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Abstract

Research has been devoted in recent years to relevance feedback as an effective solution to improve performance of image sim-
ilarity search. However, few methods using the relevance feedback are currently available to perform relatively complex queries on
large image databases. In the case of complex image queries, images with relevant concepts are often scattered across several visual
regions in the feature space. This leads to adapting multiple regions to represent a query in the feature space. Therefore, it is nec-
essary to handle disjunctive queries in the feature space.
In this paper, we propose a new adaptive classification and cluster-merging method to find multiple regions and their arbitrary

shapes of a complex image query. Our method achieves the same high retrieval quality regardless of the shapes of query regions since
the measures used in our method are invariant under linear transformations. Extensive experiments show that the result of our
method converges to the user�s true information need fast, and the retrieval quality of our method is about 22% in recall and
20% in precision better than that of the query expansion approach, and about 35% in recall and about 31% in precision better than
that of the query point movement approach, in MARS.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The relevance feedback based approach to content-
based image retrieval (CBIR) has been an active re-
search areas in the past few years. A good survey can
be found in (Ishikawa et al., 1998; Rui et al., 1998;
Rui et al., 1999). Most existing CBIR systems represent
images as feature vectors using visual features, such as
color, texture and shape. That is, the closer two vectors
are, the more similar the corresponding images are.
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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They search images via a query-by-example (QBE) inter-
face. When the systems present a set of images consid-
ered to be similar to a given query, the user can pick
up the ones most relevant to the given query, and the
system refines the query using them, which allows the
relevant images be the ones picked up by the user. Rel-
evance feedback based CBIR techniques do not require
a user to provide accurate initial queries, but rather esti-
mate the user�s ideal query by using relevant images
feedback by the user.
Current approaches to CBIR assume that relevant

images are physically near the query image in some fea-
ture space regardless of visual features. However, the
similarity between images perceived by humans does
not necessarily correlate with the distance between them
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in the feature space. That is, semantically relevant
images might be spread out in the feature space and
be scattered in several clusters rather than one. In this
case, traditional relevant feedback approaches (Flickner
et al., 1995; Ishikawa et al., 1998; Rui et al., 1997; Roc-
chio, 1971) do not work well when shifting the query
center by linear combination of the relevant images.
Implementing the relevance feedback concerns the

computation of a new query point (or points) in a fea-
ture space and the change of a distance function. As
shown in Fig. 1(a), early studies (Ishikawa et al., 1998;
Rui et al., 1997) represent a new query as a single point
and change the weights of feature components to find an
optimal query point and an optimal distance function.
In this case, a single point is computed using the
weighted average of all relevant images in the feature
space. The contours represent equi-similarity lines.
Meanwhile, a recent study (Porkaew and Chakrabarti,
1999) represents a new query as multiple points to deter-
mine the shape of the contour as shown in Fig. 1(b).
This approach uses a clustering method (Charikar
et al., 1997) to compute new query points using query re-
sults (relevant images) based on the user�s relevance
judgement. It is assumed that the relevant images are
mapped to points close together according to the simi-
larity measure. A single large contour is constructed to
cover all query points and the system finds images sim-
ilar to them. However, if the feature space and the dis-
tance function for the user�s perception are quite
different from those for the system, the relevant images
are mapped to disjoint regions of arbitrary shapes in
the feature space. That is, the relevant images may be
ranked below other retrieved images for the given query.
In order to converge rapidly to the user�s information
need at the higher semantic level, the system should find
the images similar to any of the query points as in Fig.
1(c). A query that retrieves the images similar to any
of the query points is called a disjunctive query. Espe-
cially, a complex image query is represented as disjoint
multiple regions since semantically related images can
be scattered in several visual regions rather than one.
In this paper, we propose a new adaptive classifica-

tion and cluster-merging method (Qcluster: query clus-
tering) to find multiple regions and their arbitrary
× × ×
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× initial query point
next query point
positive example

Fig. 1. Query shape. (a) Query point movement (b) Convex shape
(multipoint) and (c) Concave shape (multipoint).
shapes of contours for a given complex image query.
Also we propose an approach to the relevance feedback
using multiple query points to support disjunctive
queries.
Fig. 2 shows the proposed relevance feedback mech-

anism. At the first stage, an example image submitted by
the user is parsed to generate an initial query
Q = (q,d,k), where q is a query point in the feature
space, k is the number of images in the query result re-
turned by the system, and d is the distance function.
The query point q is compared with images in the data-
base using the distance function d. According to d, the
result set consisting of k images close to q,
Result(Q) = {p1, . . ., pk}, is returned to the user.
At the next stage, the user evaluates the relevance of

images in Result(Q) by assigning a relevance score to
each of them. Based on those scores, the relevant set,
RelevantðQÞ ¼ fp01; . . . ; p0mg, is obtained. In this paper,
we present a new adaptive clustering method consisting
of two processes: the classifying process and the cluster-
merging process. The proposed classifying process
places each element of the relevant set, Relevant(Q), in
one of the current clusters or a new cluster. Then, the
proposed cluster-merging process finds the appropriate
number of clusters by merging certain clusters to reduce
the number of query points in the next iteration. Finally,
representatives of clusters generated from relevant
images in the classified set make up the set of new query
points. A new query, Q 0 = (q 0,d 0,k) with a set of new
query points q 0 and a new distance function d 0, is com-
puted and then used as an input for the second round.
After some iterations, the loop ends up with the final

result set close to Result(Qopt), where Qopt = (qopt,
dopt,k) is the optimal query.
Our approach to the relevance feedback allows multi-

ple objects to be a query. We refer to them as a multi-
point query. When the user marks several points as
relevant, we cluster sets of relevant points and choose
the centroids of the clusters as their representatives.
Then, we construct the multipoint query using a small
number of good representative points. At the classifying
process, Bayesian classification function (Fisher, 1938) is
used. Statistics such as mean and covariance of each
cluster, which were computed from the previous itera-
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Fig. 2. Overall structure of the proposed method.
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tion, are used as the prior information. At the cluster-
merging process, Hotelling�s T2 (Johnson and Wichern,
1998) is used to merge any pair of clusters in arbitrary
shapes and find the number of the appropriate clusters
for a given query.
The contributions of this paper are as follows:

• The adaptive clustering generates contours consisting
of multiple hyper-ellipsoids, and therefore our retrie-
val method can handle disjunctive queries.

• Our method constructs clusters and changes them
without performing complete re-clustering. Its com-
puting time is short since the same statistical mea-
sures are used at both the classification stage and
the cluster-merging stage.

• The measures used in our method are invariant under
linear transformations. Therefore, the retrieval qual-
ity is the same regardless of the shape of query
clusters.

• Our experimental results show that the proposed
method achieves about 22% improvement of recall
and 20% improvement of precision against the query
expansion approach (Porkaew and Chakrabarti,
1999), and about 35% improvement of recall and
about 31% improvement of precision against the
query point movement approach (Rui et al., 1997),
in MARS.

The remainder of the paper is organized as follows: In
Section 2, we discuss related work. In Section 3, we pres-
ent some interesting motivating examples, the similarity
measure, and the overall algorithm of the multipoint rel-
evance feedback. We describe the classification and clus-
ter-merging processes in Section 4. Section 5 contains
the result of our experiments on a large set of 30,000 het-
erogeneous images and synthetic data. Finally, Section 6
summarizes our work.
2. Related work

Earlier approaches (Flickner et al., 1995; Smith and
Chang, 1996) to the content-based image retrieval do
not adapt the query and retrieval model based on the
user�s perception of the visual similarity. To overcome
this problem, a number of relevance feedback tech-
niques (Ashwin et al., 2002; Bartolini et al., 2001; Beni-
tez et al., 1998; Brunelli and Mich, 2000; Ishikawa et al.,
1998; Porkaew and Chakrabarti, 1999; Rui et al., 1997;
Wu et al., 2000; Wang et al., 2001; Zhou and Huang,
2001) have been proposed. They try to establish the link
between semantic concepts and low-level image features
and model the user�s subjective perception from the
user�s feedback. There are two components to learn
for the relevance feedback: a distance function and a
new query point. The distance function is changed by
learning weights of feature components, and the new
query point is obtained by learning the ideal point that
the user looks for.
The query-point movement has been applied to the

image retrieval systems such as MARS (Rui et al.,
1997) and MindReader (Ishikawa et al., 1998). These
systems represent the query as a single point in the fea-
ture space and try to move this point toward ‘‘good’’
matches, as well as to move it away from ‘‘bad’’ result
points. This idea originated from the Rochio�s formula
(Rocchio, 1971), which has been successfully used in
document retrieval. In this approach, the weighting
technique assigns a weight to each dimension of the
query point. It associates larger weights with more
important dimensions and smaller weights with less
important ones. MARS uses a weighted Euclidean dis-
tance, which handles ellipsoids whose major axis is
aligned with the coordinate axis. On the other hand,
MindReader uses a generalized Euclidean distance,
which permits the rotation of the axes so that it works
well for arbitrarily oriented ellipsoids.
Recently, other query refinement methods using the

multipoint relevance feedback were introduced. The
query expansion approach (Porkaew and Chakrabarti,
1999) of MARS constructs local clusters for relevant
points. In this approach, all local clusters are merged
to form a single large contour that covers all query
points. On the other hand, the query-point movement
approach (Rui et al., 1997; Ishikawa et al., 1998) ignores
these clusters and treats all relevant points equivalently.
These two approaches can generate a single hyper-ellip-
soid or convex shapes using local clusters in some fea-
ture space to cover all query points for simple queries.
However, both approaches fail to identify appropriate
regions for complex queries. Wu et al. (2000) presented
FALCON, the aggregate dissimilarity model, to facili-
tate learning disjunctive and concave query points in
the vector space as well as in arbitrary metric spaces.
However, the proposed aggregate dissimilarity function
depends on ad hoc heuristics and this model assumes
that all relevant points are query points.
3. Multipoint relevance feedback approach

This section proposes the overall mechanism of our
approach to the multipoint relevance feedback. Table
1 shows some notations to be used.

3.1. Motivating examples
Example 1. The user wants to select bird images via
query-by-example in the image data set of 30,000 color
images. A pairwise distance metric relying primarily on
color is used to compare images. As shown in Fig. 3, the
set of retrieved relevant images includes bird images



Table 1
Symbols and their definitions

Symbol Definition

p Dimension of feature vector
xij = [xij1, . . . , xijp]

0 Feature vector of jth image of ith cluster
C1, . . . , Cg g clusters
�xi ¼ ½�xi1; . . . ;�xip�0 Weighted centroid of ith cluster
Q ¼ f�x1; . . . ;�xgg Query set of g multiple points
d2() Generalized Euclidean distance function
qopt Ideal query point
ni The number of images for ith cluster
mi The sum of relevance score values of i cluster
wi Normalized weight of i cluster
a Significance level
S	1pooled Pooled inverse covariance matrix
S	1i Inverse covariance matrix of i�th cluster
vij Relevance score value for jth image of ith

cluster
d̂ iðÞ Classifier function for cluster i
T2() Cluster-merging measure
d2aggregateðÞ General aggregate distance function
d2disjunctiveðÞ Disjunctive aggregate distance function
p1, . . . , pk Retrieved images
p01; . . . ; p

0
m Relevant images

r Effective radius
c2 Critical distance value

Fig. 4. 3 dimensional plot of 10 points.
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with a light-green background and ones with a dark-
blue background. However, these may not be projected
to points close together in the feature space. Instead, the
points form two distinct clusters.

Finding similar images in this space is related to clus-
tering. If the difference between the user�s perception
and the feature representation in the system gets large,
there comes a necessity of expressing a query by several
points in the feature space. MARS uses multiple point
queries and every query point is supposed to be merged.
All relevant images are merged to several clusters and a
single large contour is made to cover all representatives
of these clusters.

Example 2. Given the top-leftmost image as a query in
Fig. 3, Fig. 4 shows the 3 dimensional plot of feature
vectors of 10 retrieved relevant images. It shows that five
Fig. 3. Bird i
images are similar, but the other five images are quite
different, MARS makes a single contour for two
clusters. However, it is better to make separate contours
for two different clusters of data. Our method can
determine the shapes of two local clusters.

For query expansion, Porkaew and Chakrabarti
(1999) assumed that query images given by a user should
be similar. Their method makes several clusters to in-
clude all relevant images and builds a large contour to
cover them. So the single large contour of the query
clusters is used as the basis for the search. However,
the query clusters might be very distant from each other.
So, the search might not yield fruitful results. For a suc-
cessful search, the contours must be separated instead of
being combined, as our method does.
A complex image query must be expressed as multiple

query points so that multiple representatives of clusters
are used. The basic method of clustering image feature
vectors is as follows: Initially, assign n input points (fea-
ture vectors of images) to n distinct clusters. Among all
clusters, pick up the two clusters with the smallest dis-
tance between them. Merge them to form a new cluster.
Repeat these two steps until there are no clusters left to
mages.
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be merged. The basic idea of our approach is to use an
adaptive classification and cluster merging method that
find clusters and their arbitrary shapes of multiple
regions of a query. Our goal is as follows:

• Given: user-selected p-dimensional points from the
result of a k-nearest neighbor query and their rele-
vance scores.

• Goal: find a set of centroids �x1; . . . ;�xg of clusters and
their weights w1, . . . , wg.

We use multiple points, which are the centroids of
clusters C1, . . . , Cg to guess the best query point qopt,
their covariance matrices, and weights to learn the
hidden distance function.

3.2. Similarity measure

When a user marks several images as relevant ones at
each iteration of the relevance feedback, we cluster a set
of relevant points and choose the centroid of the cluster
as its representative. For simplicity, let us use
xij = [xij1, . . . , xijp]

0 to denote the feature vector of the
jth image in ith cluster in Rp. Let �xi ¼ ½�xi1; . . . ;�xip�0 in
Rp be a centroid vector of the ith cluster. The distance
d2 between the two points �xi and xij is defined by:

d2ð�xi; xijÞ ¼ ð�xi 	 xijÞ0S	1ð�xi 	 xijÞ ð1Þ

¼
Xp
l¼1

Xp
m¼1

ð�xil 	 xijlÞS	1ð�xim 	 xijmÞ; ð2Þ

where S	1 is a p · p distance matrix and denotes weights
of dimensions and correlations in the feature space.
A generalized Euclidean distance d2i ðxÞ between a new

point x and the centroid of the ith cluster Ci, �xi, is
computed as follows:

d2i ðxÞ ¼ ðx	 �xiÞ0S	1
pooledðx	 �xiÞ; ð3Þ

where

Spooled ¼
1

m1 þ m2 þ � � � þ mg 	 g
½ðm1 	 1ÞS1

þ ðm2 	 1ÞS2 þ � � � þ ðmg 	 1ÞSg�;

mi is the weight (sum of relevance score values and value
is more than or equal to 1) of the ith cluster Ci, and Si is
the covariance matrix of Ci, for i = 1, . . . , g.
This generalized Euclidean distance allows not only

different weight of each dimension, but also correlation.
It can express a user�s high-level concept better than
weighted Euclidean or ordinary Euclidean distances,
since it is an ellipsoid whose major axes are not necessar-
ily aligned with the coordinate axes. And, an ellipsoid can
express a user�s hidden distance function better than a cir-
cle. MindReader (Ishikawa et al., 1998) proved that this
method is theoretically solid to handle similarity queries.
Conventionally, a similarity query is represented as a
single point, while we insist that a complex image query
be represented as multiple points. We compute multiple
representatives or a single representative using the
proposed adaptive classification and cluster-merging
method. A general aggregate distance function between
a point x and a set of multiple query points Q ¼
f�xi; . . . ;�xgg is defined by (Salton et al., 1983; Wu et al.,
2000):

db
aggregateðQ; xÞ ¼

1

g

Xg
i¼1

dbð�xi; xÞ: ð4Þ

The negative value of b mimic a fuzzy OR function
since the smallest distance will have the largest impact
on the aggregate distance function. We use b = 	2.
Then, we apply the following aggregate distance func-
tion to those representatives to find images similar to
one of the representatives in the query point set.

d2disjunctiveðQ; xÞ ¼
Pg

i¼1wiPg
i¼1wi=½ð�xi 	 xÞ0S	1

pooledð�xi 	 xÞ�
; ð5Þ

where Q is a set of multiple cluster representatives
f�x1; . . . ;�xgg, x is the feature vector of a target image,
and wi is a normalized weight of the ith cluster.

3.3. A general algorithm

We propose a novel relevance feedback approach for
multipoint queries using the adaptive classification and
cluster-merging method. The algorithm of our relevance
feedback for multipoint queries is as follows:

Algorithm 1. k-nearest neighbor search
input: a query example
output: k retrieved images
begin

Step1: Initialization

(1) Set Q = (q,d,k) using initial query image.

Step2: Retrieval of images
(1) Retrieve k images Result(Q) = {p1, . . ., pk}

such that d2disjunctiveðQ; p1Þ is the lowest,
d2disjunctiveðQ; p2Þ is the next lowest, and so on.

Step3: User Interaction
For each pj in Result(Q),

(1) recommend pj to the user.
(2) If pj is marked as relevant, then add pj to

Relevant(Q).
EndFor

Step4: Hierarchical Clustering or adaptive classi-
fication

If initial iteration

(1) perform hierarchical clustering using images

in Relevant(Q)
Else

For each p0j in Relevant(Q)



14 D.-H. Kim et al. / The Journal of Systems and Software 78 (2005) 9–23
(2) Determine an appropriate cluster using
Bayesian classification function.

(3) If p0j is located within the determined cluster
boundary, place it in the determined cluster.

EndFor

EndIf
Step5: Cluster-merging
(1) For each cluster Ci calculate a centroid, its

covariance, and its weight.
(2) find the appropriate number of clusters
C1, . . . , Cg by using Hotelling�s T

2.
Step6: Query refinement and distance function

update
(1) Refine Q 0 = (q 0,d 0,k) with a set of new query

points q 0 and a new distance function d 0

(2) Goto Step2 for the next iteration
end
4. Adaptive classification and merging clusters

The adaptive classification and merging clusters are
the cores of our approach. They are used to accelerate
query processing by considering only a small number
of representatives of the clusters, rather than the entire
set of relevant images. When all relevant images are in-
cluded in a single cluster, it is the same as MindReader�s.
At each stage the clusters are modified according to the
result of a query and a user�s relevance feedback. There-
fore, it is necessary to construct new clusters without
complete re-clustering.
The proposed method is composed of two stages: the

classification stage and cluster-merging stage. At the first
stage, new points are classified into current clusters or
new clusters using their statistical information. At the
second stage, the number of current clusters is reduced.
Its advantages are as follows:

• Two stages share statistics such as a distance matrix
S	1
pooled and the centroids of current clusters.

• It is easy to compute multiple query points since the
method does not re-cluster completely at each
iteration.

• The method can approximate any query shape to an
arbitrarily oriented ellipsoid since the distance func-
tion is a quadratic form.

4.1. Initial hierarchical clustering

Initial clusters of the training data form the basis of
the hierarchy. Among numerous methods, we use the
hierarchical clustering algorithm that groups data into
hyperspherical regions. Once initial clusters are ob-
tained, we calculate a mean vector �x, a weighted covari-
ance matrix S, and an effective radius r. The mean vector
determines the location of the hyperellipsoid, while the
covariance matrix characterizes its shape and orienta-
tion. The weight of each cluster compared with the oth-
ers is determined by the sum of relevance score values of
points in each cluster. The effective radius is a critical
value to decide whether a new point x lies inside the
given ellipsoid.

Lemma 1. If x lies inside the ellipsoid, the following

property is satisfied (Bauer et al., 1999):

ðx	 �xÞ0S	1ðx	 �xÞ < r ð6Þ

Let us assume that the data follows a Gaussian distri-
bution and takes a as a significance level. For the given
significance level a, 100(1 	 a)% (typically 95–99%) of
the data will fall inside the ellipsoid and the generalized
Euclidean distance follows a v2p distribution with p de-
grees of freedom. Then the effective radius r is v2pðaÞ.
As a decreases, a given effective radius increases. Any
point outside of the ellipsoid is identified as an outlier
and forms a new cluster.

4.2. Classification stage

Let C1, . . . , Cg be g clusters. The classification algo-
rithm places a new point in one of the g clusters or in
a new cluster. The classifier is based on the Bayesian
classification function (Duda et al., 2001) and it uses
means, covariance matrices, and weights of clusters
at the cluster-merging stage of the previous iteration
as prior information. The classification rule is as
follows:

Allocate x to Ck if wkfkðxÞ > wifiðxÞ for all i 6¼ k ð7Þ

where fi is the probability density function of Ci.
At the feedback loop stage, the user specifies a score

value v for each image x. Later, after the cluster-merging
stage of the current iteration, if x has become the kth
point of Ci, then v becomes vik. mi is the weight of Ci,
i.e., mi ¼

Pni
k¼1vik. Then wi is the normalized weight of

the ith cluster, that is, wi ¼ mi=
Pg

k¼1mk. The classifica-
tion rule in Eq. (7) is identical to one that maximizes
the ‘‘posterior’’ probability P(Ckjx) = P(x comes from
Ck given that x was observed), where

P ðCk j xÞ ¼
wkfkðxÞPg
i¼1wifiðxÞ

¼ ðpriorkÞ � ðlikelihoodkÞP
½ðprioriÞ � ðlikelihoodiÞ�

for i ¼ 1; . . . ; g:

ð8Þ

An important special case occurs when fi(x) is a mul-
tivariate normal density function with centroid vector �xi
and covariance matrix Si of cluster Ci for i = 1, . . ., g.
Then Eq. (7) becomes:
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Allocate x to Ck if lnðwkfkðxÞÞ
P lnðwifiðxÞÞfor all i 6¼ k where lnðwifiðxÞÞ ¼ lnðwiÞ

	 p
2
lnð2pÞ 	 1

2
ln jSij 	

1

2
ðx	 �xiÞ0S	1

pooledðx	 �xiÞ:

The constant and common terms are ignored (see ref-
erence Duda et al. (2001) in finding the classification
function for each cluster). Then the estimate of the clas-
sification function for Ci for i = 1, . . . , g is found to be:

d̂ iðxÞ ¼ 	 1
2
ðx	 �xiÞ0S	1

pooledðx	 �xiÞ þ lnðwiÞ: ð9Þ

The basic idea of this classification algorithm is that a
new point x should be classified to the nearest cluster.
The details are as follows: For a given new point x,
d̂ iðxÞ is calculated and x is assigned to kth cluster where
d̂kðxÞ is maximal. If the distance value is less than the
effective radius of Ck, the point is placed to that cluster.
Otherwise, it becomes the center of a new cluster. The
effective radius and the distance are computed by using
Eq. (6). The classification algorithm is as follows:

Algorithm 2. Bayesian Classification
begin

1. For a new point in the relevant result set,
2. Compute d̂1ðxÞ; d̂2ðxÞ; . . . ; d̂gðxÞ using Eq. (9)
3. Determine the cluster k where d̂kðxÞ ¼

max16i6gd̂ iðxÞ
4. If ðx	 �xkÞ0S	1

k ðx	 �xkÞ < v2ðaÞ
5. place it in the cluster k
6. Else make it a separate cluster
7. Endfor

end

4.3. Cluster-merging stage

Our basic idea of the cluster-merging stage is as fol-
lows: (1) At the initial iteration, the hierarchical cluster-
ing is used. The level g at the hierarchy of clusters
corresponds to g clusters. The initial clusters include
only one point in each of them. Consider two clusters
at a time. If they are not significantly different, then
merge them to one cluster. We repeat this until the num-
ber of optimal clusters is found. Generally, the number
of optimal clusters is not known (Duda et al., 2001).
To estimate the number of optimal clusters, it is neces-
sary to decide which level is more optimal than the
other. At each clustering level, Hotelling�s T2 (Johnson
and Wichern, 1998) is used to decide which pair of clus-
ters is to be merged. If no merging occurs at g clustering
level, then g is the estimated number of clusters.
(2) At other iterations, the clusters after the classifica-

tion stage can be further merged into bigger clusters.
Given g clusters, our cluster-merging algorithm finds
candidate pairs of clusters to be merged. Two clusters
most likely to be merged should be ‘‘close’’ enough.
The algorithm selects the next pair of clusters to be
merged until the number of optimal clusters is found.
For this purpose, we compare their mean vectors. We
infer the merge of the two clusters statistically from
the closeness of two mean vectors �xi and �xj. We use
Hotelling�s T2 statistics to test the equivalence of two
mean vectors of a given pair of clusters.
For the statistical test, let us define:

• the points of ith cluster, xi1; xi2; . . . ; xini , to be a
random sample of size ni from a population with a
mean vector li and a covariance matrix Ri.

• the points of jth cluster, xj1; xj2; . . . ; xjnj , to be a
random sample of size nj from a population with
the mean vector lj and a covariance matrix Rj.

• xi1; xi2; . . . ; xini to be independent of xj1; xj2; . . . ; xjnj .

Especially, when ni and nj are small, we need the
following assumptions:

• The populations of the two clusters follow multi-
variate normal distributions.

• The populations have the same covariance.

We use a pooled covariance to estimate the common
covariance since we assume that the population covari-
ances for the two clusters are nearly equal.

Definition 1. Hotelling�s T2 is defined by

T 2 ¼ mimj

mi þ mj
ð�xi 	 �xjÞ0S	1

pooledð�xi 	 �xjÞ; ð10Þ

where

Spooled ¼
1

mi þ mj

Xni
k¼1

vikðxik 	 �xiÞðxik 	 �xiÞ0
 

þ
Xnj
k¼1

vjkðxjk 	 �xjÞðxjk 	 �xjÞ0
!
: ð11Þ

The usual hypothesis to test the location difference is
as follows:

H 0 : li ¼ lj and H 1 : li 6¼ lj;

where li is the unknown true center of Ci

for i = 1, . . . , g. If T2 is too big which happens when
�xi is ‘‘too far’’ from �xj, then the null hypothesis H0 is

rejected. Note that T 2 � pðmiþmj	2Þ
miþmj	p	1 F p;miþmj	p	1ðaÞ if H0

is true. Here F p;miþmj	p	1ðaÞ is the upper (100(1 	 a))th
percentile of F-distribution with p and mi + mj 	 p 	 1
degrees of freedom. Therefore

Reject H 0 if T 2 ¼ ð�xi 	 �xjÞ0
1

mi
þ 1

mj

� �
Spooled

� �	1
� ð�xi 	 �xjÞ > c2 ð12Þ

where c2 ¼ ðmiþmj	2Þp
miþmj	p	1 F p;miþmj	p	1ðaÞ.
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In other words, if T2 is larger than c2, we conclude
that the two clusters are separated.
For example, Fig. 5 shows the cluster-merging proce-

dure for 6 clusters. In order to test closeness of any pair
of clusters, given a proper a (99%), the minimum value
of T2 values for all pairs of clusters and c2 value for cor-
responding clusters are calculated. If minimum T2 value
is less than c2 value, then two clusters are close enough
and merge them.When 6 clusters are given at certain iter-
ation, among all possible pairs of clusters, we find a pair
of clusters with minimum T2. The pair of clusters with
minimum T2 is the candidate to be merged and their c2

is calculated for the given a. When T2 is less than c2, they
are merged into one. Then the number of clusters is re-
duced by one. This process will be applied until minimum
T2 and c2 are reversed. Then the number of adjusted clus-
ters becomes 3. That is, we can adjust the number of clus-
ters to bemerged by selecting a proper significance level a.
For efficient clustering, we determine the parameters

of the merged clusters from those of existing clusters in-
stead of those of points in existing clusters. When clusters
are characterized by the mean vector, �xi, covariance ma-
trix, Si, the number of elements in the cluster, ni, and the
weight of the cluster, mi, we characterize a new cluster
created by combining clusters i and j with the following
statistics (Johnson and Wichern, 1998):

mnew ¼ mi þ mj ð13Þ

�xnew ¼ mi

mnew

�xi þ
mj

mnew

�xj ð14Þ

Snew ¼ mi 	 1

mnew	1
Si þ

mj 	 1

mnew	1
Sj þ

mimj

mnewðmnew 	 1Þ
� ½ð�xi 	 �xjÞð�xi 	 �xjÞ0� ð15Þ
Algorithm 3. Cluster Merging
begin
1. Compute T2 values and their c2 values for all

pairs of clusters
Fig. 5. Scatter plot.
2. Select candidate pair of clusters having mini-
mum value of T2 values

3. While minimum T2 value 6 their c2

4. merge candidate pair of clusters
5. calculate mnew, �xnew, Snew using Eqs. (13)–(15)
6. select next candidate pair of clusters
7. EndWhile

end

The advantages of using T2 are as follows:

• T2 has been verified through various simulations in
statistics, and its theoretical properties are well
known.

• Our cluster-merging method using T2 can combine
clusters of any shape. Especially, it can be well
applied to elliptical clusters.

• To compute T2, we can use the previous information
from the earlier classification stage such as mean vec-
tors, covariance matrices, etc.
Definition 2. Let~x ¼ ðx1; . . . ; xpÞ 2 Rp. An algorithm is
invariant under linear transformations if the statistic
Uð~xÞ is invariant under linear transformations, that is

UðA~xÞ ¼ Uð~xÞ;

where A is a p · p matrix with a proper inverse.

Theorem 1. Algorithm 2 and Algorithm 3 are invariant

under linear transformations.

Proof 1. It is enough to show that T2, d2, and d̂ are
invariant under the linear transformations. First, let us
consider T2.

T 2ðA~xÞ ¼ mimj

mi þ mj
ðA�xi 	 A�xjÞ0S	1

pooledðA~xÞðA�xi 	 A�xjÞ

¼ mimj

mi þ mj
ð�xi 	 �xjÞ0A0ðASpooledA0Þ	1Að�xi 	 �xjÞ

¼ mimj

mi þ mj
ð�xi 	 �xjÞ0A0ðA0Þ	1S	1

pooledA
	1Að�xi 	 �xjÞ

¼ T 2ð~xÞ:

The proofs are similar for d2 and d̂. h

Because of this property, the efficiency and quality of
the proposed algorithms are almost the same for any lin-
ear transformations of circles, which include ellipsoids.
4.4. Dimension reduction

A general problem of similarity retrieval in large
image databases is that image/video descriptors are rep-
resented by high dimensional vectors. Since most data
are from a very high dimension, the singularity of



D.-H. Kim et al. / The Journal of Systems and Software 78 (2005) 9–23 17
covariance is troublesome. To reduce the dimension, we
use the popular principal components (Duda et al.,
2001) instead of the original data.

4.4.1. Principal component analysis

If x is a p dimensional random vector with mean l
and covariance matrix R and C is the eigenvector matrix
of R, the principal component transformation is given
by

z ¼ ðx	 lÞ0C

where C is orthogonal, C 0RC = K is diagonal and
k1 P k2 P � � � P kp P 0. The strict positivity of the
eigenvalues ki is guaranteed if R is positive definite.
Let ci be ith column vector of C. Then zi = (x 	 l) 0ci
and zi is the ith principal component of x. The variance
of zi is ki and the expected value of zi is 0.

4.4.2. Sample principal components

Let X = (x1, . . . , xn)
0, S be the sample covariance ma-

trix of X, G be the p · p eigenvector matrix of S and L be
the eigenvalue matrix of S where xi�s are column vectors
in Rp and g(i)�s are column vectors of G. Then the sample
principal component is defined by direct analogy with
4.4.1 as

zðiÞ ¼ ðX 	 1�x0ÞgðiÞ

where S = GLG 0. Putting the sample principal compo-
nents together we get

Z ¼ ðX 	 1�x0ÞG

G transformed one (n · p) matrix to another of the same
order. L is the covariance matrix of Z.

4.4.3. Hotelling’s T2 with principal components

Recall that

T 2ð�x; �yÞ ¼ Cð�x	 �yÞ0S	1
pooledð�x	 �yÞ;

where C is a constant and �x and �y are used in place of �x1
and �x2, respectively. Let COVpooled(x,y) denote the
pooled covariance of x and y. Then

COV pooledðG0x;G0yÞ ¼ G0SpooledðG0Þ0 ¼ G0SpooledG

¼ G0ðGLG0ÞG ¼ L:

So,

T 2ðG0�x;G0�yÞ ¼ CðG0�x	 G0�yÞ0ðG0SpooledGÞ	1ðG0�x	 G0�yÞ
¼ Cð�x	 �yÞ0GðG0SpooledGÞ	1G0ð�x	 �yÞ0

¼ T 2ð�x; �yÞ: ð16Þ

By using Theorem 1, T 2ðG0�x;G0�yÞ ¼ T 2ð�x; �yÞ,
d̂ iðG0xÞ ¼ d̂ iðxÞ and d2ðG0x;G0�xiÞ ¼ d2ðx;�xiÞ holds. Let
�zx ¼ G0�x and �zy ¼ G0�y. We have a simpler form of T2

with principal components as follows:
T 2ðG0�x;G0�yÞ ¼ Cð�zx 	 �zyÞ0ðG0SpooledGÞ	1ð�zx 	 �zyÞ

¼ Cð�zx 	 �zyÞ0ðG0GLG0GÞ	1ð�zx 	 �zyÞ

¼ C
Xp
j¼1

ð�zxj 	 �zyjÞ2
	

kj: ð17Þ

Note that T2 becomes a quadratic form which saves a lot
of computing efforts. Likewise, we have a simpler form
of d̂ i, d

2 with principal components.

4.4.4. Dimension reduction in Hotelling’s T2

The proposed measures such as Eqs. (5), (9) and (10)
make use of the sample covariance matrix and its
inverse. To resolve the singularity problem, we adopt
a new scheme using the diagonal matrix instead of the
inverse covariance matrix.
Let us take the first k 6 p principal components such

that

k1 þ � � � þ kk
k1 þ � � � þ kk þ � � � þ kp

P 1	 �;

where � 6 0.15. 1 	 � is the proportion of total variation
covered by the first k principal components. Let Gk be a
(p · k) matrix, where columns are the first k columns of
G. Let �zxk ¼ G0

k�x and �zyk ¼ G0
k�y.

T 2kðG0
k�x;G

0
k�yÞ ¼ Cð�zxk 	 �zykÞ0ðG0

kSpooledGkÞ	1ð�zxk 	 �zykÞ
¼ Cð�zxk 	 �zykÞ0ðG0

kGLG
0GkÞ	1ð�zxk 	 �zykÞ

¼ C
Xk
j¼1

ð�zxkj 	 �zykjÞ2
	
lj: ð18Þ

In this case, Hotelling�s T2 becomes a simple qua-
dratic form. Likewise, we have a similar form of d2, d̂ i:

4.5. Quality of clustering

A good way of measuring the quality of the proposed
classification method is to calculate its ‘‘classification
error rates,’’ or misclassification probabilities. Our
method of measuring the clustering quality is as follows:
After the number of clusters is fixed at the final iter-

ation, take out one element of a cluster. Check if the ele-
ment is classified into the previous cluster again
according to the classification procedure. Let C be the
number of elements classified correctly to its own cluster
and N be the total number of elements in all clusters.
The error-rate becomes 1 	 C/N. This method can be
applied even though numbers of elements of the cluster
are small.
5. Experimental evaluation

For the experiments, the Corel image collection and
the synthetic data are used as the test set of data. The
original image collection was obtained from Corel



Fig. 6. CPU time for inverse and diagonal matrix schemes in query
cluster approach.

Fig. 7. Comparison of execution cost for the three approaches.
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Corporation (http://corel.digitalriver.com). It includes
30,000 color images. Its images have been classified into
distinct categories by domain experts, and there are
about 100 images in each category. In the experiments,
we use high-level category information as the ground
truth to obtain the relevance feedback since the user
wants to retrieve the images based on high-level con-
cepts, not low-level feature representations (Wang
et al., 2001). That is, images from the same category
are considered most relevant, and images from related
categories (such as flowers and plants) are considered
relevant.
For the purpose of the performance evaluation of the

query clustering approach (Qcluster), we have con-
ducted this experiment with two goals. First, evaluate
Qcluster to answer multipoint k-NN queries and com-
pare it to the query point movement (QPM) and the
query expansion approach (QEX). Second, test that
the proposed Qcluster algorithm converges quickly to
the user�s true information needs. Precision-recall curve
is used to measure the retrieval performance. Precision is
defined as the number of retrieved relevant images over
the number of total retrieved images. Recall is defined as
the number of retrieved images over the total number of
relevant images. We have implemented Qcluster in C++
on a Sun Ultra II. First, we consider the real data. In our
system, we use two visual features: color moments and
co-occurrence matrix texture. For color moments, we
use the HSV color space because of its perceptual uni-
formity of color. For each of three color channels, we
extract the mean, standard deviation, and skewness,
and reduce the length of the feature vector to three using
the principal component analysis. Then, we use the three
dimensional feature vector as the color feature.
For the co-occurrence matrix texture, the (i,j)th ele-

ment of co-occurrence matrix is built by counting the
number of pixels, the gray-level (usually 0–255) of which
is i and the gray-level of its adjacent pixel is j, in the
image. Texture feature values are derived by weighting
each of the co-occurrence matrix elements and then
summing these weighted values to form the feature
value. We extract a vector of the texture feature whose
16 elements are energy, inertia, entropy, homogeneity,
etc (Porkaew and Chakrabarti, 1999) and reduce the
length of feature vector to four using the principal com-
ponent analysis.
In the experiments, we generate 100 random initial

queries and evaluate the retrieval quality for a sequence
of iterations starting with these initial queries. We per-
form five feedback iterations in addition to the initial
query. All the measurements are averaged over 100 que-
ries. When the cluster merging process is performed,
a = 0.01, as the given significance level (99%), is used
to test closeness of any pair of clusters. The k-NN query
is used to accomplish the similarity-based match, and we
set k to 100. We use the hybrid tree (Chakrabarti and
Mehrotra, 1999) to index feature vectors of the whole
data and fix the node size to 4 KB.
Fig. 6 compares the CPU cost of an inverse matrix

scheme and a diagonal matrix scheme for the Qcluster
approach when color moments are used as a feature.
The diagonal matrix scheme of the Qcluster approach
significantly outperforms the inverse matrix scheme in
terms of CPU time. Therefore, we use a diagonal matrix
scheme in our method.
Fig. 7 compares the execution cost for the three ap-

proaches. The proposed Qcluster shows the similar per-
formance with the multipoint approach (Chakrabarti
et al., 2000) and outperforms the centroid-based ap-
proach such as MARS (Chakrabarti and Mehrotra,
1999) and FALCON (Wu et al., 2000). This is because
our k-NN search is based on the multipoint approach

http://corel.digitalriver.com


Fig. 8. Precision recall graph for query clustering when color moments
is used.

Fig. 10. Comparison of recall for the three approaches when color
moments is used.
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that saves the execution cost of an iteration by caching
the information of index nodes generated during the
previous iterations of the query.
Figs. 8 and 9 show the precision-recall graphs for our

method when color moments and co-ocurrence matrix
texture are used, respectively. In these graphs, one line
is plotted per iteration. Each line is drawn with 100
points, each of which shows precision and recall as the
number of retrieved images increases from 1 to 100.
Based on these figures, we make two observations as
follows:

• The retrieval quality improves at each iteration.
• The retrieval quality increases most at the first itera-
tion. At the following iterations there are minor
increases in the retrieval quality. This ensures that
our method converges quickly to the user�s true infor-
mation need.
Fig. 9. Precision recall graph for query clustering when co-occurrence
matrix texture is used.
Figs. 10 and 11 compare the recall for query cluster-
ing, query point movement, and query expansion at
each iteration. Figs. 12 and 13 compare the precision
for the three approaches. They produce the same preci-
sion and the same recall for the initial query. These fig-
ures show that the precision and the recall of our
method increase at each iteration and outperform those
of the query point movement and the query expansion
approach.
Next, we performed extensive experiments to measure

the accuracy of the adaptive classification algorithm and
that of the cluster-merging algorithm using the synthetic
data. Let z = (z1, . . . , zp) in Rp where z1, . . . , zp are
independent and identically distributed with N(0,1).
Then z is a multi-variate normal with a mean vector 0
and a covariance matrix I, and the data shape of z is a
Fig. 11. Comparison of recall for the three approaches when
co-occurrence matrix texture is used.



Fig. 12. Comparison of precision for the three approaches when color
moments is used. Fig. 13. Comparison of precision for the three approaches when

co-occurrence matrix texture is used.
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sphere. Let y = Az. Then COV(y) = AA 0 and the data
shape of y is an ellipsoid. The synthetic data in R16

are generated. The data consist of 3 clusters and their
inter-cluster distance values vary from 0.5 to 2.5. Then
the principal component analysis is used to reduce the
dimension of them from 16 to 12, 9, 6, 3, respectively.
We calculate error rates of the classification algo-

rithm (Algorithm 2) with respect to 12, 9, 6, 3 dimen-
sional data. Fig. 14(a) shows those for spherical data,
and Fig. 14(b) shows those for elliptical data when we
use an inverse matrix in the Bayesian classifier. Fig.
15(a) shows those for spherical data and Fig. 15(b)
shows those for elliptical data when we use a diagonal
matrix instead. The result shows that the error rate
decreases as the inter-cluster distance value increases
and the error rate increases as the dimension decreases
for the same inter-cluster distance value. The reason is
that the information loss increases as the proportion
of total variation covered by the k principal components
Fig. 14. Error rate of the classification algorithm using an inverse matrix: (a
shape.
(k = 12,9,6,3) decreases. Importantly, figures show that
the quality of the classification algorithm stays almost
the same regardless of the data shape. This result con-
firms the linear transformation invariant property of
the proposed classification algorithm.
Next, we compute the error-ratios of the T2-statistic

with an inverse matrix and those with a diagonal matrix
in order to measure the accuracy of cluster-merging
algorithm with respect to 12, 9, 6, 3 dimensional data.
Given 100 pairs of clusters of size 30, 100 T2 values
and corresponding critical distance (c2) values are com-
puted. Quantile-F values in Tables 2 and 3 are the crit-
ical distance values given by the 95th percentile
Fp,n	p(0.05) where p is a dimension and n is the number
of objects. If T2 value is larger than corresponding c2

value, reject H0. That is, we decide that a pair of clusters
must be separated. If a pair of clusters is close, then the
error ratio increases in case of separating them. Tables 2
and 3 show the average T2 and the average error ratio
) for 3 clusters of the spherical shape; (b) for 3 clusters of the elliptical



Fig. 15. Error rate of the classification algorithm using a diagonal matrix: (a) for 3 clusters of the spherical shape; (b) for 3 clusters of the elliptical
shape.

Table 2
Comparison of T2 with inverse matrix and T2 with diagonal matrix
when each pair of clusters have same means

Dim Variation ratio T2 Quantile-F Error-ratio (%)

T2 with inverse matrix

12 0.996 0.77 1.96 0
9 0.97 1.02 2.07 1
6 0.96 0.79 2.28 2
3 0.94 0.44 2.77 2

T2 with diagonal matrix

12 0.996 0.70 1.96 2
9 0.97 0.87 2.07 4
6 0.96 0.68 2.28 6
3 0.94 0.44 2.77 6

Table 3
Comparison of T2 with inverse matrix and T2 with diagonal matrix
when each pair of clusters have different means

Dim Variation ratio T2 Quantile-F Error-ratio(%)

T2 with inverse matrix

12 0.996 20.54 1.96 0
9 0.97 24.17 2.07 0
6 0.96 31.01 2.28 0
3 0.94 38.29 2.77 6

T2 with diagonal matrix

12 0.996 28.37 1.96 0
9 0.97 25.03 2.07 1
6 0.96 31.27 2.28 2
3 0.94 41.20 2.77 8
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(%) with respect to 12, 9, 6, 3 dimensional data for T2

with an inverse matrix and T2 with a diagonal matrix.
Figs. 16–18 show the accuracy of the cluster-merging

algorithm. For simulation, the random seven clusters of
size 30 were generated from bivariate distributions in
R2. Initially, the hierarchical clustering is used to build
nine clusters from the synthetic data. Left figures show
scatter diagrams when their inter-cluster distance values
vary from 2 to 6. In right figures, x-axis denotes the
number of clusters and y-axis denotes critical distance
values (marked as �o�) and T2 value (marked as �x�) for
the nearest pair of clusters at each clustering level. From
clustering level 9 to 1, the cluster-merging algorithm de-
cides whether a pair of nearest clusters are merged. Fig.
16 shows the result that our cluster-merging algorithm
finds three clusters. Figs. 17 and 18 show our algorithm
finds seven clusters, respectively. That is, the T2 and the
c2 used in our cluster-merging algorithm (Algorithm 3)
are useful in deciding whether to merge a pair of close
clusters.
6. Conclusion

We have focused on the problem of finding multiple
clusters of a complex image query, based on the rele-
vance feedback, to guess the distance function and the
ideal query point that the user has in mind. Our ap-
proach consists of two steps: (1) an adaptive classifica-
tion that attempts to place relevant images in the
current clusters or new clusters, and (2) cluster-merging
that reduces the number of clusters by merging certain
clusters to reduce the number of query points in the next
iteration.
The major contribution of this approach is the intro-

duction of unified quadratic forms for the distance func-
tion, the adaptive classifier, and the cluster-merging
measure. Their benefit is to achieve the same high retrie-
val quality regardless of shapes of clusters of a query
since they are invariant under linear transformations
in the feature space.
Our experiment shows that the proposed techniques

provide a significant improvement over the query point
movement and the query expansion in terms of the
retrieval quality.



Fig. 16. Scatter-diagram and effect of cluster-merging algorithm when inter-cluster distance is 2.

Fig. 17. Scatter-diagram and effect of cluster-merging algorithm when inter-cluster distance is 4.

Fig. 18. Scatter-diagram and effect of cluster-merging algorithm when inter-cluster distance is 6.
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