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Abstract—A distance sensitivity oracle is a data structure answering queries that ask the shortest distance from a node to another in a

network expecting node/edge failures. It has been mainly studied in theory literature, but all the existing oracles for a directed graph

suffer from prohibitive preprocessing time and space. Motivated by this, we develop two practical distance sensitivity oracles for

directed graphs as variants of Transit Node Routing. The first oracle consists of a novel fault-tolerant index structure, which is used to

construct a solution path and to detect and localize the impact of network failures, and an efficient query algorithm for it. The second

oracle is made by applying the A* heuristics to the first oracle, which exploits lower bound distances to effectively reduce search space.

In addition, we propose additional speed-up techniques to make our oracles faster with a slight loss of accuracy. We conduct extensive

experiments with real-life datasets, which demonstrate that our oracles greatly outperform all of competitors in most cases. To the best

of our knowledge, our oracles are the first distance sensitivity oracles that handle real-world graph data with million-level nodes.

Index Terms—Graph algorithms, path and circuit problems, graphs and networks, distance sensitivity oracle, distance query, shortest

distance, shortest path algorithms
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1 INTRODUCTION

COMPUTING the shortest distance from a node to another
is one of the fundamental issues in graphs. In this

paper, we deal with an interesting variation of the shortest
distance computation in a graph, called the distance sensi-
tivity problem. Given a graph G ¼ ðV;EÞ where V is the set
of nodes and E is the set of edges, the distance sensitivity
problem is to answer queries that ask to compute the dis-
tance of the shortest path from a node to another avoiding
the failed part of the network. A distance sensitivity oracle
is a data structure which is designed to answer such
queries. The distance sensitivity oracle is important for a
network where a small number of recoverable failures
(node or edge) can simultaneously occur. Example scenarios
for such failures are as follows:

� Example 1: In road networks, a user may directly want to
know the distance of the shortest path from a point to another
avoiding user-specific roads such as frequently clogged roads.
This kind of queries can be very frequently happen, because a
user may want to ask multiple times for the same start and
destination with different avoided roads.

� Example 2: In road networks, a road construction, a demonstra-
tion, or a car accident can make a road (edge) or a road junction
(node) unavailable temporarily. In addition, some roads can be

classified to be failed depending on the level of congestion. Gen-
erally, such node or edge failures will be recovered after the con-
struction is finished, the demonstration is over, clearing the
scene of the accident, or the traffic congestion disappears.

� Example 3: In computer networks, network devices (nodes)
and links (edges) between them can be broken down by vari-
ous reasons such as a cut network cable. Such broken devices
or links can be recovered by replacing a broken equipment
with a normal equipment.

� Example 4: In online social networks such as Facebook, a user
(node) blocks other users who share documents that the user
dislikes. Blocking other users can be considered as recoverable
edge failures.

Motivation. The main motivation of a distance sensitivity
oracle is that it enables us to avoid stalling queries. Consider
that we have an algorithm answering a shortest distance
query with an updatable data structure which is called a
fully dynamic distance oracle in the theory community.
Because node/edge failures change the network structure,
when they occur, we have to update the distance oracle to
correctly answer the query. After the failures are recovered,
we need to update it again for the same reason. Note that
while a distance oracle is being updated, no query can be
processed. That is, we should stall queries that are issued
during the update. In addition, the cost for the update can
be very large, because a single edge deletion affects the
shortest distances of Oðn2Þ node pairs, in which n is the
number of nodes, and even though many failures may not
be related to the actual query answer, distance oracles
should be updated for all of them. Since stalling queries
during such an expensive update operation can seriously be
harmful to latency, a distance sensitivity oracle is essential
for providing a stable service.

Existing Sensitivity Oracles. Most existing works for a dis-
tance sensitivity oracle deal with only a constant number of
failures in a directed graph or a variable number of failures
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in an undirected graph [1], [2], [3], [4], [5], [6], [7]. Weimann
and Yuster propose the only oracle which can answer
queries containing a variable number of failures in a
directed graph [8], [9]. Their oracle has eOðn4�aÞ1 preprocess-
ing time, eOðn3�aÞ space, and eOðn2�2ð1�aÞ=fÞÞ query time,
where f is a parameter for the maximum number of fail-
ures, f ¼ oðlogn=log lognÞ, and a is a parameter in (0, 1) for
specifying the trade-off among preprocessing time, space,
and query time. However, since the cost for space and the
cost for preprocessing time are too expensive, their oracle is
not applicable to real-life datasets. In fact, all existing dis-
tance sensitivity oracles for a directed graph with real-
valued edge weights suffer from such prohibitive costs for
space and for preprocessing time.

Our Approach. In this work, we focus on achieving oracles
that can efficiently answer distance queries without any
stalling even though some network failures are happening.
This feature of them is so critical, because it is necessary for
stable latency and enables them to handle multiple queries
in parallel, each of which is processed with a separate
thread on the same index structure. Since we can easily
make such threads independent of each other, they can con-
tribute to linearly increase throughput of query processing.
The key features of our approach to devise two efficient dis-
tance sensitivity oracles are as follows:

� Fault-tolerant Index Structure: Our oracles are based on a
novel fault-tolerant index structure, which consists of
two levels. The first-level is a small overlay graph called
the distance graph. The second-level consists of trees of
small sizes, called bounded shortest path trees, and the
inverted tree index which is a map from each edge in a
bounded shortest path tree to the trees containing the
edge. Incorporated with the query algorithms, the sec-
ond-level is used to efficiently localize the impact of net-
work failures in the distance graph.

� Threadable Query Algorithms: Our oracles have efficient
and threadable query algorithms. They are designed to
immediately process a query without any update on the
index structure against network failures. Thus, there is no
stalling required by these algorithms and they can handle
multiple queries in parallel to increase throughput.

� More Sparse Distance Graph: In order to construct a good
distance graph which is at the first-level of the index
structure, we borrow a decent concept called a k-path
cover from [10]. Beyond the work in [10], we propose a
novel way of selecting a better k-path cover so that a
resulting distance graph is more sparse.

� Exploiting the A* Heuristics: The query algorithm of the
first oracle among our oracles is a variation of the
Dijkstra’s algorithm. We devise the second oracle by
combining this query algorithm with the A* heuristics.
This combination is achieved by a novel method of
computing a solution path on the distance graph and
recomputing some part of the distance graph in a joint
way. This method effectively reduces the search space
on the input graph to recompute such a part.

� Efficient Speed-up Techniques: We propose two speed-up
techniques to make our approach faster for specific clas-
ses of networks. The first speed-up technique is called
partial detouring, which efficiently provides a detour of
a sub-path of the original shortest path. The other

technique is distance graph sparsification, which effec-
tively removes out unnecessary edges from the distance
graph. The partial detouring is especially effective for
bounded-degree networks, while the distance graph
sparsification is effective for scale-free networks.

Contributions. This work is for bridging the gap between
theory and practice for the distance sensitivity problem. The
contributions of it are as follows:

� We propose two efficient distance sensitivity oracles for
a variable number of edge failures in directed graphs,
which can answer distance queries without any stalling.

� We present efficient maintenance strategies for our
oracles in order to handle graph updates. Due to the
lack of space, however, all the contents for them are
only included in the supplemental material, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2019.2924419.

� We conduct extensive experiments to evaluate our
distance sensitivity oracle. In the experiments, we use
three competitors: the Dijkstra’s algorithm, the classic
landmark-based A� search algorithm, and a recent fully
dynamic approximate distance oracle in [11]. Note that
none of the existing distance sensitivity oracles for
directed graphs is applicable to real-life datasets. We
demonstrate that our oracles outperform the competi-
tors in terms of query time in most cases. Along with
the efficient query time, the preprocessing time and the
space of our first oracle are better than those of the
dynamic distance oracle and the A* search algorithm. It
is remarkable that our first oracle mostly has better
query performance than the A* search algorithm, even
if it does not incorporate the A* search heuristics, which
were proved to be powerful for finding shortest paths.
Our second oracle has greatly improved performance
for bounded-degree networks in terms of query time
with reasonable preprocessing time and space. The two
speed-up techniques effectively make our oracles faster
with a slight loss of accuracy. Finally, we demonstrate
that the maintenance strategies for our oracles reason-
ably efficiently update them without losing query effi-
ciency in the supplemental material, available online.
To the best of our knowledge, this paper is the first
work for the distance sensitivity problem that handles
real-world graph data with million-level nodes.

Outline. The rest of this paper is organized as follows. In
Section 2, we review existing and applicable works for the
distance sensitivity problem. The distance sensitivity prob-
lem is formulated in Section 3. We propose a distance sensi-
tivity oracle in Section 4 and an improved version of it based
on the A* heuristics in Section 5. For further speed-up, we
propose two techniques which make our oracles faster with
a slight loss of accuracy in Section 6. Then, we evaluate the
efficiency and the accuracy of our oracles with various real-
life datasets in Section 7 and conclude the paper in Section 8.

2 RELATED WORK

Distance Sensitivity Oracle. The distance sensitivity problem
has beenmainly studied in theory literature. Demetrescu et al.
[1] proposed an oracle for handling a single network failure. It
has Oð1Þ query time, eOðn2Þ space, and eOðmn2 þ n3Þ prepro-
cessing time. Bernstein and Karger improved it in terms of the1. hðnÞ ¼ eOðgðnÞÞ if hðnÞ ¼ OðgðnÞlog kðnÞÞ for some constant k > 0.
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preprocessing time to eOð ffiffiffiffiffi
m

p
n2Þ using random sampling in [2]

and improved the preprocessing time again to eOðmnÞ based
on a deterministic construction algorithm in [3] with the same
query time and the same space. For dual failures, Duan and
Pettie [5] proposed an oracle that requires eOð1Þ query time,eOðn2Þ space, and vðmnÞ preprocessing time. For a variable
number of failures, Weimann and Yuster proposed the oracle
constructed by a randomized algorithm in [8], [9]. All the
existing distance sensitivity oracles for a directed graph with
real-valued edge weights suffer from vðn2Þ space and vðmnÞ
preprocessing time.

There is only one study for the distance sensitivity prob-
lem with some experiments. Qin et al. [7] proposed a dis-
tance sensitivity oracle that works only for undirected
unweighted graphs with any single edge failure. This work
can be applied only for a limited class of graphs and the
datasets used in its experiments are rather small.

Dynamic Distance Oracle. One of non-trivial ways for han-
dling the distance sensitivity problem is to use an existing
fully dynamic distance oracle.Most existingworks for a fully
dynamic distance oracle in theory literature are not practical
to be applied for recent directed graphs with million-level
nodes. Instead, there are several recent studies in database
literature that deal with large dynamic graphs for processing
distance queries. Tretyakov et al. [11] proposed a fully
dynamic approximate distance oracle, named LCA, based
on landmarks without any theoretical guarantee for accu-
racy. The query time of this oracle is OðlDÞ where l is the
number of landmarks andD is the diameter of a graph, while
the update time for an edge deletion isOðlðm þ n lognÞÞ. We
will compare our distance sensitivity oracle with this fully
dynamic distance oracle in the experiments. Cheng et al. [12]
proposed a fully dynamic distance oracle based on a vertex
cover, but it only handles single source distance queries. Fu
et al. [13] proposed a distance oracle having an index struc-
ture, called a vertex hierarchy structure, which is constructed
with an independent set by a similar way as we use it for
finding a k-path cover. However, in [13], the relationship
between an independent set and a k-path cover is not
explored. In addition, Fu et al. only focused on vertex
updates. Akiba et al. [14] proposed the first practical exact
distance oracle targeting on dynamic graphs, but it considers
only edge/node additions, not edge/node deletions. There
is a recent work of Hayashi et al. [15] for a fully dynamic dis-
tance oracle. However, since it is limited to undirected
unweighted graphs, we do not compare our oracles with it.

Dynamic Shortest Routing. There are several existing studies
[16], [17], [18], [19], [20], which are designed to compute a
point-to-point shortest path on dynamic graphs with edge
weight changes. By setting the edge weights of failed edges to
1, their algorithms can solve the distance sensitivity problem.

One of famous online shortest path algorithms is the A*
search algorithm, which is a best-first search algorithm
incorporating a heuristic distance estimation proposed in
[21]. Delling and Wagner [16] reported that the A* search
algorithm can efficiently compute a point-to-point shortest
path on a changed graph, in which some edge weights
increase, without updating its preprocessed index. This
observation inspires us to exploit the A* heuristics for the
distance sensitivity problem and the classical A* search
algorithm will be used as a competitor in the experiments.

Schultes and Sanders [18] proposed a dynamic shortest
path algorithm based on a multi-level overlay graph. Since
an edge weight of a higher level graph is the shortest

distance on its lower level graph, once the weight of an
edge in G is changed, many highway edges related to it may
be affected through multiple levels. Instead of explicitly
updating them, Schultes and Sanders proposed a modified
Dijkstra’s algorithm to simply avoid relaxing such affected
highway edges. Bruera et al. [19] analyze this algorithm to
provide a theoretical foundation about the effect of edge
weight changes in the highway hierarchy, and show that it
is better than the Dijkstra’s algorithm. As analyzed, this
approach can be efficient if the number of edges to be
changed is extremely small or such edges have nothing to
do with the query answer. Otherwise, however, since many
highway edges may become unavailable, the algorithm
would mostly use edges in G, which means that it would act
like the Dijkstra’s algorithm. In the experiments of [18], only
one thousand edges, 0.002 percent of the entire edge set, are
changed when comparing with the A* search algorithm.
Even in that case, their method is actually comparable with
the A* search algorithm.

Nannicini et al. [20] proposed a heuristic algorithm based
on a highway hierarchy. Given edge weight changes, the
heuristic is to compute a shortest path by the multi-level
bidirectional Dijkstra’s algorithm after only updating corre-
sponding edge weights of the highway hierarchy. Note that
the structure of the highway hierarchy is not updated at all.
Thus, the query time must be short, but there might be accu-
racy loss without any theoretical guarantee.

U et al. [17] proposed a stochastic way of optimizing a
hierarchical index structure and an algorithm to compute a
shortest path on dynamic graphs with a little recomputation
on it. The recomputation includes the dynamic shortest path
tree algorithm in [22] for the bounded shortest path tree as
our first oracle does. However, even for changed edge
weights that are not related at all to a resulting shortest
path, it updates its index structure to handle all of them,
while our oracles handle only a part of them if required.

There are other studies about dynamic time-dependent
graphs, in which edge weights can change over time. Even
if they deal with a kind of dynamic graphs, such depen-
dency on time is out of scope of this paper. This paper
focuses on accidental edge failures that are hard to predict
in advance.

Customizable Route Planing. Customizable route planing is
to compute the point-to-point shortest path defined by one
of various metrics such as travel time and geographical dis-
tance. There are several existing works for customizable
route planing [10], [23]. Theoretically, we can handle the
distance sensitivity problem via customizable route planing
by defining a cost function that returns infinity as the
weights of certain edges (i.e., failed edges). However, such a
cost function can handle only one set of failed edges. It
means that whenever a query is given, a new cost function
for the query should be defined, which would be fairly
expensive. Therefore, customizable route planing is inap-
propriate for solving the distance sensitivity problem.

Overlay Graphs. For computing point-to-point shortest dis-
tances, the concept of the overlay graph has been studied in
various ways [10], [24], [25], [26], [27]. The most relatedworks
with respect to a way of utilizing an overlay graph are [10]
and [27]. In order to build a good distance graph, we borrow
the concept of the k-path cover proposed in [10]. A k-path
cover is a set of nodes such that all paths of k consecutive
nodes in the entire graph include at least one of the nodes in
this set. Funke et al. [10] showed the idea of constructing an
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overlay graph that consists of nodes in a k-path cover. How-
ever, since theydo not consider at all the density of the overlay
graph, it is likely to be extremely dense. Akiba et al. [27] pro-
posed a hierarchical k-path cover under a dynamic graph.
However, this work does not consider either the density of a
distance graph when it computes a k-path cover. Since our
method selects a k-path cover with considering the density of
a resulting distance graph, it is likely to be more sparse than
distance graphs computed by their algorithms. We will com-
pare their algorithmswith ours in detail.

3 PRELIMINARIES

3.1 Problem Definition
For convenience, we explain our distance sensitivity oracles
for edge failures. It should be noticed that this work is easily
extended to handle node failures. In addition, for simplicity,
we regard that the shortest path is unique. All techniques in
this paper are applicable for the case that there are multiple
shortest paths between nodes.

To represent a general network, we consider a directed
graph G ¼ ðV;EÞ, where V is the set of nodes and E is the
set of edges, as the input graph. This is because there are
many cases that an edge failure can be unidirectional. For
example, road networks can be represented as an undi-
rected graph, but edge failures (road construction, demon-
stration, or car accident, etc.) can be unidirectional. Given a
graph X , for any node v in X , the set of inbound neighbors
of v is denoted as nin

X ðvÞ and the set of outbound neighbors
of v is denoted as nout

X ðvÞ. For any edge ðx; yÞ in a graph X ,
ðx; yÞ is associated with a weight, denoted as wXðx; yÞ,
which is a non-negative real value. For notational simplic-
ity, if X is the input graph G, it is abbreviated as wðx; yÞ. In
addition, we denote the empty set as ;.

We define that a path P is a sequence of edges. Even
though P is a sequence, when we focus on its elements, not
the order, we handle it as a set of edges with set operations
such as intersection. Given any path P in a graph X , the dis-
tance of P is defined to be dðP Þ ¼ P

ðu;vÞ2P wXðu; vÞ. In addi-
tion, the length of P , denoted as jP j, is defined to be the
number of hops of P . For any two nodes u; v 2 V and a set
of edges E� � E, the shortest (distance) path from u to v in
the graph ðV;E n E�Þ is denoted as P ðu; v; E�Þ and its dis-
tance is denoted as dðu; v; E�Þ.
Definition 3.1 (Distance Sensitivity Problem). Given a

directed graph G ¼ ðV;EÞ, the distance sensitivity problem is a
query ðs; t; F Þ, where s is the start node, t is the destination node,
and F is a set of at most f failed edges, asking to compute
dðs; t; F Þ.
The failed edge set F can be filled by a user or a system

depending on applications. It should be noticed that F is
formulated to be different for each query. The rationale of
this formulation is to achieve generality. For example, this
formulation is necessary for the case that a user asks the
shortest distance from a location to another with avoiding
user-specific roads.

As a trivial solution for this problem, the Dijkstra’s
algorithm still works well, and its running time is Oðmþ
n lognÞ with the Fibonacci heap. Another trivial solution is
storing the answer of every possible query. It takes Oðn2þ2fÞ
space, since Oðn2Þ comes from all pairs of nodes in V and
Oðn2fÞ comes from all possible combinations of at most f
edges among Oðn2Þ edges. Thus, a non-trivial distance

sensitivity oracle should be faster than the Dijkstra’s algo-
rithmwith a data structure of size lower thanOðn2þ2fÞ.

4 A DISTANCE SENSITIVITY ORACLE

This section describes our first oracle, called DIStance
graph-based Oracle (DISO), for the distance sensitivity
problem. In the following subsections, we first briefly intro-
duce Transit Node Routing (TNR) which our oracle is based
on. Then, we explain how to adapt TNR for this problem
with the fault-tolerant index structure. Finally, we show an
effective strategy to choose the node set of a distance graph
based on the concept of the k-path cover. Note that for all
theorems and lemmas in this section and the next section,
their proofs are given in the supplemental material, avail-
able online. Table 1 summarizes frequently used notations.

4.1 Transit Node Routing-based Query Processing

4.1.1 Transit Node Routing

TNR [28] is one of famous speed-up frameworks for fast
shortest path routing in road networks. The generic version
of this technique consists of the following items [29]:

� Transit Node Set:A set of nodes T � V that are supposed
to participate in many shortest paths.

� Distance Table: A table (or function) dT : T � T ! Rþ
0 , in

which Rþ
0 is the set of non-negative real numbers,

returning the shortest distance between transit nodes.
� Out-access (in-access) Node Mapping: A mapping Aout

(Ain) from a node v in V to the set of all transit nodes,
called out-access (in-access) nodes, each of which can
be the first (last) transit node on a shortest path from
(to) v.

� Locality Filter: A boolean function that returns true for
any two nodes in V if there is no transit node on the
shortest path between them, and otherwise returns false.

The first three items are computed in preprocessing and
the last item usually gets ready in querying. In TNR, for any
two nodes s and t, if the locality filter returns false for s and
t, dðs; tÞ is computed as [29]

dðs; tÞ ¼ min
ðu;vÞ2Aðs;tÞ

d̂ðs; uÞ þ dT ðu; vÞ þ d̂ðv; tÞ; (1)

where Aðs; tÞ denotes AoutðsÞ �AinðtÞ and d̂ðx; yÞ denotes
the distance of the shortest path from x to y which does not
pass through any other transit node except x and y. Other-
wise, an alternative algorithm is used to compute dðs; tÞ.
Note that even if we replace AoutðsÞ and AinðtÞ with their
supersets, (1) holds.

The underlying idea of TNR is to use precomputed distan-
ces stored in the distance table as highways to effectively

TABLE 1
Frequently Used Notations

G the input graph
D a distance graph
Gu the bounded shortest path tree of a node u
nout
X ðvÞ the outbound neighbors of node v in a graph X

nin
X ðvÞ the inbound neighbors of node v in a graph X

P ðs; t; F Þ the shortest path from s to t in the graph ðV;E n F Þ
dðs; t; F Þ the distance of P ðs; t; F Þ
dðs; tÞ the distance of P ðs; t; ;Þ (¼ dðs; t; ;Þ)
dðP Þ the distance of path P
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reduce search space for computing dðs; tÞ. In order to enjoy
such amerit,DISO is designed to answer a query based on (1)
by adapting TNR to efficientlywork on the graph ðV;E n F Þ.

Adaptation. InDISO, computing the access node mapping
is simply done by a modified version of the Dijkstra’s algo-
rithm, called the bounded Dijkstra’s algorithm. The algo-
rithm is designed to avoid traversing beyond transit nodes
except the source node. It is easy to see that the set of transit
nodes visited by the bounded Dijkstra’s algorithm from s is
a superset of AoutðsÞ, which is denoted by A�

outðsÞ. In addi-
tion, the reported distance from s to each node u in the
superset is exactly the same as d̂ðs; uÞ. A superset of AinðsÞ,
which is denoted by A�

inðsÞ, is similarly computed by the
bounded Dijkstra’s algorithm.

The locality filter is also handled by the bounded Dijkstra’s
algorithm. If the locality filter returns true, t must be visited
by the bounded Dijkstra’s algorithm from s and the reported
distance from s to tmust be the right query answer. Based on
this fact, without computing the locality filter explicitly, if the
reported distance is smaller than the distance based on (1),
DISO returns the reported distance as the query answer.

The distance table cannot be a jT j � jT j table for the dis-
tance sensitivity problem, because the distances stored in it
may change by failures. Instead, we propose a novel fault-
tolerant index structure in the next subsection. Meanwhile,
since selecting a transit node set significantly depends on
that index, we will discuss it later in Section 4.3.

4.1.2 Fault-Tolerant Index Structure

The proposed fault-tolerant index structure consists of two
levels. In the first level, we have the distance graph to summa-
rize the distance information of the entire graph. In the second
level, for any node v in the distance graph, we have a small
tree to deal with local path information near v in graph G and
the inverted tree index over edges participating in the tree.
The first level is used to construct a solution path in a global
level and the second level is used to deal with the impact of
network failures on the distance graph in a local level.

First-Level Index. Consider a set of transit nodes T � V
and a query ðs; t; F Þ. Instead of the distance table on them,
we exploit a special graph, called the distance graph, which
is defined as follows:

Definition 4.1 (Distance Graph). Given any set of transit
nodes T � V , a distance graph is defined to be a graph
D ¼ ðVD; EDÞ where VD ¼ T and ED � T � T . For any pair
ðu; vÞ 2 T � T , ðu; vÞ is included in ED, if there exists a path

from u to v in G which does not pass through any other node in T .
Each edge ðu; vÞ 2 ED is associated with a weight denoted as
wDðu; vÞ. Given a failed edge set F � E, for any two nodes
u; v 2 VD, the shortest distance from u to v in D is denoted as
dFDðu; vÞ.
For the rest of this section, consider that we have a set of

transit nodes T � V and the distance graph D having T as
the node set. The topological structure of the distance graph
can be computed by executing a graph traversal algorithm
for each node of T in preprocessing. Fig. 1 shows an exam-
ple input graph and the distance graph of it derived from a
node set.

Let us describe the edge weighting scheme for the distance
graph D. Given any two nodes x 2 V and y 2 T , for any edge

setE� � E, let P̂ ðx; y;E�Þ denote the shortest path from x to y
in the graph ðV;E n E�Þ among ones that do not pass through
any node in T n fx; yg and d̂ðx; y;E�Þ its distance. If
P̂ ðx; y;E�Þ does not exist, then d̂ðx; y;E�Þ is 1. Note that
P̂ ðx; y;E�Þ may not be P ðx; y;E�Þ. For each edge ðu; vÞ in ED,
wDðu; vÞ is set to d̂ðu; v; ;Þ in preprocessing. Given a query
ðs; t; F Þ, wDðu; vÞ will be recomputed to d̂ðu; v;F Þ, if P̂ ðu; v; ;Þ
contains some failed edge and wDðu; vÞ is necessary to com-
pute the query answer. Otherwise, we can use d̂ðu; v; ;Þ as the
weight of ðu; vÞ inD, because d̂ðu; v;F Þ ¼ d̂ðu; v; ;Þ orwDðu; vÞ
is unnecessary. For example, in Fig. 1, consider that
wð1; 3Þ > 1 and the other edge weights in the input graph are
equal to 1. Then, P̂ ð1; 5; fð1; 5ÞgÞ is hð1; 3Þ; ð3; 5Þi and
P ð1; 5; fð1; 5ÞgÞ is hð1; 2Þ; ð2; 5Þi.

This weighting scheme gives the following lemma, which
enables us to use shortest distances on the distance graph as
those of the distance table.

Lemma 1. For any two nodes u; v 2 T and any failed edge set
F � E, the edge weighting scheme guarantees that dFDðu; vÞ ¼
dðu; v; F Þ.
For completing the above scheme, we need to define how

to determine edge weights to be recomputed and how to
recompute them. They are efficiently done with the second-
level index.

Second-Level Index. The second-level index includes a tree
structure for any node u 2 T , called the bounded shortest
path tree, and the inverted tree index over its edges. They
are constructed in preprocessing.

Definition 4.2 (Bounded Shortest Path Tree). For any
node u 2 T , the bounded shortest path tree of u is a tree where
u is the root and the path from u to any other node v in the tree
is identical to P̂ ðu; v; ;Þ, and it is denoted as Gu. Gu contains
every node v in V such that P̂ ðu; v; ;Þ exists. An example for
the bounded shortest path tree is depicted in Fig. 1c.

Definition 4.3 (Inverted Tree Index). For any edge e 2 E,
the inverted tree index is an in-memory map from e to the list
of all bounded shortest path trees containing e.

For computing the bounded shortest path tree of a transit
node, we use the bounded Dijkstra’s algorithm. Suppose
that we run the bounded Dijkstra’s algorithm on G from a
node u in the outbound direction. Then, it gives a path tree
as the Dijkstra’s algorithm does. It is trivial that this path
tree is identical to Gu.

Let us explain how to use the second-level index for the
edge weight recomputation. Given a query ðs; t; F Þ, the
query algorithm finds transit nodes x 2 T such that Gx has

Fig. 1. Examples of an input graph and a two-level index structure.

LEE AND CHUNG: EFFICIENT DISTANCE SENSITIVITYORACLES FOR REAL-WORLD GRAPH DATA 89

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on October 12,2021 at 06:39:40 UTC from IEEE Xplore.  Restrictions apply. 



some failed edges, which are called affected nodes. Finding
affected nodes is efficiently implemented with the inverted
tree index. We can see that the weights of edges from such
an affected node on D have the possibility of change due to
failures. Since the query algorithm includes a Dijkstra-like
procedure on D, such edge weights are determined to be
recomputed right before the edges are actually relaxed. This
technique for recomputing such edge weights on demand is
called lazy recomputation. For the recomputation, we use
an algorithm, named DynDijkstra [22], which updates short-
est path trees on dynamic graphs. This algorithm is adapted
to update a bounded shortest path tree instead of an origi-
nal shortest path tree, but since the change is minor, we
omit the details of the adaptation. It should be noticed that
we do not explicitly update Gx in the adapted algorithm,
but recompute only the distances.

4.1.3 The Query Algorithm

Let us complete the query algorithm of DISO as a TNR vari-
ant. Given a query ðs; t; F Þ, it first finds affected nodes with
the inverted tree index. After that, as we mentioned,
d̂ðs; t; F Þ and the access nodes of s and t are computed by the
bounded Dijkstra’s algorithm. Then, the query algorithm
computes the distance of the shortest path from s to t passing
through at least one transit node based on (1) with a Dijkstra-
like search procedure, which is denoted by dDðs; t; F Þ. This
procedure actually works like the Dijkstra’s algorithm on D,
but it starts with a priority queue initially containing the
access nodes in A�

outðsÞ. For any node u that will be traversed
in this procedure, the priority value of u is the minimum
observed distance from s to u, which is denoted by
doðs; u; F Þ. Note that if u is an access node in A�

outðsÞ,
doðs; u; F Þ ¼ d̂ðs; u; F Þ before doðs; u; F Þ is updated. When-
ever a node v in A�

inðtÞ from the queue is popped, it updates
doðs; t; F Þ. In addition, if a node x popped from the queue is
an affected node, the weights of out-bounding edges from x
on D are recomputed with Gx. This recomputation is done
before relaxing the edges from x. After the queue becomes
empty or t is popped when it is a transit node, doðs; t; F Þ
becomes dDðs; t; F Þ. Finally, the algorithm returns the mini-
mum of dDðs; t; F Þ and d̂ðs; t; F Þ, which is dðs; t; F Þ. The
pseudo code of this procedure is included in the supplemen-
tal material, available online, due to space limitations.

For simplicity, the query algorithm is based on the classic
(not bidirectional) Dijkstra’s algorithm. If we construct this
query algorithm based on a more efficient online shortest
path algorithm like the bidirectional Dijkstra’s algorithm,
the query algorithm will run faster. In Section 5, we show
how the query algorithm is converted to an algorithm like
the A*-search algorithm, which is an improved version of
the Dijkstra’s algorithm to reduce the search space.

Correctness. We now prove the correctness of this query
algorithm.

Lemma 2. After the query algorithm is finished, for any query
ðs; t; F Þ, if P ðs; t; F Þ contains some node in T ,

doðs; t; F Þ ¼ dDðs; t; F Þ ¼ dðs; t; F Þ: (2)

By definition, for any query ðs; t; F Þ, if P ðs; t; F Þ does not
contain any node in T as an intermediate node, d̂ðs; t; F Þ ¼
dðs; t; F Þ. This proposition and the previous lemma directly
imply the correctness of the query algorithm.

Theorem 1. For any query ðs; t; F Þ, the query algorithm of
DISO correctly finds dðs; t; F Þ.
Cost Analysis. We denote the average cost for the

bounded Dijkstra’s algorithm as cB. cB depends on the
structure of G and T . The cost for finding affected nodes is
OðjF jjT jÞ and the cost for computing the access nodes is
OðcBÞ. Building the priority queue for the Dijkstra-like pro-
cedure on D requires OðjT jlog jT jÞ time. In the Dijkstra-like
procedure, recomputing the edge weights of an affected
node requires OðcBÞ time, because updating a bounded
shortest path tree is definitely cheaper than constructing
it from scratch. Thus, the Dijkstra-like procedure uses
OðjEDj þ jT jlog jT j þ jAavgjcBÞ time where jAavgj is the
average of jAj. Finally, the total query time is OðjEDjþ
jT jlog jT j þ jF jjT j þ jAavgjcBÞ.

Meanwhile, it is straightforward that the preprocessing
time to construct a distance graph and bounded shortest
path trees is OððjV j þ cBÞjT jÞ when T is given. The space for
the inverted tree index from edges to bounded shortest path
trees is OðjEj þ jT jjGavgjÞ where jGavgj is the average number
of nodes in the bounded shortest path tree of a transit node.
Thus, the total space complexity required by this query
algorithm is OðjEDjþ jT jjGavgj þ ðjEj þ jT jjGavgjÞÞ ¼ OðjEDjþ
jT jjGavgj þ jEjÞ.

4.2 Stall Avoidance
One can worry that since some edge weights in the distance
graph of our oracle can be updated in the query algorithm,
our oracle cannot avoid such stalling. However, even if such
edgeweights in the distance graph are recomputed for query
processing, our oracle can be implementedwithout explicitly
updating them. In the query algorithm, the only part that
changes the index structure of our oracle is to recompute
edge weights on the distance graph before relaxing. There is
a sweet property of the Dijkstra’s algorithm that any relaxed
edge will not be re-relaxed. Thus, for any edge weight
wDðu; vÞ that is recomputed, it will not be used again after
the edge u to v in D is relaxed. This means that we do not
have to store wDðu; vÞ for future reuse, so we do not have to
permanently update it. Therefore, our oracle can be imple-
mentedwithout any explicit update on the index structure.

4.3 Toward a Good Distance Graph
A good distance graph for DISO has a small number of
nodes and edges. This subsection presents an effective
method for constructing such a distance graph.

4.3.1 A k-Path Cover and its Effect

Because a set of nodes identifies a unique distance graph,
we focus on choosing a transit node set for a good distance
graph. For this purpose, we first define a k-path cover.

Definition 4.4 (k-Path Cover). For some integer k > 0, a
k-path cover C is a set of nodes such that all simple paths consist-
ing of k nodes in G pass though at least one of the nodes inC.

For example, the node set of the distance graph in Fig. 1
is a 3-path cover in the input graph. It is easy to see that all
paths consisting of 3 nodes in the input graph pass through
at least one of 2, 4, 5, 7, and 9.

Let us examine how a k-path cover C affects DISO, when
C is used as the transit node set for DISO. The most impor-
tant property of k-path cover C is that for any node u 2 C,
the lengths of all paths from u in G, which do not contain
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any other node in C as an intermediate node, are bounded
by k. It guarantees that the bounded Dijkstra’s algorithm
from a node v searches at most k hops from v. When k is
much smaller than the diameter of G, cB, which is the aver-
age cost for the bounded Dijkstra’s algorithm, must be
smaller than that for the Dijkstra’s algorithm. In addition, k
affects jCj, jEDj, and jGavgj. Since there is some trade-off for
performance depending on k, we find an appropriate value
for k by increasing k from k ¼ 2 in experiments.

4.3.2 Selecting a Better k-Path Cover based on an

Independent Set

Computing the minimum k-path cover is NP-hard [30].
Funke et al. [10] introduced a heuristic method to compute
a minimal k-path cover. However, they do not consider the
sparsity of the distance graph (the overlay multigraph in
[10]) derived from the k-path cover. Thus, the distance
graph derived from their k-path cover may be very dense,
and then it harms the efficiency of DISO.

Motivated by this, we devise an effective method to com-
pute a k-path cover and its derived distance graph consider-
ing density. It is based on the independent set, which is a
well-known concept in graph theory. An independent set I
is a set of nodes in V such that no two nodes in I are adjacent.
Let us explain how a distance graph for G is derived from I.
Initially, we have a graph GI ¼ ðVI; EIÞ where VI ¼ V and
EI ¼ E. For each node v 2 I, we remove v from GI and edges
incident to v. Then, we add edges ðx; yÞ 2 nin

G ðvÞ � nout
G ðvÞ

into GI if ðx; yÞ 62 EI . After this process is finished, because I
is an independent set, it is trivial that VI ¼ V n I and VI is a 2-
path cover in G, and GI is a distance graph.

Given an independent set computation function GetISð�Þ,
we construct a distance graph with a more elaborate way as
follows. Consider a distance graph Di ¼ ðVi; EiÞ for
0 � i � t � 1 where t is some parameter larger than 0. Ini-
tially, D0 ¼ G. We iteratively compute an independent set
ISi of Di by calling GetISðDiÞ and construct a new distance
graph Diþ1 for G with Viþ1 ¼ Vi n ISi. This procedure gives
the following lemma.

Lemma 3. For all integer parameter t 	 1, Vt in the above proce-
dure is a 2t-path cover in G.
Independent Set Selection. The remaining part for the path

cover algorithm is to complete GetISð�Þ. For each step
0 � i � t � 1, if we can find an independent set from Di

such that the number of nodes and the number of edges in
Diþ1 are minimized, then the output distance graph eventu-
ally has a small number of nodes and edges. However, find-
ing such an independent set is a hard problem, because
finding the maximum independent set is NP-hard, which
only minimizes the number of nodes in Diþ1. Based on this
background, we propose a greedy method to find an inde-
pendent set I such that the number of edges in the distance
graph derived from I is effectively reduced.

Our greedy method incrementally constructs an inde-
pendent set and its derived distance graph as follows. Given
an input distance graph Di ¼ ðVi; EiÞ, our greedy method
starts with initializing I as the empty set and constructing a
graph DI ¼ ðVI; EIÞ where VI ¼ Vi and EI ¼ Ei. Then, it
iteratively picks a node v from DI such that v is not adjacent
to any node in I on Di and vminimizes the following:

sðvÞ ¼ j ðx; yÞ 2 NPairðvÞ n EIf gj � nin
Di
ðvÞ þ nout

Di
ðvÞ

� �
;

where NPairðvÞ denotes nin
Di
ðvÞ � nout

Di
ðvÞ. It is easy to see

that sðvÞ is the net contribution of v to the number of edges
in the distance graph derived from the resulting indepen-
dent set. If sðvÞ � u where u is a user-specific parameter, the
method removes v from DI . u plays an important role for
controlling the number of the nodes and the sparsity of the
resulting distance graph. After removing v, new edges
ðx; yÞ 2 NPairðvÞ n EI are added into DI such that ðx; yÞ 62
EI . This is repeated until every node u in VI is adjacent to
some node in I on Di or sðuÞ > u. This method is described
in Algorithm 1. In Algorithm 1, V �

I denotes the set of nodes
in VI that are not adjacent to any node in I on Di.

Algorithm 1. GetIS ðDiÞ
Input: Di ¼ ðVi; EiÞ: the distance graph
Output: I: the independent set
1 begin
2 I :¼ ;;
3 Construct DI ¼ ðVI; EIÞwhere VI ¼ Vi and EI ¼ Ei;
4 while 9v 2 V �

I s.t. sðvÞ > u do
5 v :¼ argminv2V �

I
sðvÞ;

6 if sðvÞ > u then
7 break;
8 Remove v from DI and add it to I;
9 Add new edges ðx; yÞ 2 NPairðvÞ n EI intoDI ;
10 return I;

Comparison with [27] and [10]. Our method removes a
node which minimizes the net contribution of the node to
the sparsity of the distance graph derived from the resulting
independent set. Recall that in [10], when a k-path cover is
computed, the density of the distance graph derived from
the resulting k-path cover is not considered at all. The dis-
tance graph computed by our algorithm has a relatively
smaller number of edges than the distance graph derived
from a k-path cover in [10].

Akiba et al. proposed a method for computing a k-path
cover with the concept of the vertex cover, which is the com-
plement of an independent set. Note that in our algorithm,
since ISi is an independent set, Vi n ISi is a vertex cover.
Instead of computing ISi, the method of Akiba et al. directly
computes a vertex cover which will be the node set of the
next distance graph like Vi n ISi.

The main difference between our approach and the
method of Akiba et al. is that the sparsity of the resulting
distance graph can be controlled via u in our approach, but
not in their method. In fact, Akiba et al. did not much con-
sider the sparsity of a distance graph like [10]. In addition,
the idea of using an independent set itself is more appropri-
ate for computing the net contribution of a node to the spar-
sity of the next distance graph than that of using a vertex
cover. For example, consider a node v 2 V �

I in Algorithm 1.
In order to compute sðvÞ, we only need to pairwise check
the outbound neighbors and the inbound neighbors of u,
which requires Oðd2Þ where d is the degree of v. This is
because if v will be included in the resulting independent
set of Algorithm 1, the neighbors of v must be included in
the next distance graph. However, there is no such a guar-
antee with a vertex cover. In addition to this analysis, we
will conduct experiments to compare our approach and the
other path cover computation methods in [10] and [27].

Complexity. Let us analyze the time complexity of our
k-path cover algorithm. In order to implement Line 5 of
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Algorithm 1, we use a priority queue, and the cost for con-
structing and maintaining it is OðnlognÞ. Thus, the cost for
GetIS(�) is Oðnðlognþ deg2avgÞÞ where degavg is the average
degree in the observed distance graphs. In our k-path cover
algorithm, we can get Diþ1 without any additional cost,
becauseDI in Algorithm 1 becomesDiþ1 after I is computed.
Therefore, the total time complexity isOðtnðlognþ deg2avgÞÞ.

5 AN A* SEARCH-BASED DISTANCE SENSITIVITY

ORACLE

This section presents our second oracle, which is an
improved version of the first oracle based on the A* heuris-
tics. This oracle is called an A* search-based DIstance Sensi-
tivity Oracle (ADISO). We first review the A* heuristic
search, and then explain how to apply its concept to the
query algorithm.

5.1 Review on the A* Heuristic Search
The A* search algorithm is designed to compute the shortest
distance from a node s to a node t. For any node u 2 V , the
cost function f of the A* search algorithm is defined as,

fðuÞ ¼ dðs; uÞ þ hðu; tÞ;
where hðu; tÞ is a heuristic estimate for the shortest distance
from u to t. Starting from s, the A* search algorithm greedily
finds the path from s to tminimizing fðtÞ.

The heuristic function h is designed to return a lower
bound distance from u to t. For generality, instead of
non-geodesic distances like the euclidean distance, we
use a lower bound scheme based on geodesic distances,
which was proposed by Goldberg et al. [31]. This scheme
is based on landmarks, which are specially selected
nodes, and the triangle inequality. We explain it in the
following subsection.

5.2 A Landmark-Based Lower Bound Scheme
For any failed edge set F and any two nodes u; v, we design
a lower bound distance of dðu; v; F Þ as follows. Note that
the cost for computing a lower bound distance should be
cheap for the A* search algorithm, but efficiently computing
a lower bound of dðu; v; F Þ in query processing is not trivial,
because F is given in a query. Thus, instead of dðu; v; F Þ, we
focus on computing a lower bound of dðu; vÞ, because
dðu; vÞ itself is a lower bound of dðu; v; F Þ. As a lower bound
of dðu; vÞ, we use the following lower bound based on the
triangle inequality, which was proposed in [31].

hðu; vÞ ¼ max
x2L

flxðu; vÞg � dðu; vÞ;

where lxðu; vÞ ¼ max dðx; uÞ � dðx; vÞ; dðu; xÞ � dðv; xÞf g.
Applying the A* Heuristic Search. In the query algorithm of

DISO, the priority value (i.e., cost) of a node is the minimum
observed distance from s to it. In order to make the query
algorithm have a form of the A* heuristic search, we design
the new cost function of the query algorithm as,

costðvÞ ¼ doðs; v; F Þ þ hðv; tÞ:
This value is interpreted as the estimated distance of the
shortest path from s to t passing through v.

Theorem 2. For a query ðs; t; F Þ, the query algorithm with the
modified cost function costð�Þ correctly computes dðs; t; F Þ.

Implementation and Complexity. In order to compute the
heuristic function h in query time, we need to store the out-
bound/inbound shortest distances from each node of a
landmark set L in preprocessing time. This information
only requires OðNLnÞ space where NL is a user-specific
parameter for the number of landmarks. Computing it
requires OðNLðmþ n lognÞÞ time, because we need to run
the Dijkstra’s algorithm multiple times. In addition, the
asymptotical running time of the query algorithm is not
changed, because computing h is a much cheaper operation
than updating the priority queue of the query algorithm.
Note that the number of landmarks is constant in [31], so
NL will be constant over various datasets in experiments.

5.3 Improved Lazy Recomputation
We improve the lazy recomputation for the edge weights of
D with the A* heuristics. Recall that the weights of edges
from a node u in D are recomputed in the query algorithm,
if Gu has any failed edge. This technique efficiently works
with a small number of failed edges, but its efficiency
decreases as the number of failed edges increases. This is
because when the tree contains many failed edges, updating
it becomes similar to constructing it from scratch, which can
require many unnecessary computations. Let us explain
such unnecessary computations using an example in Fig. 2.
The upper graph is an input graph G and the lower graph
is a distance graph D. A black node represents a transit
node, a straight arrow represents a directed edge, and a
curved arrow represents a path. The dotted lines do not rep-
resent actual edges, but describe the relationships between
transit nodes in G and nodes in D. In this example, there are
failed edges, so that F ¼ fð2; 1Þ; ð2; vÞg. Suppose that
P̂ ðu; v; ;Þ consists of ðu; 2Þ and ð2; vÞ. Then, since F includes
ð2; vÞ, the weight of ðu; vÞ in D should be recomputed by
updating Gu when a query ðs; t; F Þ is being processed. How-
ever, the update of Gu inevitably includes computing the
bounded shortest path from u to x even if P ðs; t; F Þ does not
contain it. In this way, the current update method can con-
tain many unnecessary computations having nothing to do
with processing a given query.

In order to address this, we propose an improved Dijk-
stra-like procedure to handle affected nodes with the A*
heuristics. For such affected nodes, the improved procedure
is designed to recompute their related edge weights in D on
the fly. For this, the improved procedure has a merged form
of the procedure for computing a solution path on D and
that for recomputing such edge weights on G. Note that it
does not use bounded shortest path trees to recompute such
edge weights anymore.

The improved Dijkstra-like procedure is described in
Algorithm 2. In this algorithm, there are two separate prior-
ity queues QD and QG such that one is for nodes in D and

Fig. 2. An example about affected nodes in querying.
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the other is for nodes in G. Let topðQÞ denote the priority
value of the highest priority node of priority queue Q. If Q
is empty, topðQÞ returns 1. For any node v, doðs; v; F Þ is
abbreviated as doðvÞ.

This procedure starts with the queueQD initially contain-
ing the nodes in A�

outðsÞ as the query algorithm of DISO
does. The priority value of a node v is the new cost function
costðvÞ. For each iteration over Lines 4-22 in Algorithm 2, it
(Algorithm 2) first compares topðQDÞ and topðQGÞ. If
topðQDÞ is smaller than or equal to topðQGÞ, then D is
assigned to X1. Otherwise, G is assigned to X1. Consider
that X1 is D. Given a popped node v in this procedure, if the
minimum observed distances from the start node to neigh-
bors on the outbound edges of v are updated, then we say
that the edges are relaxed. If v is a transit node and not an
affected node, then it relaxes the outbound edges of v in D.
Otherwise, it relaxes the outbound edges of v in G with QG
based on the A* heuristics instead of updating Gv. In addi-
tion, consider that X1 is G. Then, it relaxes the outbound
edges of v in G. If a neighbor n of v is a transit node, then it
updates QD for n with costðnÞ. In this way, doðnÞ is main-
tained on the fly instead of explicitly using the recomputed
weight of the edge ðv; nÞ in D by updating Gv. This is the
most different thing between the improved Dijkstra-like
procedure and the original procedure. Meanwhile, if n is
not a transit node, it updates QG for n.

Algorithm 2. Improved Dijkstra-Like Procedure

1 begin
2 Initialize a priority queue QD with the nodes in A�

outðsÞ;
3 Initialize a priority queue QG as an empty queue;
4 while QD is not empty or QG is not empty do
5 if topðQDÞ � topðQGÞ then X1 :¼ D;
6 else X1 :¼ G;
7 v :¼ argminu2QX1

costðuÞ;
8 Pop v from QX1

;
9 if v ¼ t then
10 break;
11 if X1 ¼ D and v 2 A�

inðtÞ then
12 Push t into QD if costðtÞ ¼ 1;
13 doðtÞ :¼ minfdoðtÞ; doðvÞ þ d̂ðv; t; F Þg;
14 if v 2 C and v 62 A then X2 :¼ D;
15 else X2 :¼ G;
16 for n 2 nout

X2
ðvÞ do

17 if v 62 C and n 2 C then
18 Push n into QD if costðnÞ ¼ 1;
19 else
20 Push n into QG if costðnÞ ¼ 1;
21 doðnÞ :¼ minfdoðnÞ; doðvÞ þ wX2

ðv; nÞg;
22 costðnÞ :¼ doðnÞ þ hðn; tÞ;

Let us explain how unnecessary computations are
avoided in the improved Dijkstra-like procedure. Consider
the previous example described in Fig. 2. Suppose that the
query ðs; t; F Þ is given and u is popped from QD in the
improved Dijkstra-like procedure. Since u is an affected
node, the algorithm relaxes the outbound edges of u in G.
Compared with updating Gu, it greatly reduces many
unnecessary computations like traversing from u to x
because the A* heuristics make nodes closer to t be earlier
popped from the queues.

In addition to this, one decent property of the improved
Dijkstra-like procedure is that no edge weight in the

distance graph is updated. Thus, the modified query algo-
rithm still guarantees to avoid stalling as the former query
algorithm does.

We prove that with such merits, this modified query
algorithm still finds the correct answer of a given query as
follows.

Lemma 4. Consider a query ðs; t; F Þ, and any two nodes
u; v 2 C such that P̂ ðu; v; F Þ is a sub-path of P ðs; t; F Þ and u
is an affected node. For any node w 2 V on P̂ ðu; v; F Þ which is
popped from QG with doðwÞ in Algorithm 2,

doðwÞ ¼ doðuÞ þ d̂ðu;w; F Þ: (3)

Theorem 3. The improvedDijkstra-like procedure in Algorithm 2
correctly finds dDðs; t; F Þ.

5.4 Landmark Selection Strategy
For the efficiency of the A* search algorithm, we need to
select a set of effective landmarks. Computing an optimal
landmark set of the A* search algorithm for the failure-free
point-to-point shortest path problem is known to be NP-
hard [32], so heuristic selection methods are usually used
[31]. Similarly, we propose a sampling-based heuristic
method for landmark selection.

This method first samples uniformly at random a certain
number of nodes in G, and then computes the outbound/
inbound shortest distances from the sampled nodes. After
that, it samples uniformly at random pairs of nodes among
the sampled nodes again. For any pair of nodes u and v, we
say that a node w covers the pair if dðu; vÞ � lwðu; vÞ �
adðu; vÞ where a > 0 is a user-specific parameter. Given the
sampled pairs, we want to find a set of NL landmarks maxi-
mizing the number of covered sampled pairs. However,
computing such a landmark set is equivalent to the maxi-
mum coverage problem, which is NP-hard. Instead, we pro-
pose a greedy algorithm which iteratively picks k nodes
each of which maximizes the marginal gain to the number
of covered pairs. The entire procedure of this method is pro-
vided in the supplemental material, available online.

Complexity. Let N1 denote the number of the sampled
nodes andN2 the number of the sampled pairs. We consider
that N1, N2, and NL are constant, so we use the same values
for them over different datasets in the experiments. Thus,
the time complexity of the procedure in the supplemental
material, available online, is O(m + n logn).

Meanwhile, this method uses space mostly for storing
shortest distances. In this method, shortest distances from/
to sampled nodes are stored in OðnÞ space. Other structures
are dominated by them.

6 BOOSTING TECHNIQUES

We have two novel boosting heuristic techniques for query
efficiency: partial detouring and distance graph sparsifica-
tion. They are used to make our oracles faster with a slight
loss of accuracy.

6.1 Partial Detouring
Idea Sketch.Given a query ðs; t; F Þ, suppose that an initial path
Pinit from s to t, which is like P ðs; tÞ, is already computed by a
fast algorithm. The partial detouring is a technique which
computes the detours of certain edge-disjoint sub-paths of
Pinit having failures, called partial detours. Since this
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technique dealswith sub-paths ofPinit, the search space of this
is expected to be much smaller than that of computing
P ðs; t; F Þ from scratch, but the result may not be optimal.

Let us explain how we implement this technique. The
explanation is based on ADISO, but the principle can be
applied to DISO. Recall that the k-path cover is used as
the transit node set. It can also be used for defining the sub-
paths of a path, but we use another k0-path cover CD in the
distance graph D. From CD, we can construct an overlay
graph H ¼ ðVH; EHÞ where VH ¼ CD, which is a distance
graph of D. We also have another inverted index from a
node x in D to a node y in H such that x participates in the
bounded shortest path tree of y on D. If x is affected, then y
is also defined to be affected.

Based on H, the new query algorithm is as follows. Con-
sider that given a query ðs; t; F Þ, a modified version of
ADISO is used to construct an initial path. The access nodes
of s and t are normally computed in the graph ðV;E n F Þ.
After that, Algorithm 2 completes the initial path Pinit with
the empty affected node set A ¼ ;. In this step, by consider-
ing the edges in H as shortcuts, Pinit can be efficiently com-
puted. Then, it is easy to see that Pinit can be decomposed as
sub-paths hs ! cii, hci ! hii, hhi ! hji, hhj ! cji, and
hcj ! ti, where ci 2 VD and hi 2 VH. Note that ci and cj are
the access nodes of s and t. This decomposition is depicted
in Fig. 3 where the dotted arrow represents a path. Since
hs ! cii and hcj ! ti are computed in the graph ðV;E n F Þ,
we do not need to consider detouring. For the other sub-
paths, each edge ðx; yÞ of them, which is located on D or H,
is inspected to determine whether x is affected or not. If x is
affected, then we compute the detour from x to y via ADISO
without the shortcuts. In this way, by computing such
detours, we can get the distance of the resulting path avoid-
ing any failed edge.

For further speed-up, the lower bound function hð�Þ is
used to determine whether shortcuts are to be traversed or
not. For any node u in D like hi of Fig. 3, if u is also inH and
hðu; tÞ > maxn2noutH ðuÞwHðu; nÞ, we traverse the shortcuts of
u, but not the edges of it in D. Otherwise, the edges in D are
only traversed. It is trivial that this usage does not cause
additional accuracy loss.

Discussion. This approach is so efficient in terms of query
time for two reasons. One reason is shortcutting with edges
in H when computing the initial path. The other is the fact
that any edge on D or H corresponds to a path of a bounded
length on G because D and H are constructed with path cov-
ers. Thus, the search space to compute a partial detour is
effectively localized especially for bounded-degree networks.

One can worry the case that there is no detour of an edge
ðx; yÞ on the initial path even if x is affected. In that case, a
simple remedy is to directly compute P ðs; t; F Þ via ADISO.
However, we expect that such a case happens very rarely,
so the additional query time caused by it is ignorable. It
should be noticed that such a case does not happen at all in
the experiments.

6.2 Distance Graph Sparsification
Even if the distance graph is constructed with consideration
of sparseness, it is still somewhat dense. Thus, there is some
opportunity of improving our oracles further in terms of
query time. For this, we introduce a simple sparsification
method for the distance graph and experimentally show the
effectiveness of it.

The key idea of the sparsification method is controlling
the effect of removing each edge with a theoretical bound.
Consider a simple case that we want to determine whether
a single edge ðx; yÞ on D can be removed or not. For a
parameter b 	 1, if a path from x to y, which does not
include ðx; yÞ, exists and its distance is lower than bwDðx; yÞ,
we can guarantee that for any shortest path P on D contain-
ing ðx; yÞ, there is an alternative path P 0 such that
dðP 0Þ � bdðP Þ without ðx; yÞ. We can extend this idea to the
case of removing multiple edges by tracking their cascaded
effects on error. The detailed algorithm and the theoretical
analysis are given in the supplemental material, available
online, for the lack of space.

Let us denote the sparsified graph of D by bD ¼ ðVbD; EbDÞ.
The sparsification method guarantees that after removing
edges from D by it, for any removed edge ðu; vÞ, there is at
least one path P on bD such that dðP Þ � bwDðu; vÞ. This
implies that the approximation error between shortest dis-
tances of D and bD is bounded by b. Note that this approxi-
mation bound is only valid if there is no failed edge.
Otherwise, it is not. Nevertheless, we can still manipulate
the error caused by the sparsification with b. Note that the
errors of our oracles based on the sparsified distance graph
are stable and small in practice.

One can worry that this technique removes out too many
edges because we do not consider future failures when
sparsifying. For example, if a node has only one remaining
edge and the edge fails, then it cannot reach any other node.
In order to handle this, we add a constaint that if the num-
ber of edges of a node is less than a certain number, we do
not remove them. In the experiments, the number is 5 for a
network whose averge degree is larger than 10 and 3 for
other networks. In addition to this, if the query algorithm
fails to find the query answer, the Dijkstra’s algorithm is
used to answer the query. However, such failed cases are
extremely rare.

7 EXPERIMENTS

We implement algorithms with C++ and run experiments on
an Intel(R) i7-3970X 3.50 GHzCPUmachinewith 64GBRAM.

7.1 Experimental Environment
Datasets. Real-world networks are usually scale-free or
bounded-degree networks. As a representative of scale-free
networks, we use three social network datasets: DBLP, You-
tube, and Pokec. As a representative of bounded-degree net-
works, we use three road network datasets: NY, CAL, and
USA. Epinions, DBLP, and Youtube were published by
Jure Leskovec.2 NY, CAL, and USA were published in the
9th DIMACS Implementation Challenge.3 More specifically,
DBLP is a co-authorship network where two authors are
directly connected if they co-authored at least one paper.
Youtube is a social network that is included in a video-

Fig. 3. Path Decomposition in the partial detouring.

2. http://snap.stanford.edu/data/.
3. http://www.dis.uniroma1.it/challenge9/.
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sharing web site where users canmake friendship each other
and it is abbreviated as YOU. Pokec is a popular online social
network in Slovakia and it is abbreviated as POKE. NY is a
road network of New York city, CAL is a road network of
California and Nevada, and USA is the entire road network
of USA. For simplicity, if there exist multiple edges defined
over the same node pair, we only take the minimum weight
edge. In addition, DBLP and YOU are undirected graphs.
For the undirected graphs, we make them directed by add-
ing an edge ðv; uÞ for each edge ðu; vÞ 2 E. Table 2 shows the
detailed statistics of all the datasets.

The core techniques in our oracles, which are the distance
graph, the k-path cover and the A* heuristics, are known to
be more appropriate for bounded-degree networks than
scale-free networks. Nevertheless, we include scale-free net-
works for experiments, because traditional techniques for
computing distances on scale-free networks such as the
landmark heuristics in [11] are not suitable for the distance
sensitivity problem.

Comparison Methods. We have seven competitors as
follows:

� DISO is our first distance sensitivity oracle.
� ADISO is our second distance sensitivity oracle. There

are two parameters N1 and N2 for selecting landmarks.
N1 andN2 are fixed to 10NL and 500 for all experiments,
respectively. The other parameters will be discussed in
detail.

� DISO-S is DISO with the sparsification technique. This
is tested only for the scale-free networks. Since the
query times of DISO and ADISO are similar for them,
the sparsification technique is tested with DISO. The
sparsification is applied to both the input graph and the
distance graph with the same value of b. For DBLP and
YOU, b ¼ 1:5while for POKEC, b ¼ 2:0.

� ADISO-P is ADISO with the partial detouring. This is
tested only for the road networks. Note that for comput-
ingH, u is set to1 and t is set to 4 for node reduction.

� DI is the classic (not bidirectional) Dijkstra’s algorithm
with a binary heap.

� A* is the classical A* search algorithm based on land-
mark heuristics proposed in [31]. For this algorithm, we
use landmarks selected by a local search-based heuristic
method, named max-cover, which was proposed in [33].
It is an improved version of the landmark selection
method used in [31]. For reference, we implement our
own version of the A* search algorithm in [33] for the
experiments, because it was designed for external
memory.

� FDDO is a fully dynamic distance oracle without any
theoretic guarantee for accuracy. This oracle is one of
four algorithms proposed in [11], named LCA (meaning
Lowest Common Ancestor), that has efficient query

time with good accuracy. For this algorithm, we use the
landmark selection method of [11], named the best cov-
erage technique. The number of landmarks for this
algorithm is 50 with consideration of accuracy and effi-
ciency. In addition, we revise their update algorithm to
make it work for a weighted directed graph as
described in [11]. Note that FDDO is an approximate
distance oracle without any theoretical guarantee for
accuracy.

Note that there are additional parameter sensitivity tests
which are not mentioned in the following sections. They are
included in the supplemental material, available online,
because of the limitation of the space.

Approximation. DISO-S, ADISO-P, and FDDO are approx-
imate algorithms. The average errors ofDISO-S and ADISO-
P are 0.6 and 2.9 percent, respectively, while that of FDDO is
1.6 percent. Thus, they are comparable in terms of accuracy.

Edge Weights. For road network datasets, we use the
travel time as the weight of each edge. For social network
datasets, since they do not provide any information about
edge weights, we set the weight of each edge as a real value
that is sampled uniformly at random from 0 to 1.

Query Generation. Because there is no well-known public
dataset including a graph structure and failures, we syn-
thetically generate queries. In order to generate a query, we
randomly select two nodes s; t 2 V as the source and the
destination, respectively. Next, for determining a failed
edge set, we introduce a syntactic failure generation method
with a parameter fgen 	 0 as follows.

First, a set F is initialized to ;. Then, we iteratively pick
uniformly at random an edge x in P ðs; t; F Þ, add x into F ,
and recompute P ðs; t; F Þ until jF j ¼ fgen. Because we pick
an edge in P ðs; t; F Þ at each iteration, every edge in F con-
tributes to the change of the shortest path from s to t. Thus,
this method makes P ðs; t; F Þ much different from the short-
est path from s to t in G.

One merit of our failure generation method is that we can
explicitly determine the number of essential failed edges for
the result shortest path. It is sufficiently fair to the proposed
oracles and FDDO, but it would be inappropriate to model
real-world failures. This is because real-world failures are
independent of the source and the destination. Thus, for
each query, in addition to fgen failed edges selected by out
failure generation method, we use edges each of which is
independently selected with probability p as failed edges.

In the experiments, if fgen and p are not explicitly speci-
fied, we set that fgen ¼ 5 and p ¼ 0:05%. The reason why the
value of p is set to 0.05 percent is described in the supple-
mental material, available online. All results are averaged
over 100 queries generated under the same environment. In
addition, it should be noticed that sometimes we only pres-
ent results for some of the datasets from experiments,
because results for the other datasets show a tendency simi-
lar to that of the presented results.

7.2 Path Cover Computation
u is the parameter for Algorithm 1 to determine a node u,
which makes the minimum value of sðuÞ for the current
iteration, to be added into the output independent set. We
provide experiments for analyzing u in the supplemental
material, available online. From the experiments, we set
u ¼ 1 for the road network datasets and u ¼ 16 for the social
network datasets.

TABLE 2
Statistics of the Real-Life Datasets

Dataset jV j jEj Avg. deg. Max deg. Type

NY 264k 734k 2.8 8 Road
DBLP 317k 1M 6.6 0.7k Social
YOU 1.1M 3.0M 5.3 57.7k Social
POKE 1.6M 30.6M 18.8 20.5k Social
CAL 1.9M 4.7M 2.5 7 Road
USA 24.0M 58.3M 2.4 9 Road
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We compare the IS-based path cover algorithm, denoted
as ISC, with the k-path cover algorithms in [10] and [27]. The
pruning-based algorithm of [10] is denoted by PRU. In PRU,
we set that nodes in V are visited in the increasing order of
the sum of the in-degree and the out-degree of a node. This
setting is easy to be implemented and presents good effec-
tiveness in [10]. In addition, the algorithm of [27] is denoted
by HPC. Since HPC hierarchically constructs a k-path cover
using the concept of the vertex cover, we need a strategy to
compute a vertex cover for a given graph. For this, we use
the heuristic method, named LR-deg, which showed the best
performance in [27]. We evaluated these comparisons in
terms of the number of nodes, the number of edges, query
time, preprocessing time, recomputation time, and access
time. The recomputation time is the time for the lazy recom-
putation and the access time is the access node search time.
We also report the averge number of affected nodes in the
supplemental material, available online.

The result of comparing the path cover computation
methods for DISO is shown in Table 3 and Fig. 4. Recall that
t is the user-parameter for the number of iterations in our
path cover computation algorithm. As reported in [27], PRU
greatly increases the number of edges of a resulting distance
graph and the preprocessing time with t 	 4. In the result,
ISC shows better effectiveness than all the other methods in
terms of reducing the number of edges in the resulting dis-
tance graph. Even if ISC has a slightly more number of
nodes in the resulting distance graph than the other meth-
ods, it outperforms them in terms query time in most cases.
Along with such effectiveness of ISC, the preprocessing
time with ISC is comparable to that with HPC. This result

demonstrates that ISC is more appropriate for our oracles
than any other methods.

In addition to the k-path cover, the set of the border nodes
of graph partitioning can be the transit node set. A border
node is a node having a neighbor included in a different par-
tition. In [17] and [35], border nodes act like transit nodes for
shortest path computation. Thus, we compare our k-path
cover algorithmwith existing graph partitioning algorithms.
The partitioning algorithm used in [35] is a famous algo-
rithm, named METIS [34]. Since the stochastic partitioning
algorithm in [17], denoted by SPA, is not fully described
either, our implementation for it may not be fully optimized.
The number of partitions is experimentally chosen as 3,000,
which makes reasonable query performance. Table 4, in
which UNIFORM denotes uniform random partitioning,
shows that ISC is better than the partitioning algorithms in
terms of query time. For NY, ISC achieves a more sparse dis-
tance graph than the other algorithms. For POKE, it also
achieves a much smaller distance graph than them. This is
because the objectives of the graph partitioning algorithms
are not related to the resulting distance graph. Instead, they
are related to the number of edges or the sumof edgeweights
between partitions, so that the distance graphs given by such
algorithms can be dense or large. Meanwhile, since SPA can-
not handle large graphs due to multiple eigenvalue compu-
tations, it is only evaluated for NY.

As shown in Fig. 4, selecting an appropriate value for k
(i.e., t) is crucial for the query performance of our oracles.
For the rest of the experiments, t of DISO is 4 for the social
network datasets and 8 for the road network datasets. t of
ADISO is 3 for the social network datasets and 7 for the
road network datasets. t of ADISO-P is 15.

7.3 Landmark Selection
a is the parameter for determining whether a node w covers
a sampled node pair in the landmark selection. We conduct
sensitivity test for this and the results are shown in the sup-
plemental material, available online. From this test, a is set
to 0.1 for road network datasets and 0.25 for the social net-
work datasets.

TABLE 3
Comparisons of Path Cover Computation Methods when k ¼ 256 (t ¼ 8) for Road Networks and k ¼ 16 (t ¼ 4) for Social Networks

jCj jEDj Preprocessing time(s) Query time(ms) Recomputation time
(ms)

Access time(ms)

ISC PRU HPC ISC PRU HPC ISC PRU HPC ISC PRU HPC ISC PRU HPC ISC PRU HPC

NY 42.96k - 22.79k 0.31M - 0.56M 3.37 - 3.33 14.71 - 23.17 1.94 - 9.77 0.04 - 0.09
CAL 0.15M - 95.45k 1.07M - 1.82M 27.80 - 20.72 71.61 - 0.11k 16.75 - 55.16 0.15 - 0.24
USA 1.80M - 1.14M 12.93M - 22.04M 0.46k - 0.30k 1.17k - 1.95k 0.30k - 1.0k 2.2 - 2.3
DBLP 56.86k 61.9K 49.54k 0.96M 2.45M 1.75M 8.37 19.98 6.55 86.63 0.14k 0.12k 4.56 28.45 16.95 0.05 0.06 0.06
YOU 0.12M 59.80k 63.25k 4.33M 39.79M 20.35M 0.27k 0.13k 0.17k 0.50k 5.20k 2.19k 90.58 3.65k 1.23k 0.18 0.26 0.20
POKE 0.88M 0.51M 0.57M 29.66M 1.08G 0.23G 0.28k 2.81k 0.52k 4.83k 92.27k 17.83k 0.13k 40.57k 4.39k 0.78 2.20 1.02

Fig. 4. Comparisons of path cover selection methods (USA).

TABLE 4
Comparing ISC with Graph Partitioning Algorithms for NYand

POKE (QT: Query Time, AT: Access Time)

NY POKE

jCj jEDj QT(ms) AT(ms) jCj jEDj QT(ms) AT(ms)

ISC 42.96k 0.31M 14.71 0.04 0.88M 29.66M 5.10k 0.88
UNIFORM 0.26M 0.73M 64.04 0.01 1.63M 30.62M 7.06k 0.87
METIS [34] 47.17k 0.56M 21.09 0.07 1.43M 30.35M 6.66k 0.89
SPA [17] 42.52k 0.54M 41.21 0.82 - - - -
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For ADISO, we compare the proposed Sampling-based
Landmark Selection method (SLS) with three existing land-
mark selection methods. One is a random selection method,
denoted as RAND, and another is max-cover, which is a local
search-based heuristic selection method. They were intro-
duced in [33]. The last method is a sampling-based method,
denoted by best-cover, which was used to select landmarks for
FDDO in [11]. There is another sampling-based method in
[36], but itwas shown to be less effective than best-cover in [11].

Note that since the A* heuristics are not much helpful for
the social networks, the results for them are reported in the
supplemental material, available online. Fig. 5 shows that
SLS has better performance than max-cover in terms of query
time with much smaller preprocessing time. SLS is also bet-
ter than best-cover in terms of query time and their prepro-
cessing times are comparable. Compared to RAND, SLS
stably finds appropriate landmarks to make ADISO have
efficient query time with reasonable preprocessing time.

With the consideration of query time and preprocessing
time, whenNL ¼ 10, ADISO shows good performance for all
the datasets.We also use 10 landmarks forA* for fairness.

7.4 Overall Performance

7.4.1 Query Efficiency

We omit some resulting query times of FDDO for USA,
because it requires too much time to run for that dataset.

Robustness Test. We conduct experiments with different
sizes of F . Fig. 6 depicts the results. The size of F is deter-
mined by fgen and p. With a large value of fgen, we can see
how fast an algorithm answers a query when the resulting
shortest path of it is significantly different from the original
shortest path. With a large value of p, we can evaluate an
algorithm in terms of the capability for handling failed
edges that are not essential for the resulting shortest path.

In Fig. 6, DISO- is a variation ofDISOwhich does not uti-
lizes the bounded shortest path trees at all. Instead, it uses
the breath-first search to find affected nodes and the
boundedDijkstra’s algorithm to recompute the edgeweights
associated with them. As p gets bigger, the query time of

DISO- gets even bigger, while that ofDISO does not increase
that much. This implies that the proposed technique using
the bounded shortest path trees is significantly helpful for
our oracles to efficiently handle failed edges.

In Fig. 6a, ADISO, ADISO-P, and A* similarly get slower
as fgen increases, because they are devised via the landmark-
based A* heuristics. When fgen is large, the lower bound dis-
tances derived from the A* heuristics get incorrect, which
hinders the algorithms from visiting nodes closer to the des-
tination early. Nevertheless, for the change of p, ADISO,
ADISO-P, and A* are relatively robust in Fig. 6b. Figs. 6c and
6d describe the results for POKE. Since it is scale-free, DISO
and ADISO are not that efficient, but DISO-S shows good
query performance based on the sparsification.

Bounded-Degree Networks. We evaluate the comparison
algorithms in terms of query time over the road network
datasets. The results are shown in Table 5. As expected,
ADISO-P is the fastest and ADISO is the second fastest in
terms of query time. It is remarkable that DISO has better
performance than A*, even though it does not utilize the A*
heuristics at all. Quantitatively, DISO is about 9 times faster
than DI. ADISO is about 5 times faster than A*. ADISO is
about 3 times faster than DISO. ADISO-P is about 3 times
faster than ADSIO. Compared to FDDO, ADISO-P is three
orders of magnitude faster on average with better accuracy.

Scale-Free Networks. The results for the scale-free net-
works are also shown in Table 5. It is remarkable that even
for the social network datasets, our oracles are more effi-
cient than any other algorithm in most cases. DISO and

Fig. 5. Comparing landmark selection methods withNL (USA).

Fig. 6. Query time with different sizes of F.

TABLE 5
Query Time and Preprocessing Time over Datasets

Data Query time(ms) Preprocessing time(s)

DISO- DISO ADISO DISO-S ADISO-P FDDO A* DI DISO ADISO DISO-S ADISO-P FDDO A*

NY 0.10k 14.71 4.96 - 2.03 6.77k 16.52 76.92 3.37 36.27 - 36.78 48.69 0.11k
CAL 1.18k 71.61 31.85 - 7.43 0.15M 0.16k 0.68k 27.80 0.32k - 0.33k 0.42k 0.66k
USA 0.12M 1.17k 0.27k - 73.66 - 1.52k 13.23k 0.46k 6.52k - 6.92k - 11.30k
DBLP 0.41k 86.63 0.11k 55.63 - 1.04k 0.30k 0.51k 8.37 0.18k 69.23 - 0.27k 0.14k
YOU 12.70k 0.51k 0.77k 0.23k - 10.53k 1.22k 2.36k 0.29k 1.14k 3.04k - 1.53k 0.76k
POKE 10.41k 5.10k 4.37k 2.32k - 10.54k 3.99k 5.89k 0.30k 2.09k 6.26k - 3.17k 1.56k
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ADISO are somewhat slower than the other competitors in
terms of query time in POKE. This is because the distance
graphs of our oracles are too dense in POKE whose average
degree is larger than 18. Nevertheless, for the other social
network datasets, our oracles are more efficient than any
other algorithm. In addition, DISO-S is the most efficient, so
we can see that the sparsification technique effectively
works. It is up to 2.2 times faster than DISO. Even for the
scale-free networks, our oracles can have reasonable query
time with the sparsification.

Even if FDDO is an approximate algorithm and its struc-
ture is very simple, FDDO takes a significant time to update
its structures in querying. That is why FDDO is extremely
slower than any other competitor in all the cases. From this
case, we can see that even a simple fully dynamic distance
oracle like FDDO turns out to be inappropriate for the dis-
tance sensitivity problem.

7.4.2 Preprocessing Time and Space

We evaluate the competitors in terms of preprocessing time
and space (index size). The results are presented in Tables 5
and 6. ADISO-P and DISO-S are not presented either,
because their sizes are comparable to those of ADISO and
DISO, respectively.

The index size of DISO is smaller than that of any other
methods containing preprocessed data in most cases. Com-
pared to A*, ADISO is still somewhat behind in terms of
index size, but the difference between ADISO and A* is not
large. Even if they have comparable index sizes, ADISO is
more efficient than A* in terms of query time.

In terms of preprocessing time, DISO is also more effi-
cient that any other methods containing preprocessed data.
Because of the efficient landmark selection method used for
ADISO, its preprocessing time is comparable to that of A*.

7.4.3 Summary

Overall, our distance sensitivity oracles outperform the com-
petitors in terms of query time in most cases. It should be
noted that DISO is also faster than FDDO and A* in terms of
preprocessing time with smaller space. ADISO is the most
efficient exact method for the road networks in terms of
query time with comparable preprocessing time and space.
In addition, we can see that the partial detouring and the dis-
tance graph sparsification effectivelymake our oracles faster.

8 CONCLUSIONS

The distance sensitivity problem is an important variation
of the point-to-point shortest distance problem which can
be used in many applications. It has been mainly studied
in theory literature, but all the existing works of this

problem for directed graphs suffer from prohibitively
expensive space and preprocessing time.

This paper presents two practical distance sensitivity
oracles that efficiently work for directed graphs. The first
oracle is based on the fault-tolerant index structure consist-
ing of the distance graph and the bounded shortest path
trees. We devise the efficient query algorithm for the oracle
that answers a querywithout any stalling queries. In order to
compute a good distance graph for this oracle, we utilize the
relationship between the k-path cover and the independent
set. Next, we propose the second oracle by applying the A*
heuristics to the first oracle. In addition, we propose two
speed-up techniques for making our oracles faster with a
slight loss of accuracy. Finally, we introduce efficientmainte-
nance strategies for our oracles to handle graph updates.

We conduct extensive experiments to evaluate our
oracles. The results demonstrate that our distance sensitiv-
ity oracles outperform the competitors in terms of query
time in most cases. Our first oracle is more efficient than
the competitors in terms of preprocessing time and space.
It is notable that our first oracle has mostly better query
performance than even the A* search algorithm. Our sec-
ond oracle has the best query performance for the road
networks with reasonable preprocessing time and space.
Moreover, the partial detouring and the distance graph
sparsification effectively make our oracles faster. Based on
these achievements, this paper is the first work for the dis-
tance sensitivity oracles that handle practical graphs with
million-level nodes.
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