559 854 9 915 671 458 72 636 705

LJ 285 730 264 9 933 532 019 76 354 588 342 51 520 572 777 467 429 836 174

OK 627 584 181 3 221 946 137 67 098 889 426 127 533 170 575 15 766 607 860

TWT 34 824 916 864 6 622 234 180 319 - - -

FS 4 173 724 142 8 963 503 263 185 191 258 870 465 803 364 346 21 710 817 218

SD 417 761 664 336 265 912 212 739 162 - - -

YW 85 782 928 684 5 364 285 380 859 - - -

CW09 31 013 037 486 - - - -

CW12 3 058 034 046 618 - - - -

In order to solve subproblems in each machine, PSE uses the VF2 [Cordella et al. 2004] algorithm

with a �ltering process described in Section 4.5. We note that the performance of PSE can be further

improved by using a recent single-machine subgraph enumeration algorithm like DUALSIM [Kim

et al. 2016] which supports only Windows and thus cannot easily be used together with Spark and

Hadoop environments.

All experiments were conducted on a cluster with 20 machines where each machine is equipped

with an Intel Xeon E5-2620v3 CPU (hexa-core at 2.4GHz) and 32GB RAM. �e cluster runs on

Hadoop v2.7.3, and consists of 20 worker nodes, one of which serves as a driver node also. �e

memory size for each worker (a mapper or a reducer) is set to 7GB. Spark v1.5.2 is also installed at

the cluster and runs on Hadoop YARN. We operate GraphLab PowerGraph v2.2 on MPICh v3.2 at

the same cluster servers. �e cluster speci�cation is summarized in Table 4.

5.2 Experimental Results
In this section, we present experimental results to answer the questions listed at the beginning of

Section 5.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:24
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

5.2.1 E�ect of PTE’s Three Ideas.

E�ect of pre-partitioning. We compare PTE and PSE to TwinTwig and CTTP in terms of the

amount of shu�ed data for triangle enumeration to show the e�ect of pre-partitioning (Section 4.1).

Figure 7(a) shows the results on ClueWeb12 with various numbers of edges. It shows that PTE and

PSE shu�e far fewer data than CTTP or TwinTwig, and the di�erence gets larger as the data size

increases; as the number of edges varies from 0.28 billion to 36 billion, the di�erence between PTE

and CTTP increases from 20× to 70×. �e slopes for PTE, PSE, TT and CTTP are 1.00, 1.00, 1,32

and 1.47, respectively. �ey re�ect the claimed complexity of shu�ed data size, O(|E |) of PTE and

O(|E |1.5/
√
M) of CTTP. PSE shu�es twice as much data as PTE does as the map function of PSE

emits every edge twice as described in Section 5.1.3. TwinTwig fails to process graphs with more

than 4.5 billion edges because of an out of memory error. Figure 7(b) shows the results on real

world graphs; PTE shu�es far fewer data by up to 68× than CTTP does.

E�ect of color-direction. To show the e�ect of color-direction (Section 4.2), we count the number

of all operations in intersecting two neighbor sets (line 13 in Algorithm 3) in Table 6. PTECD reduces

the number of comparisons by up to 6.85× from PTEBASE by the color-direction.

E�ect of scheduling computation. We also show the e�ect of scheduling calls of the function

enumerateTrianglesCD (Section 4.3) by comparing the amount of data read via a network by PTECD

and PTESC in Table 7. As expected, for every dataset, the ratio (
PT E

CD

PT E
SC

) is about 1.10 ≈
√
6/5.

Running time comparison. We now compare the running time of PTEs, PSE, and competitors

(CTTP, MGT, GraphLab, GraphX, TwinTwig (TT)) in Figure 8. PTESC shows the best performance

and PTECD follows it very closely. GraphX does not appear because it fails even with the smallest

dataset with 280 million edges because of out-of-memory error. CTTP fails to run within 2 days

when edges are more than 9 billion. GraphLab, MGT and TwinTwig also fail when the number of

edges is larger than 600 million, 1.2 billion and 5 billion, respectively, because of out-of-memory or

out-of-range error. �e out-of-range error occurs when a vertex id exceeds the range of 32-bit

integer limit. Note that, even when MGT can treat vertex ids exceeding the integer range, the

100

101

102

103

104

105

10-1 100 101 102

slo
pe=1.45

slope=1.00

o.o.m.

S
h
u
ffl

e
d
 D

a
ta

 (
G

B
y
te

s)

Number of edges (×109)

PSE
CTTP

PTE
TT

70x

20x

(a) ClueWeb12with various numbers of edges

101

102

103

104

105

TWT SD YW CW
09

CW
12

S
h
u
ffl

e
d
 D

a
ta

 (
G

B
y
te

s)

.

PTE
PSE

TT
CTTP

26x
33x

64x
68x

(b) Real world graphs

Fig. 7. The shu�led data size of PTE, PSE, TwinTwig (TT) and CTTP (a) on ClueWeb12 with various numbers
of edges, and (b) on real world graphs. PTE shu�les up to 70 times fewer data than CTTP does on ClueWeb12;
the gap grows when the data size increases. On real world graphs, PTE shu�les up to 68 times fewer data
than CTTP on ClueWeb09 does.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:25

Table 6. The number of operations by PTECD and PTEBASE on various graphs. PTECD decreases the number
of operations by up to 6.85× from PTEBASE.

Dataset PTEBASE PTECD

PTEBASE

PTECD

CW12/256 1.5 × 108 2.1 × 107 6.85

CW12/128 6.2 × 108 1.0 × 108 6.22

CW12/64 2.7 × 109 4.6 × 108 5.83

CW12/32 1.2 × 1010 2.2 × 109 5.10

CW12/16 4.9 × 1010 1.1 × 1010 4.44

CW12/8 2.1 × 1011 5.4 × 1010 3.90

CW12/4 8.9 × 1011 2.6 × 1011 3.47

CW12/2 3.7 × 1012 1.2 × 1012 3.18

CW12 1.6 × 1013 4.9 × 1012 3.14

TWT 1.1 × 1012 5.4 × 1011 2.03

SD 8.3 × 1012 4.0 × 1012 2.06

YW 7.4 × 1011 2.9 × 1011 2.55

CW09 2.7 × 1011 6.9 × 1010 3.94

Table 7. The amount of data read via a network on various graphs. The ratio (PTECDPTESC
) is about 1.10 ≈

√
6/5 for

all datasets, as expected. When the dataset is small, PTESC and PTECD require the same amount of network
read, i.e., the ratio is 1, since they use the same number of vertex colors.

Dataset PTECD PTESC

PTECD

PTESC

CW12/256 13.1GB 13.1GB 1.00

CW12/128 24.8GB 24.8GB 1.00

CW12/64 46.6GB 46.6GB 1.00

CW12/32 89.9GB 89.9GB 1.00

CW12/16 222TB 197GB 1.13

CW12/8 679TB 576GB 1.18

CW12/4 1.9TB 1.7TB 1.12

CW12/2 5.4TB 4.9TB 1.10

CW12 15.6TB 14.2TB 1.10

TWT 39.5GB 39.5GB 1.00

SD 61.0GB 61.0GB 1.00

YW 303GB 298GB 1.09

CW09 798GB 704GB 1.13

performance of MGT would worsen as the graph size increases since MGT performs massive I/O

(O(|E |2/M)) when the input data size is large. �e slope 1.48 of the PTEs re�ects that the total work

of them is O(|E |3/2) as proved in �eorem 4.5.

Figure 9 shows the running time of various algorithms on real world datasets. PTESC shows the

best performances outperforming CTTP and MGT by up to 79 times and 8 times, respectively. Only

the proposed algorithms succeed in processing ClueWeb12 with 6.3 billion vertices and 72 billion

edges while all other algorithms fail to process the graph.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:26
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

102

103

104

105

 1 10 100

slope=1.48

timeout (>48h)

o.o.m.

o.o.m.

out of range

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of edges (×109)

TT
CTTP

PSE
PTEBASE

PTECD
PTESC

GraphLab
MGT

Fig. 8. The running time on ClueWeb12 with various numbers of edges. o.o.m.: out-of-memory. PTESC shows
the best data scalability; only PTEs and PSE succeed in processing the subgraphs containing more than 9
billion edges. The pre-partitioning (CTTP vs PTEBASE) significantly reduces the running time while the e�ect
of the scheduling function (PTECD vs PTESC) is relatively insignificant.

100

101

102

103

104

TWT SD YW CW09 CW12

R
un

ni
ng

 ti
m

e
(m

)

PTESC
PTECD

PTEBASE
PSE

CTTP
MGT

TT

40x

8x

79x

Fig. 9. The running time of proposed methods (PTESC, PTECD, PTEBASE, and PSE) and competitors (CTTP,
MGT, GraphLab, and TwinTwig (TT)) on real world datasets (log scale). GraphX is not shown since it failed
to process any of the datasets. Missing methods for some datasets mean they failed to run on the datasets.
PTESC shows the best performances outperforming CTTP andMGT by up to 79 times and 8 times, respectively.
Only the proposed algorithms succeed in processing the ClueWeb12 graph containing 6.3 billion vertices and
72 billion edges.

5.2.2 Varying �eries. For each query in Figure 6, we compare the running time of PSE and

TwinTwig, the state of the art MapReduce algorithm for subgraph enumeration; the results are

shown in Figure 10. Four graphs are used: Ski�er (SK), Youtube (YT), LiveJournal (LJ), and Orkut

(OK). Other graphs with many vertices and edges are not displayed here because TwinTwig failed to

process them. In all cases, PSE overwhelms TwinTwig; PSE shows about 47 times faster performance

when enumerating the query graph clq5 in the data graph LJ. �e performance gap of the two

algorithms is relatively insigni�cant for the query graph sqr compared to the other query graphs.

Note that the pruning technique of the single machine algorithm used in PSE is relatively not

e�ective for the query sqr, compared to other queries. �e single machine algorithm exploits the

partial order of a query graph to prune computations. It indicates that the more partial orders of

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:27

 0.1

 1

 10

 100

 1000

SK YT LJ OK

R
un

ni
ng

 ti
m

e
(m

) PSE
TT

(a) sqr

 0.1

 1

 10

 100

SK YT LJ OK

R
un

ni
ng

 ti
m

e
(m

) PSE
TT

(b) sqr-dgn

 0.1

 1

 10

 100

 1000

SK YT LJ OK

R
un

ni
ng

 ti
m

e
(m

) PSE
TT

(c) clq4

 0.1

 1

 10

 100

 1000

SK YT LJ OK

R
un

ni
ng

 ti
m

e
(m

) PSE
TT

(d) clq5

Fig. 10. The running time of PSE and TwinTwig (TT) for 4 queries: sqr, sqr-dgn, clq4, and clq5. Four graphs
are used: Ski�er (SK), Youtube (YT), LiveJournal (LJ), and Orkut. PSE shows be�er performance than TT for
all queries, up to 47 times. TT failed to enumerate sqr-dgn pa�ern in YT, LJ and OK datasets, and clq5 in LJ
dataset because of out-of-memory error.

a query graph are, the more the single machine algorithm prunes computations. However, the

query sqr has relatively fewer partial orders than other queries do; thus, PSE using the single

machine algorithm takes more time when the query is sqr, compared to other queries. Meanwhile,

enumerating sqr is easier than in other query graphs for TwinTwig since TwinTwig caches 2-length

paths of the input graph as intermediate data and �nds subgraphs matching the desired query

while sqr subgraphs can be found by joining 2-length paths only once. Nevertheless, PSE shows

be�er performance than TwinTwig even for the query sqr because TwinTwig generates a large

amount of intermediate data as much as the number of 2-length paths in an input graph while PSE

generates intermediate data only as much as the number of edges in the input graph.

Figure 11 shows the running time of PSE on various datasets. �e number of found subgraphs

in each graph is listed in Table 5. All the queries in Figure 6 are used. �e result shows that the

running time tends to be proportional to the number of found subgraphs.

5.2.3 Machine Scalability. We evaluate the machine scalability of PTEs and PSE by measuring

the running time of them and competitors varying the number of machines from 5 to 20. Figure 12

shows the running time of PTEs, PSE, CTTP, and TwinTwig (TT) for triangle enumeration on

YahooWeb (YW), and subgraph enumeration with the clq4 graph query on LiveJournal (LJ). Note

that GraphX, GraphLab and TT are omi�ed in �gure 12(a) because they fail to process YW on

our cluster. Every version of PTEs and PSE shows strong scalability: the slopes -0.86 of the PTEs

and -0.92 of PSE are very close to the ideal value -1. It means that the running time decreases

2
0.86 = 1.82 and 2

0.92 = 1.89 times, respectively, as the number of machines is doubled.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:28
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

10-1

100

101

102

103

104

SK YT LJ OK TWT FS SD YW

R
un

ni
ng

 ti
m

e
(m

)

tri
clq4
sqr-dgn
sqr
clq5

Fig. 11. The running time of PSE on various datasets. The running time tends to be proportional to the
number of found subgraphs.

101

102

103

104

105

 5 10 20

slope= -0.86R
un

ni
ng

 ti
m

e
(m

)

Number of machines

PTESC
PTECD
PTEBASE

CTTP
PSE

(a) tri, YW

100

101

102

 5 10 20

slope= -0.82

slope= -0.92

R
un

ni
ng

 ti
m

e
(m

)

Number of machines

PSE TT

(b) clq4, LJ

Fig. 12. Machine scalability of PTEs, PSE, CTTP, and TwinTwig (TT) for (a) triangle enumeration on YahooWeb
(YW) and (b) subgraph enumeration with clq4 graph pa�ern on LiveJournal (LJ). In (a), GraphLab, GraphX
and TT are excluded because they failed to process YW. PTEs and PSE show strong scalability with exponents
-0.86 and -0.92 in triangle enumeration and subgraph enumeration, respectively.

5.2.4 PTE and PSE on Spark. We implement PTESC and PSE on Spark as well as on Hadoop to

show that PTE and PSE are general enough to be implemented in any distributed system supporting

the map and reduce functionality. We compare the running time of implementations on Hadoop

and Spark in Figure 13. �e result indicates that Spark implementations do not show a be�er

performance than Hadoop implementations even though Spark implementations are able to use

a distributed memory as well as disks. �is is because the RDD for the pre-partitioned edge sets

cannot remain in distributed memory; Spark drives the RDD from distributed memory to distributed

disks to free up memory for PTE and PSE to solve subproblems. PTE and PSE require a large

amount of memory to solve subproblems, and thus, they consume memory as much as possible.

In other words, PTE and PSE for Spark hardly exploit the distributed memory, like the Hadoop

versions.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:29

100

101

102

103

TWT SD YW CW09 CW12

R
un

ni
ng

 ti
m

e
(m

) PTESC (Hadoop)
PTESC (Spark)

(a) PTESC on Hadoop and Spark.

10-1

100

101

102

103

SK YT LJ OK FS TWT YW

R
un

ni
ng

 ti
m

e
(m

) PSE (Hadoop)
PSE (Spark)

(b) PSE on Hadoop and Spark. �ery clq4 is used.

Fig. 13. The running time of PTESC and PSE onHadoop and Spark. The running times do not di�er significantly
depending on underlying systems.

6 CONCLUSION
In this paper, we propose PTE, a scalable distributed algorithm for enumerating triangles in very

large graphs, and generalize PTE to PSE for enumerating subgraphs that match an arbitrary query

graph. We carefully design PTE and PSE so that they minimize the amount of shu�ed data,

total work, and network read. PTE and PSE show the best performances in real world data: they

outperform the state-of-the-art scalable distributed algorithms by up to 79 times and 47 times,

respectively. PTE is the only algorithm that successfully enumerates more than 3 trillion triangles

in ClueWeb12 graph with 72 billion edges while all other algorithms including GraphLab, GraphX,

MGT, and CTTP fail. Moreover, PSE succeeds in enumerating 265 trillion clique graph with 4

vertices in a subdomain hyperlink network with 1.9 billion edges while the state of the art distributed

subgraph enumeration algorithm TwinTwig fails on the data.

REFERENCES
Foto N. Afrati, Dimitris Fotakis, and Je�rey D. Ullman. 2013. Enumerating subgraph instances using map-reduce. In ICDE.

62–73.

Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013. PATRIC: A Parallel Algorithm for Counting Triangles in

Massive Networks. In CIKM.

Claude Barthels, Gustavo Alonso, Torsten Hoe�er, Timo Schneider, and Ingo Müller. 2017. Distributed Join Algorithms on

�ousands of Cores. PVLDB 10, 5 (2017), 517–528.

Luca Becche�i, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. E�cient algorithms for large-scale local triangle

counting. TKDD (2010).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

39:30
Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon Myaeng, and U

Kang

Jonathan W Berry, Bruce Hendrickson, Randall A LaViole�e, and Cynthia A Phillips. 2011. Tolerating the Community

Detection Resolution Limit with Edge Weighting. Phys. Rev. E 83, 5 (2011), 056119.

Bin-Hui Chou and Einoshin Suzuki. 2010. Discovering Community-Oriented Roles of Nodes in a Social Network. In DaWaK.
52–64.

Jonathan Cohen. 2009. Graph Twiddling in a MapReduce World. CiSE 11, 4 (2009), 29–41.

Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (Sub)Graph Isomorphism Algorithm for

Matching Large Graphs. IEEE Trans. Pa�ern Anal. Mach. Intell. 26, 10 (2004), 1367–1372.
Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data Processing on Large Clusters. In OSDI. 137–150.
Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of Co-links Uncovers Hidden �ematic Layers in the World Wide

Web. PNAS 99, 9 (2002), 5825–5829.
Ilias Giechaskiel, George Panagopoulos, and Eiko Yoneki. 2015. PDTL: Parallel and Distributed Triangle Listing for Massive

Graphs. In ICPP.
Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed

Graph-Parallel Computation on Natural Graphs. In OSDI. 17–30.
Enrico Gregori, Luciano Lenzini, and Simone Mainardi. 2013. Parallel k-Clique Community Detection on Large-Scale

Networks. IEEE Trans. Parallel Distrib. Syst. 24, 8 (2013), 1651–1660.
Joshua A. Grochow and Manolis Kellis. 2007. Network Motif Discovery Using Subgraph Enumeration and Symmetry-

Breaking. In RECOMB. 92–106.
Herodotos Herodotou. 2011. Hadoop performance models. arXiv (2011).

Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive Graph Triangulation. In SIGMOD. 325–336.
ByungSoo Jeon, Inah Jeon, Lee Sael, and U Kang. 2016a. SCouT: Scalable Coupled Matrix-Tensor Factorization - Algorithm

and Discoveries. In ICDE.
Inah Jeon, Evangelos E. Papalexakis, Christos Faloutsos, Lee Sael, and U. Kang. 2016b. Mining billion-scale tensors:

algorithms and discoveries. VLDB J. 25, 4 (2016), 519–544.
Sanjay Ram Kairam, Dan J. Wang, and Jure Leskovec. 2012. �e life and death of online groups: predicting group growth

and longevity. InWSDM. 673–682.

U Kang, Jay-Yoon Lee, Danai Koutra, and Christos Faloutsos. 2014a. Net-Ray: Visualizing and Mining Billion-Scale Graphs.

In PAKDD.
U Kang, BrendanMeeder, Evangelos E. Papalexakis, and Christos Faloutsos. 2014b. HEigen: Spectral Analysis for Billion-Scale

Graphs. TKDE (2014), 350–362.

U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012a. GigaTensor: scaling tensor analysis up

by 100 times - algorithms and discoveries. In KDD. 316–324.
U Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. 2012b. GBASE: an e�cient analysis platform

for large graphs. VLDB J. 21, 5 (2012), 637–650.
U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2011. PEGASUS: mining peta-scale graphs. Knowl. Inf. Syst.

27, 2 (2011), 303–325.

U Kang, Charalampos E. Tsourakakis, and Faloutsos Faloutsos. 2009. PEGASUS: A Peta-Scale Graph Mining System -

Implementation and Observations. ICDM (2009).

Hyeonji Kim, Juneyoung Lee, Sourav S. Bhowmick, Wook-Shin Han, Jeong-Hoon Lee, Seongyun Ko, and Moath H. A. Jarrah.

2016. DUALSIM: Parallel Subgraph Enumeration in a Massive Graph on a Single Machine. In SIGMOD. 1231–1245.
Jinha Kim, Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, and Hwanjo Yu. 2014. OPT: A New Framework for Overlapped

and Parallel Triangulation in Large-scale Graphs. In SIGMOD. 637–648.
Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. 2015. Scalable Subgraph Enumeration in MapReduce. PVLDB 8, 10

(2015), 974–985.

Ma�hieu Latapy. 2008. Main-memory triangle computations for very large (sparse (power-law)) graphs. �eor. Comput. Sci.
(2008), 458–473.

Rasmus Pagh and Francesco Silvestri. 2014. �e Input/Output Complexity of Triangle Enumeration. In PODS. 224–233.
Ha-Myung Park, Sung-Hyon Myaeng, and U. Kang. 2016b. PTE: Enumerating Trillion Triangles On Distributed Systems. In

KDD. 1115–1124.
Ha-Myung Park, Namyong Park, Sung-Hyon Myaeng, and U. Kang. 2016. Partition Aware Connected Component Computa-

tion in Distributed Systems. In IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-15, 2016,
Barcelona, Spain. 420–429.

Ha-Myung Park and Chin-Wan Chung. 2013. An E�cient MapReduce Algorithm for Counting Triangles in a Very Large

Graph. In CIKM. 539–548.

Ha-Myung Park, Chiwan Park, and U Kang. 2018. PegasusN: A Scalable and Versatile Graph Mining System. In AAAI.
Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. 2014. MapReduce Triangle Enumeration With Guarantees.

In CIKM. 1739–1748.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

Enumerating Trillion Subgraphs On Distributed Systems 39:31

Namyong Park, ByungSoo Jeon, Jungwoo Lee, and U. Kang. 2016a. BIGtensor: Mining Billion-Scale Tensor Made Easy. In

Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis,
IN, USA, October 24-28, 2016. 2457–2460.

Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. 2017. ESCAPE: E�ciently Counting All 5-Vertex Subgraphs. InWWW.

1431–1440.

Todd Plantenga. 2013. Inexact subgraph isomorphism in MapReduce. J. Parallel Distrib. Comput. 73, 2 (2013), 164–175.
Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vi�orio Loreto, and Domenico Parisi. 2004. De�ning and identifying

communities in networks. PNAS 101, 9 (2004), 2658–2663.
Lee Sael, Inah Jeon, and U Kang. 2015. Scalable Tensor Mining. Big Data Research 2, 2 (2015), 82 – 86. h�ps://doi.org/10.

1016/j.bdr.2015.01.004 Visions on Big Data.

�omas Schank. 2007. Algorithmic aspects of triangle-based network analysis. Phd thesis, University Karlsruhe (2007).
Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel subgraph listing in a large-scale graph. In

SIGMOD. 625–636.
Kijung Shin, Lee Sael, and U. Kang. 2017. Fully Scalable Methods for Distributed Tensor Factorization. IEEE Trans. Knowl.

Data Eng. 29, 1 (2017), 100–113.
Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. 2012. E�cient Subgraph Matching on Billion Node

Graphs. PVLDB 5, 9 (2012), 788–799.

Siddharth Suri and Sergei Vassilvitskii. 2011. Counting Triangles and the Curse of the Last Reducer. In WWW. 607–614.

Mark N. Wegman and Larry Carter. 1981. New Hash Functions and �eir Use in Authentication and Set Equality. J. Comput.
Syst. Sci. 22, 3 (1981), 265–279.

Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai. 2014. Uncovering Social Network Sybils in

the Wild. TKDD (2014).

Received February 2017; revised March 2017; accepted ..

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39. Publication date: March 2017.

https://doi.org/10.1016/j.bdr.2015.01.004
https://doi.org/10.1016/j.bdr.2015.01.004

	Abstract
	1 Introduction
	2 Related Work
	2.1 I/O Efficient Triangle Algorithms
	2.2 Distributed-Memory Triangle Algorithms
	2.3 MapReduce
	2.4 MapReduce Triangle Algorithms
	2.5 VF2: A Single Machine Subgraph Enumeration Algorithm
	2.6 Distributed Subgraph Enumeration Algorithms

	3 Preliminaries
	3.1 Problem Definition
	3.2 Triangle Enumeration in TTP and CTTP

	4 Proposed Method
	4.1 PTEBASE: Pre-partitioned Triangle Enumeration
	4.2 PTECD: Reducing the Total Work
	4.3 PTESC: Reducing the Network Read
	4.4 Analysis
	4.5 Generalization for Enumerating Arbitrary Graph Patterns
	4.6 Implementation

	5 Experiments
	5.1 Setup
	5.2 Experimental Results

	6 Conclusion
	References

