
A Compressor for Effective Archiving, Retrieval,
and Updating of XML Documents

JUN-KI MIN, MYUNG-JAE PARK, and CHIN-WAN CHUNG

Korea Advanced Institute of Science and Technology

Like HTML, many XML documents are resident on native file systems. Since XML data is irregular
and verbose, the disk space and the network bandwidth are wasted. To overcome the verbosity
problem, the research on compressors for XML data has been conducted. Some XML compressors
do not support querying compressed data, while other XML compressors which support querying
compressed data blindly encode tags and data values using predefined encoding methods. Existing
XML compressors do not provide the facility for updates on compressed XML data.

In this paper, we propose XPRESS, an XML compressor which supports direct updates and
efficient evaluations of queries on compressed XML data. XPRESS adopts a novel encoding
method, called reverse arithmetic encoding, which is intended for encoding label paths of XML
data, and applies diverse encoding methods depending on the types of data values. Experimental
results with real-life data sets show that XPRESS achieves significant improvements on query
performance for compressed XML data and reasonable compression ratios. On the average, the
query performance of XPRESS is 2.13 times better than that of an existing XML compressor and
the compression ratio of XPRESS is about 71%. Additionally, we demonstrate the efficiency of
the updates performed directly on compressed XML data.

Categories and Subject Descriptors: I.7.1 [Document and Text Processing]: Document and
Text Editing—Document management; I.7.2 [Document and Text Processing]: Document
Preparation—Markup languages; XML

General Terms: Algorithms, Management, Performance

Additional Key Words and Phrases: Compression, Query Processing, XML

1. INTRODUCTION

The eXtensible Markup Language (XML) [Bray et al. 1998] is intended as a markup
language for an arbitrary document structure, as opposed to HTML which is a
markup language for a specific kind of hypertext data.

The basic data model of XML is a labeled tree, where each element or attribute
is represented as a node in the tree, and its tag corresponds to the label of the
corresponding node. This tree structured data model is simple enough to devise
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efficient as well as elegant algorithms for it. Due to its flexibility and simplicity,
XML is rapidly emerging as the de facto standard for exchanging and querying
documents on the web required for the next generation web applications including
electronic commerce and intelligent web searching.

To retrieve XML data, XML query languages such as XPath [Clark and DeRose
1999] and XQuery [Boag et al. 2002] have been proposed recently. These languages
are based on path expressions to traverse irregularly structured data. Therefore,
the efficient support of path expressions over XML data is a major issue in the field
of XML [Goldman and Widom 1997; Grust 2002].

Currently, a variety of research for XML data has focused on issues related to
XML storage [Florescu and Kossman 1999], retrieval [Goldman and Widom 1997;
Fernandez and Suciu 1998], and publication [Fernandez et al. 2000; Shanmugasun-
daram et al. 2000]. Although some XML data are managed in the XML storage,
large portions of XML data are still on native file systems as in the case of HTML.
Thus, in order for XML to become the true internet standard, the research on the
efficient management of the file based XML data is required.

One of the interesting applications for file based XML data is web searching.
In this application, if each web server manages its own data in the form of XML
and transmits it through the network, the storage and the network bandwidth
are wasted since XML data is irregular and verbose. To overcome the verbosity
problem, the research on compressors for XML data has been conducted [Liefke
and Suciu 2000; Tolani and Haritsa 2002; Cheng and Ng 2004; Arion et al. 2004].

XMill [Liefke and Suciu 2000] was designed to minimize the size of compressed
XML data. However, XMill was not intended to support querying compressed XML
data.

XGrind [Tolani and Haritsa 2002] was devised to evaluate queries directly on com-
pressed XML data. However, the encoding scheme of XGrind does not sufficiently
take into account the properties of XML data and query languages.

Furthermore, XMill and XGrind do not support direct updates on compressed
XML data. Thus, to update the XML data, the compressed XML data should be
decompressed completely. And then, updates and recompression are performed.
This approach consumes much time.

1.1 Our Contributions

In this paper, we propose XPRESS, an XML compressor, to compress XML data
for the purposes of archiving, retrieving and exchanging. XPRESS supports direct
updates and efficient evaluations of queries on compressed XML data.

In contrast to the web search engines for HTML, XML search engines can use
structural predicates such as path expressions for search conditions since XML
differentiates the structure from contents. For example, if users want to select
XML files that contain some information about sales of houses, users can submit a
search condition like “∃(// sales/house)”.

To perform the kinds of queries as mentioned above on the compressed data in
XMill, a complete decompression is required. In XGrind, although the overhead
for the complete decompression is removed, the overhead of maintenance and eval-
uation of the simple path to each element, similar to that for uncompressed XML
data, still remains. In contrast to the other XML compressors, XPRESS gets rid of
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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this overhead by using a novel encoding method, called reverse arithmetic encoding,
and minimizes the overhead of partial decompression by utilizing diverse encoding
methods.

Existing XML compressors do not provide the facility for update on compressed
XML data. To our best knowledge, XPRESS is the first XML compressor which
supports direct update on compressed XML data. The current implementation of
XPRESS supports only point update in which the updating point is specified by a
path expression.

XPRESS has the following novel combination of characteristics to compress, re-
trieve, and update XML data efficiently.

—Reverse Arithmetic Encoding: Since existing XML compressors simply rep-
resent each tag by using a unique identifier, they are inefficient to handle path
expressions on compressed XML data. In contrast, XPRESS adopts the reverse
arithmetic encoding method that encodes a label path as a distinct interval in
[0.0, 1.0). Using the containment relationships among the intervals, path expres-
sions are evaluated on compressed XML data efficiently.

—Automatic Type Inference: Some XML compressors compact data values of
XML elements by using predefined encoding methods (e.g., huffuman encoding).
However, according to the types of data values, the kinds of efficient encoding
methods are different. In some XML compressors, the types of data values are
manually interpreted. Thus, if there is no human interference, data values of
XML elements and attributes are not compressed properly. In XPRESS, to apply
effective encoding methods to various kinds of data values of XML elements,
we devise an efficient type inference engine that does not require the human
interference.

—Apply Diverse Encoding Methods to Different Types: According to the
inferred type information, we apply proper encoding methods to data values.
Thus, we achieve a high compression ratio and minimize the overhead of partial
decompression in the query processing phase.

—Support of Direct Update: To update compressed XML data, existing XML
compressors should perform the complete decompression. But, by analyzing the
portion of the XML data to be inserted, XPRESS performs the partial decom-
pression of the compressed XML data. Thus, XPRESS supports direct updates
on the compressed XML data without the complete decompression and recom-
pression.

—Semi-adaptive Approach: Our compression scheme is categorized as the semi-
adaptive approach [Howard and Vitter 1991] which uses a preliminary scan of
the input file to gather statistics. Since the semi-adaptive approach does not
change the statistics during the compression phase, the encoding rules for data are
independent to the locations of data. This property allows us to query compressed
XML data directly.

—Homomorphic Compression: Like XGrind, XPRESS is a homomorphic com-
pressor which preserves the structure of the original XML data in compressed
XML data. Thus, XML segmentations that satisfy given query conditions are
efficiently extracted.
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We implemented XPRESS and conducted an extensive experimental study with
real-life XML data sets. In our experiment, XPRESS demonstrates significantly
improved query performance and reasonable compression ratio compared to the
other XML compressors. In addition, to show the efficiency of the updates, we
compared the update performance of XPRESS with a naive approach. On the
average, the query performance of XPRESS is 2.13 times better than that of an
existing XML compressor and the compression ratio of XPRESS is 71%.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we present general
purpose compression methods and compression tools for XML data. In Section 3, we
present the features of XPRESS. Section 4 describes the compression techniques of
XPRESS. Section 5 provides the update processing technique of XPRESS in detail.
Section 6 contains the result of our experiments which compares the performance
of XPRESS to those of the other XML compressors. Finally, in Section 7, we
summarize our work and suggest some future studies.

2. RELATED WORK

The data compression has a long and rich history in the field of information the-
ory [Shannon 1948; Huffman 1952].

One advantage of data compression is that the required disk space of data can be
reduced significantly. The second advantage is the saving of the network bandwidth.
Since the overall size of data is decreased, much more data can be transferred
through the network within a given period of time. Another advantage is that data
compression improves the overall performance of database systems. By compressing
data, more information can be loaded in the buffer and the number of disk I/Os is
reduced. Therefore, the performance of the system is enhanced.

2.1 General Purpose Compression

According to the ability of data recovery, compression methods are classified into
two groups: the lossy compression and the lossless compression.

The lossy compression reduces a file by permanently eliminating certain informa-
tion. The data compressed by the lossy compression cannot be reconstructed into
the original data by the decompression. Thus, in this paper, we do not address the
lossy compression since the lossless recovery is required for textual information.

The lossless compression is categorized into three groups: static, semi-adaptive,
adaptive [Howard and Vitter 1991]. The static compression uses fixed statistics or
does not use any statistics. The semi-adaptive compression scans the input data
to gather statistics preliminarily and rescans the data to compress. The adaptive
compression does not require any prior statistics. Instead, statistics are gathered
dynamically, and updated during the compression phase.

The representative compression methods of the static compression are dictionary
encoding, binary encoding and differential encoding.

The dictionary encoding method assigns an integer value to each new word from
the input data so that each word in the input data can be compressed by using
a uniquely assigned integer value. Some special types of data such as numeric
data can be encoded in binary, e.g., integer or floating. This is called the binary
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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encoding method. The differential encoding method, also called delta encoding,
replaces a data item with a code value that defines its relationship to a specific
data item. For example, a data sequence of 1500, 1520, 1600, 1550 will be encoded
as 1500, 20, 100, 50.

Since the static approach does not consider the nature of given data, compression
ratios are quite different depending on the input data. Thus, it is important to
adopt proper encoding methods on account of data properties.

In the semi-adaptive compression methods, huffman encoding [Huffman 1952]
and arithmetic encoding [Witten et al. 1987] are the examples.
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Fig. 1. An example of the huffman tree

The basic idea of the huffman encoding method is to assign shorter codes to
more frequently appearing symbols and longer codes to less frequently appearing
symbols. To assign a code to each character, a binary tree, called the huffman
tree, is constructed using the statistics gathered by a preliminary scan. A simple
example of the huffman tree is shown in Figure 1. The leaf nodes of the huffman
tree are assigned symbols in input data. The value in a leaf node is the frequency
of the symbol. The left edges of the huffman tree are labeled with 0 and the right
edges are labeled with 1 so that the code assigned to each symbol is the sequence of
labels starting from the root to the leaf node of the symbol. The codes generated
by huffman encoding do not keep the order information among symbols.

The arithmetic encoding method represents a given message by choosing any
number from a calculated interval. Symbols are assigned disjoint intervals according
to their frequencies. Using the order of intervals for symbols, the order information
among symbols is preserved. Successive symbols of a message reduce the length of
the interval of the first symbol in accordance with the frequencies of the symbols.
After reducing the length of the interval by applying all the symbols of the message,
the message is transformed into a variable length bit string that represents any
number within the reduced interval.

In the adaptive compression, adaptive huffman encoding, adaptive arithmetic en-
coding, and LZ encoding are representatives.

The adaptive huffman encoding method and the adaptive arithmetic encoding
method are similar to the huffman encoding method and the arithmetic encoding
method, respectively. However, the adaptive huffman encoding method dynamically
construct the huffman tree, and the adaptive arithmetic encoding method calculates
the intervals by gathering frequencies and probabilities dynamically. In other words,
these adaptive encoding methods dynamically update statistics (i.e., huffman tree or

ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.



6 · Jun-Ki Min et al.

intervals) of each symbol based on the previous statistics during compression phase,
instead of using the predefined statistics used in the semi-adaptive compression
methods.

The LZ (Lempel-Ziv) encoding method, similar to the dictionary encoding method
of the static compression, records the string seen previously. When the new string
is read, the LZ encoder finds the longest common substring in the string seen pre-
viously, then converts the new string into a pointer to the common substring with
an additional string. (see more details in [Salomon 1998]).

2.2 XML Compression

Recently, some research on compressors for XML data have been conducted [Arion
et al. 2004; Cheng and Ng 2004; Liefke and Suciu 2000; Tolani and Haritsa 2002].

XMill [Liefke and Suciu 2000] physically separates XML tags and attributes from
their data values and groups semantically related data values into containers. XML
tags and attributes are compressed by the dictionary encoding method.

Each container can be compressed by a user specified encoding method if the user
wants to apply specified encoding method. In order to apply specialized compressors
to containers, a human interpretation of the containers is required. Finally, each
compressed container is recompressed by a build-in library, called zlib. XMill is
intended to minimize the size of compressed XML data. However, XMill does not
support direct querying on compressed XML data.

A distinguishable feature of XGrind [Tolani and Haritsa 2002] compared to XMill
is that it supports querying compressed XML data. In XGrind, data values are
compressed by huffman encoding or dictionary encoding and tags are compressed
by dictionary encoding. Using DTD, XGrind determines to apply huffman encoding
or dictionary encoding for a certain attribute value. In XGrind, to evaluate a path
expression, whenever an element is visited by the query processor, the identifier
sequence which represents the label path from the root element to the currently
visited element is found and the query processor checks whether this identifier
sequence satisfies the path expression. In addition, to evaluate range queries on
compressed XML data, a partial decompression is always required since huffman
encoding and dictionary encoding do not preserve any order information among
data items.

Recently, XQueC [Arion et al. 2004] and XQzip [Cheng and Ng 2004] are proposed
for the queriable XML compression. Like XMill, these compressors separate the
structure and data values. To speed up the query performance, these compressors
utilize the path indexes such as dataguide, and structural index tree (SIT).

The work of XQueC is originated from the compressed database systems [Chen
et al. 2000]. Unlike other XML compressors, XQueC uses a database as the storage
system. Thus, in XQueC, the compressed fragments of XML data are scattered
over databases and the compressed XML file is not generated. Therefore, the
reconstruction is needed for XQueC to transmit the compressed XML data through
the network.

In XQzip, the structural information of XML data is maintained by the SIT
which is a variation of path indexes and data values are compressed by the built-in
library, zlib. Although, the data values are separated into a sequence of blocks, the
(partial/full) decompression of compressed data values are required in XQzip. In
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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addition, XQzip does not support the order based predicates since SIT does not
reflect the document order exactly.

Furthermore, none of them supports direct updates on compressed XML data.
Thus, to update XML data, a complete decompression and recompression are re-
quired.

Besides XML compression, to speed up the query performance, many effective
methods such as binary XML encoding [Bayardo et al. 2004] and the KoN pattern
tree [Zhang et al. 2004] have been proposed. These methods are focused on effective
physical structures for XML data.

3. FEATURES OF XPRESS

In this section, we present the major features of XPRESS which support effective
query processing on compressed XML data.

In our paper, we do not treat attributes and elements differently since attributes
in XML data are considered as specific elements. The prefix ‘@’ is added to an
attribute name to distinguish attributes and elements.

Among various XML query languages, XPath [Clark and DeRose 1999] is simple,
but powerful enough to address any part of an XML document. Thus, we present
a subset of XPath which XPRESS supports.

An XPath expression consists of a sequence of steps. A step is applied to a single
node (the context node) and generates the result nodes. At the beginning of an
XPath expression, the context node is not an element node, but the root node of
an XML tree. A result node from each step is used as the context node for the
following step.

For the convenience of usage, W3C also provides the abbreviated syntax of XPath
which is more popular than the full syntax of XPath.

Figure 2 provides the BNF for the subset of XPath which we consider in this
paper. The grammar in Figure 2 is based on the abbreviated syntax of XPath.
In spite of its simplicity, the grammar in Figure 2 still captures all the intricate
nuances.

XPath ::= (‘/’|‘//’) RelPath

RelPath ::= Step (‘/’|‘//’) RelPath | Step
Step ::= NodeTest Predicate∗

NodeTest ::= label | ‘@’label

Predicate ::= ‘[’RelPath | Comp Val | Comp Pos‘]’

Comp Val ::= RelPath CompOP (string | number) |
RelPath ‘<’ (string|number) AND RelPath ‘>’ (string|number)

Comp Pos ::= number

CompOp ::= ‘=’ | ‘<’ | ‘>’ | ‘>=’ | ‘<=’

Fig. 2. A subset of XPath

Each step is connected by ‘/’ and the default axis of a step is child which does not
appear in the abbreviated syntax. ‘//’ denotes the descendant axis 1. Predicates act

1Strictly speaking, ‘//’ is the abbreviated form of /descendant or self::node()/. However, by the
presence of the default axis (i.e., child), // is interpreted as descendant, generally.
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as existence quantifiers. For example, //book[title] selects all book elements which
have title elements as a child. Also, our subset of XPath supports value based
predicates and the order based predicates in the forms of ‘[title= title1]’ and ‘[2]’,
respectively.

To support an effective evaluation of path expressions, we devise a novel encoding
method, called reverse arithmetic encoding, which is inspired by arithmetic encod-
ing. We define some notations with a simple XML data to explain our proposed
encoding method.

<book>
<author> author1 </author>
<title> title1 </title>
<section>

<title> title2 </title>
<subsection>

<subtitle> title3 </subtitle>
...

</subsection>
</section>

</book>

Fig. 3. An example of XML data

Definition 1. A simple path of an element en in XML data is a sequence of one or
more dot-separated tags t1.t2 . . . tn, such that there is a path of n elements starting
from the root element e1 to en and the tag of the element ei is ti.

For example, in the XML data shown in Figure 3, the simple path of a subsection
element is book.section.subsection.

Definition 2. When the simple path of an element e in XML data is a1.a2 . . . an,
a dot-separated tag sequence bk.bk+1 . . . bn is a label path of e if we have bk = ak,
bk+1 = ak+1 . . . bn = an, where 1 ≤ k and k ≤ n. Furthermore, for two label paths,
P= pi . . . pn and Q=pj . . . pn of e, if i ≥ j, then we call P is a suffix of Q.

Again in Figure 3, section.subsection is a label path of the subsection element.
And, subsection is a suffix of section.subsection. In XML, the structural constraints
of queries are based on the label path such as //section/subsection.

Now, we present the reverse arithmetic encoding method. In contrast to existing
XML compressors that transform the tag of each element to an identifier, reverse
arithmetic encoding represents the simple path of an element by an interval of real
numbers between 0.0 and 1.0. The basic idea of reverse arithmetic encoding is
simple but elegant.

First, reverse arithmetic encoding partitions the entire interval [0.0, 1.0) into
subintervals, one for each distinct element name as opposed to element node id.
An interval for element T is represented as IntervalT . The size of IntervalT is
proportional to the frequency (normalized by the total frequency) of element T.
The following example shows the intervals for elements in Figure 3.

Example 1. Suppose that the frequencies of elements = {book, author, title,
section, subsection, subtitle} are {0.1, 0.1, 0.1, 0.3, 0.3, 0.1}, respectively. Then,
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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based on the cumulative frequency, the entire interval [0.0, 1.0) is partitioned as
follows:

element frequency cumulative IntervalT
frequency

book 0.1 0.1 [0.0, 0.1)
author 0.1 0.2 [0.1, 0.2)
title 0.1 0.3 [0.2, 0.3)

section 0.3 0.6 [0.3, 0.6)
subsection 0.3 0.9 [0.6, 0.9)
subtitle 0.1 1.0 [0.9, 1.0)

Next, reverse arithmetic encoding encodes the simple path P= p1.. . . .pn of an
element e into an interval [mine, maxe) using the algorithm in Figure 4.

Intuitively, the function reverse arithmetic encoding reduces Intervalpn
using the

interval for the simple path p1 . . . pn−1 where pn is the tag of the element e. For
understanding, we used a recursive function call in Line (4) of Figure 4. Basically,
we encode the simple path of an element in a given XML data to an interval starting
from the root element to other elements in the depth first tree traversal. Therefore,
the recursion is not necessary in implementation since [qmin, qmax) has already
been computed at the time of encoding the parent element of e. Thus, the time
complexity to compute all intervals of elements can be easily shown to be O(E),
where E is the number of elements in a given XML data.

Function reverse arithmetic encoding(P= p1.. . . .pn)
begin
1. [mine, maxe) := Intervalpn
2. if(n = 1) return [mine,maxe)
3. length := maxe - mine

4. [qmin, qmax) := reverse arithmetic encoding(p1.. . . .pn−1)
5. mine := mine + length* qmin

6. maxe := mine + length* qmax

7. return [mine, maxe)
end

Fig. 4. An algorithm of reverse arithmetic encoding

Example 2 which is the continuation of Example 1 illustrates the behavior of
reverse arithmetic encoding.

Example 2. The interval [0.69, 0.699) for a simple path book.section.subsection
in Figure 3 is obtained by the following process:

element simple path IntervalT subinterval
book book [0.0, 0.1) [0.0, 0.1)

section book.section [0.3, 0.6) [0.3, 0.33)
subsection book.section.subsection [0.6, 0.9) [0.69, 0.699)

In the aspect of the utilization of the intervals, the reverse arithmetic encoding
method is similar to the region numbering scheme originated in the field of infor-
mation retrieval (IR) [Salminen and Tompa 1992]. Some XML storage systems [Li
and Moon 2001] utilize the region numbering scheme to denote XML elements and
attributes. The intervals (i.e., regions) generated by the region numbering scheme
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represent the relationship among elements (e.g., ancestor and descendant relation-
ships). Suppose that there are two elements x and y, where x is an ancestor of
y, then the corresponding intervals (xs, xe) and (ys, ye) for x and y, respectively,
satisfy the following property, that is xs ≤ ys ≤ ye ≤ xe.

In contrast to the region numbering scheme, the intervals generated by reverse
arithmetic encoding express the relationship among label paths as follows:

Property 1. Suppose that a simple path P is represented as the interval I, then
all intervals for suffixes of P contain I.

For instance, the interval [0.6, 0.9) for a label path subsection and the interval
[0.69, 0.78) for a label path section.subsection contain the interval [0.69, 0.699) for
a simple path book.section.subsection. If a label path expression of a query is //sec-
tion/subsection, this label path expression is represented as an interval [0.69, 0.78).
And then, the query processor efficiently selects the elements whose corresponding
intervals are within [0.69, 0.78). As a result, path expressions based on label paths
are effectively evaluated by Property 1.

Finally, without any loss of information, the start tag of an element e is re-
placed by the minimum value of the subinterval generated by the function re-
verse arithmetic encoding. Since the minimum value of the subinterval is also con-
sistent to Property 1, the corresponding tag of a minimum value can be obtained
at the decompression phase easily using binary lookup of IntervalT s. In addition,
path expressions are evaluated at the query processing phase effectively.

Furthermore, reverse arithmetic encoding can be naturally applied to some XML
storage systems [Shimura et al. 1999; Tatarinov et al. 2002] which maintain the
path information of individual elements by the path identifier.

Our encoding scheme belongs to the semi-adaptive compression. Since statistics,
required in the XML compression phase, are collected and fixed at the prelimi-
nary scan, the generated code by XPRESS is independent to the location of the
corresponding symbol (tags and data values).

If the adaptive compression such as adaptive huffman encoding is applied, the
compression time is saved since the preliminary scan is not required. However, in
the adaptive compression, the encoded value of a certain symbol is changed depend-
ing on the location of the occurrence of the symbol since the adaptive compression
modifies the encoding model (e.g., huffman tree) dynamically. Thus, to evaluate a
query with data value predicates, the complete decompression of compressed XML
data is required. This degrades the query performance severely. Note that, gener-
ally, the XML data compression is an one time operation and queries are evaluated
repeatedly. Therefore, the two-scan overhead on the XML data compression is
compensated by frequent query evaluations.

Also, at the preliminary scan, XPRESS infers the type of data values of each
distinct element. As described in Section 2, depending on the type of data values,
the effective data encoding methods are different. However, existing XML com-
pressors blindly use predefined encoding methods or apply some encoding methods
manually. For example, in XMill, data values are bypassed to a built-in compres-
sion library, zlib, if the data encoders are not specified manually. Additionally,
in XGrind, the data values for elements and general attributes are compressed by
huffman encoding and the data values of enumeration typed attributes are com-
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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pressed by dictionary encoding. Without considering the nature of data values, the
size of compressed XML data may increase. Therefore, we devise an effective type
inference engine which infers the type of data values of each distinct element by
simple inductive rules during the preliminary scan phase.

While, for numeric typed data values, XPRESS applies binary encoding first and
then differential encoding with the minimum value. For example, data values of
element e “120”, “150”, “100” “130” are transformed into integers 120, 150, 100,
130 and encoded as 20, 50, 0, 30. Since this encoding method preserves the or-
der relationship among data values, the overhead of a partial decompression for
numeric typed data is removed. For textual data, XPRESS adopts the arithmetic
encoder and the dictionary encoder. As mentioned earlier, since the encoded values
of arithmetic encoder preserve the order relationship among data values, the par-
tial decompression is not required. But, the partial decompression for enumeration
typed data is required. We apply the dictionary encoder when the number of dis-
tinct textual data is less than 128. The compression ratio for dictionary encoding
is high since encoded value consumes only one byte. Also, the original value of
an encoded value is obtained efficiently using the hash table. Therefore, the par-
tial decompression overhead for range queries on enumeration typed data values is
relatively small.

<A> 
<B> v1 </B>
<B></B>
<B>v2</B>

</A>

C0
T1

T2 C1 /
T2 /
T2 C1 /

/
C1
encode(v1)
encode(v2)

T1
T2 encode(v1) /
T2 /
T2 encode(v2) /

/

(a) Orignal XML     (b) Non-homomorphic (c) Homomorphic

Fig. 5. An example of homomorphism

Like XGrind, XPRESS obeys the homomorphism [Tolani and Haritsa 2002]. The
homomorphic compression technique preserves the structure of the original XML
data on compressed XML data.

As shown in Figure 5-(b), some XML compression tools such as XMill physically
separate structures (i.e., tag) and data (i.e., value). Here, the tags A and B are
encoded as T1 and T2, respectively, and the end tags are replaced by ’/’. By apply-
ing this technique, a built-in compression library such as zlib can reduce the size of
compressed XML data well since the strings which have semantically/syntactically
similar properties are grouped into a container. However, this technique incurs
difficulty in query processing, also in performing the updates since the structure
of compressed XML data is differentiated compared to the original XML data. In
contrast to the non-homomorphic compression, since the homomorphic compres-
sion preserves the structure of the original XML data, the homomorphic compres-
sion allows us to evaluate queries and extract XML segmentations which satisfy
given query conditions efficiently. Also, the homomorphic compression allows us to
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perform the updates efficiently since the updating XML segmentations are easily
applied on compressed XML data.

As a result, based on the above features, the compressed XML data generated
by XPRESS supports the query processing and the updates effectively without the
complete decompression of compressed XML data.

4. COMPRESSION TECHNIQUES IN XPRESS

In this section, we present the architecture of XPRESS and detailed techniques
developed for XPRESS.

Based on the features described in Section 3, we designed the architecture of
XPRESS as depicted in Figure 6.

XML
File XML

Parser

tag

value

Statistics collector

Type inference engine

XML Analyzer

XML Encoder
tag

value

Reverse arithmetic encoder

Type dependent encoders

Queriable
Compressed

XML
File

XPRESS

Fig. 6. The architecture of XPRESS

The core modules of XPRESS are XML Analyzer and XML Encoder. As men-
tioned earlier, the compression scheme of XPRESS is categorized as the semi-
adaptive compression. During the preliminary scan of given XML data, XML
Analyzer (see details in Section 4.1) is invoked. XML Analyzer gathers the infor-
mation used by XML Encoder (see details in Section 4.2) which generates queriable
compressed XML data.

XML Analyzer consists of two submodules: the statistics collector and the type
inference engine. The statistics collector computes the adjusted frequency (see
Section 4.1) of each distinct element. The adjusted frequencies of elements are used
as inputs to the reverse arithmetic encoder. The type inference engine infers the
type of data values of each distinct element inductively and produces the statistics
for the type dependent encoders in XML Encoder.

4.1 XML Analyzer

The main algorithm of XML Analyzer is shown in Figure 7.
To compute the frequency of each distinct element, the procedure Statistics Collection

is executed. To infer the types of data values, the procedure Type Inferencing is
executed. The algorithm XML Analyzer generates a hash table called Elemhash.
The entry of Elemhash is ELEMINFO which keeps the information (e.g., type of
data values, frequency) of each distinct element. A stack called Pathstack is used
to keep the trace of the currently visited element.

To get IntervalT for each distinct element, the statistics collector can simply
count the number of occurrences of each distinct element. However, since tags of
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.



A Compressor for Effective Archiving, Retrieval, and Updating of XML Documents · 13

Function XML Analyzer()
begin
1. Pathstack := new Stack();
2. Elemhash := new Hash();
3. do {
4. Token := XMLParser.get Token()
5. if(Token is a tag)
6. Statistics Collection(Token, Pathstack, Elemhash)
7. else //Token is a data values
8. Type Inferencing(Token, Pathstack, Elemhash)
9. } while (Token != EOF)
10. return Elemhash
end

Fig. 7. An algorithm of XML Analyzer

higher level elements (e.g., the root element) appear rarely, the intervals for simple
paths shrink quickly. This requires the use of high precision floating arithmetic.

book

author title section

title subsection

7

1 1 4

1
2

(a) weighted frequency        (b) adjusted frequency

2subsection
1subtitle

3section
1title
1author
6book

subtitle 1

Fig. 8. Various frequencies

To prevent the rapid shrinking of an interval, we can use the concept of the path
tree which is devised for the selectivity estimation of XML path expressions [Aboul-
naga et al. 2001]. Every node in the path tree represents a simple path of XML
data. The path tree of XML data in Figure 3 is shown in Figure 8-(a). In the
original path tree of [Aboulnaga et al. 2001], each node keeps the number of ele-
ments reachable by the path starting from the root node to the node. As shown
in Figure 8-(a), a node in our path tree keeps the number of subnodes including
itself which we call the weighted frequency. Thus, intervals for higher level elements
are enlarged and the intervals for simple paths do not shrink quickly. However, as
mentioned in [Aboulnaga et al. 2001], the path tree consumes a large amount of
memory, in the worst case, O(E+T), where E is the number of elements and T is
the number of distinct tags.

Thus, instead of using the path tree, we use a simple heuristic: if we visit an
element whose tag is a new tag, then we increase the frequencies of elements which
are ancestors of the currently visited element. Thus, like the path tree, the intervals
for higher level elements are enlarged. We call this frequency the adjusted frequency.

Our simple heuristic method requires O(L+T) space, where L is the length of the
longest simple path in the given XML data and T is the number of distinct tags for
the hash table which keeps the frequency of each tag. Furthermore, our method is
more efficient than that of the path tree. Whenever a new node in the path tree
is created, the weighted frequencies of ancestor nodes of the new node should be
increased by 1. However, our method increases the adjusted frequencies of ancestor
nodes when an element with a new tag appears. As illustrated in Figure 8-(b), with
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the reduction of space requirement and enhanced performance, we can obtain the
statistics similar to those of the path tree.

Procedure Statistics Collection(Token, Pathstack, Elemhash)
begin
1. if(Token is START TAG) {
2. Pathstack.push(Token)
3. eleminfo := Elemhash.hash(Token)
4. if(eleminfo = NULL) {
5. eleminfo := new ELEMINFO(Token)
6. Elemhash.insert(eleminfo)
7. for each token t in Pathstack do {
8. tempinfo := Elemhash.hash(t)
9. tempinfo.adjusted frequency += 1
10. Elemhash.total frequency += 1
11. }
12. }
13. } else // Token is END TAG
14. Pathstack.pop()
end

Fig. 9. The algorithm of the statistics collector

The algorithm of the statistics collector is presented in Figure 9. The input token
is a tag. The trace of the currently visited element is kept by Pathstack (Line (2) and
Line (14)). The hash at Line (3) is the hash function which returns an ELEMINFO
for a given tag. Thus, when an element with a new tag appears, the hash function
returns NULL (Line (4)). Then, the statistics collector makes an ELEMINFO for
the element (Line (5)-(6)) and increases the adjusted frequencies for ancestors of
the element including itself (Line (7)-(11)). At Line (10), we accumulate the total
frequency to normalize the adjusted frequencies.

To produce the statistics of the inferred type for data values of each distinct ele-
ment, the ELEMINFO has six fields: inferred type, min, max, symhash, chars frequency
and Tag. The inferred type field keeps the type of data values, up to now. The in-
ferred type is set as undefined initially. The min and max fields keep the track of
the minimum binary value and the maximum binary value of data values, respec-
tively. The symhash field is a hash table which keeps distinct data values. This
symhash can be used as a dictionary for the dictionary encoder when the type of
an element is the enumeration. The chars frequency is an integer array which keeps
the frequencies of individual characters of data values. This chars frequency field is
used to build intervals for the arithmetic encoder. The Tag field is used to keep the
name of the element. To obtain the proper statistics of data values of each distinct
element, the algorithm of the type inference engine shown in Figure 10 is executed.

The input token of Type Inferencing is a data value. As mentioned above, Path-
stack keeps the trace of currently visited elements. Thus, the tag of the element
which is the owner of the given data value is at the top of Pathstack (Line (1)
in Figure 10). Therefore, we obtain the corresponding ELEMINFO using this tag
easily (Line (2)).

The function Infer Type at Line (3) infers the type of the given data value using
a simple rule as follows:

If all characters of the data value are numeric (‘0’∼‘9’) and the first character
is not ‘0’, then Infer Type returns integer which denotes that the data value is an
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.



A Compressor for Effective Archiving, Retrieval, and Updating of XML Documents · 15

Procedure Type Inferencing(Token, Pathstack, Elemhash)
begin
1. Tag := Pathstack.top()
2. eleminfo := Elemhash.hash(Tag)
3. type := Infer Type(Token)
4. switch(eleminfo.inferred type) {
5. case undefined :
6. case numeric :
7. if(type = numeric) {
8. eleminfo.inferred type := numeric
9. value := get IntValue(Token)
10. eleminfo.min := MIN(eleminfo.min, value)
11. eleminfo.max := MAX(eleminfo.max, value)
12. eleminfo.symhash.insert(Token)
13. eleminfo.accumulate chars frq(Token)
14. }
15. else { // string
16. eleminfo.symhash.insert(Token)
17. if(the number of entries in eleminfo.symhash < 128) {
18. eleminfo.inferred type := enumeration
19. } else eleminfo.inferred type := string
20. eleminfo.accumlate chars frq(Token)
21. }
22. break
23. case enumeration :
24. . . .
25. break
26. case string :
27. eleminfo.accumlate chars frq(Token)
28. break
29. }
end

Fig. 10. The algorithm of the type inference engine

integer. If all characters of the data value are numeric (‘0’∼‘9’) with only one‘.’ and
the first and second characters are ‘0’ and ‘.’ (i.e., in case of 0.dddd), respectively,
or the first character and the last character are not ‘0’ nor ‘.’, respectively (i.e., in
case of ddd.dddd), then a float is returned by Infer Type. Otherwise, we consider
the type of the data value as a string.

For brevity, integer and float types are represented as numeric type in Fig-
ure 10. However, the extension of the algorithm for integer type and floating type
is straightforward.

If the type of the element is an numeric or undefined and the type of the given data
value is an numeric (Line (5)-(14)), then we transform the data value into a binary
value (Line (9)) and adjust the min and max fields using the binary value (Line
(10)-(11)). The inferred type can be changed even though the currently inferred
type is an numeric. Thus, to prepare for the future change, we also maintain the
symhash field and chars frequency field, properly (Line (12)-(13)).

If the type of the data value is a string (Line (15)-(21)), we change the in-
ferred type. Even though the preceding data values are numeric, we change the
inferred type since the numeric type does not express the string but the string type
can express the numeric typed data using numeric characters. XPRESS has two
types for textual data: enumeration and string. The string type is for general
textual data, while the enumeration type is for the special string whose number of
distinct values is less than 128. To keep the distinct values, the hash table, symhash,
discards duplicated strings (Line (12) and (16)). Thus, if the number of distinct
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entries of symhash is less than 128, we assign enumeration to the inferred type.
Otherwise, we assign string to the inferred type. Also, because the inferred type
can be changed to string, the chars frequency field is updated (Line (20)).

However, when the inferred type is enumeration (Line (23)-(25)), we only check
whether the inferred type can be changed to string without considering the type
of the given data value. Thus, Line (24) is the same as Line (16)-(20). If the
inferred type is string, the chars frequency field is updated only (Line (26)-(28)).

4.2 XML Encoder

In this section, we describe the details of XML Encoder which compresses XML
data using various encoders.

There are six encoders for data values in XPRESS, shown in Table I. Each
distinct element has its own encoder which is one of six encoders.

Encoder Description

u8 encoder for integers where max-min< 27

u16 encoder for integers where 27 <=max-min< 215

u32 encoder for integers where 215 <=max-min< 231

f32 encoder for floating values
dict8 dictionary encoder for enumeration typed data
arith arithmetic encoder for textual data

Table I. Data Encoders

u8, u16, u32 and f32 are the differential encoders for numeric data and dict8 and
arith are the encoders for textual data.

As mentioned in Section 3, the encoders for numeric data transform the numeric
data into binary and apply differential encoding with the minimum value obtained
by the type inference engine. Note that the most significant bit (MSB) of the
encoded value by the numeric data encoders is 0. u8, u16 and u32 use 7 bits, 15
bits and 31 bits, and generate one byte, two bytes and four bytes, respectively.

1                             8                       16        24                    32
S    E                                  M

sign(1bit) biased exponent(8bits) mantissa(23bits)

Fig. 11. IEEE 32bit floating point standard 754

A floating value generated by the encoder f32 is always positive since f32 generates
the difference from the minimum value. Thus, the sign bit in Figure 11 is always
0. Also, the encoder dict8 uses maximally 7 bits since, as described in Section 4.1,
the number of distinct string values is less than 128(= 27). Thus, the MSB of one
byte generated by dict8 is also 0.

In contrast to the other encoders, the encoder arith generates variable length
encoded sequences. To parse this encoded sequence easily, we divide the encoded
sequence into subsequences whose lengths are less than 128 and put one byte in
front of each subsequence to denote the length of it. The encoded sequence whose
length is less than 128 is not partitioned but has one byte for the length. Therefore,
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the MSB of each sequence or subsequence is always 0 since its length is less than
128. Consequently, in XPRESS, every MSB of encoded values for data values is 0.

Until now, we described the encoders for data values. Next, we present the
encoder for tags.

Start tags of individual elements are encoded by reverse arithmetic encoding
using simple paths. In practice, we implement an approximated encoder, called
the approximated reverse arithmetic encoder (ARAE), to improve the compression
ratio and to parse compressed XML data without ambiguity.

Every MSB of the code generated by ARAE is 1. As mentioned above, every
MSB of encoded data values is 0. Thus, the parser for compressed XML data easily
distinguishes data from structure.

To do this, ARAE adds 1.0 to the minimum floating value of the interval for
a simple path. Since the minimum floating value generated by reverse arithmetic
encoding is in [0.0, 1.0), the added value is in [1.0, 2.0). According to the IEEE
floating point representation (see Figure 11), a floating value is represented as
S×1.M×2E−127. For example, the binary representation of 1.25 is 1.01 and this
is transformed into 1×1.01×20. Thus, S = 0, E = 0+127 = 0111 1111, and M
= [1.]01. The first bit2 of the second byte for every floating value in [1.0, 2.0) is
always 1 since the sign bit and the biased exponent are 0 and 127 (= 0111 1111),
respectively. Thus, by cutting the first byte, the MSB of the code generated by
ARAE is always 1.

In addition, to reduce the size of compressed XML data, ARAE truncates the last
byte. Due to the reduction of the precision, the code generated by ARAE may not
always represent the corresponding simple path exactly. However, at least, the code
generated by ARAE represents the tag of an element. As described in Example 3,
the generated code still represents a label path (i.e., a suffix of a simple path).

Example 3. Suppose that ARAE truncates digits less than 10−2 (i.e., last 17
bits) and that tags and corresponding IntervalT s are the same as those in Example
1.

1.9      1.96       1.969       1.9699       1.978     1.99    2.0

subtitle

subsection.subtitle
section.subsection.subtitle

book.section.subsection.subtitle

The interval for a simple path book.section. subsection.subtitle is [1.0 + 0.9 +
0.1 × 0.69 = 1.969 , 1.0 + 0.9 + 0.1 × 0.699 = 1.9699). Then, the truncated
value is 1.96 which is in the interval [1.96, 1.99) for subsection.subtitle.

Therefore, this approximation does not damage the accuracy and the efficiency
of query processing. Recall that the reduction of data size by the data compression
induces the performance improvement due to the reduction of disk I/Os. Further-
more, common structural constraints of XML queries are partial matching path
expressions based on label paths instead of simple paths since users may not know
or may not be concerned with the detailed structure of XML data and intentionally

2it is represented by the gray box in Figure 11
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make the partial matching path expression to get intended results. But, note that
too much approximation incurs the inefficiency of query processing since a label
path represented by the encoded value becomes too short.

Finally, to distinguish start tags and end tags, the interval [1.0+0.0 = 0x8000,
1.0+ 2−7 = 0x8100) is reserved. For all end tags, one byte 0x80 (= 1000 0000) is
assigned since the codes for the interval start with 0x80. And codes for start tags
are always greater than or equal to 0x8100. Therefore, the parser for compressed
XML data distinguishes the codes for start tags and the codes for end tags.

Procedure XMLEncoder(Elemhash)
begin
1. XMLParser.reinit()
2. Initialization(Elemhash)
3. Pathstack := new Stack()
4. Intervalstack := new Stack()
5. do {
6. Token := XMLParser.get Token()
7. if(Token is a tag)
8. ARAE(Token, Pathstack, Intervalstack, Elemhash)
9. else //Token is a data value
10. Encoding(Token,Pathstack,Elemhash)
11. } while(Token != EOF)
end

Fig. 12. The algorithm of XML Encoder

The algorithm of XML Encoder is in Figure 12. First, XMLParser is reinitialized
to rescan a given XML file (Line (1)). Then, for each distinct element, XML
Encoder calculates IntervalT and chooses a proper encoding method (e.g., u8) using
the function Initialization (Line (2)). To compute IntervalT , we used the interval
[2−7, 1.0-2−15] as the entire interval instead of [0.0, 1.0) since [0.0, 2−7) is reserved
for end tags and the value less than 2−15 can not be represented using 15 bits. Also,
for the same reason, we adjusted the length of IntervalT to a number greater than
2−15. In general, this case does not appear.

Pathstack is used to keep the information of an owner element of data values
(Line (3)). To compute the interval for the currently visited element, the interval
for the parent element is required. To keep the interval for a parent element, a
stack, called Intervalstack, is created (Line (4)). And then, the token generated by
XMLParser is compressed by encoders of XPRESS (Line (5)-(11)).

4.3 Query Processing

To evaluate queries on compressed XML data generated by XPRESS, we devise a
query processor.

XPRESS is a homomorphic compressor and the MSB of encoded tag (i.e., the
reverse arithmetic encoding value) is 1, while the MSB of encoded data values is 0.
The behavior of query executor is similar to the query executor using SAX parser
(an XML parser). In contrast to the general SAX parser, for processing path expres-
sions, XPRESS maintains encoded tag values compressed by the reverse arithmetic
encoding which enables an efficient processing of path expressions. Also, XPRESS
maintains encoded data values, instead of strings, so that value comparisons are
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efficiently performed. Therefore, we only present details of our query executor
with respect to the reverse arithmetic encoding and value comparison. The query
processor consists of a query parser, a query transformer, and a query executor.

The query parser separates the values from the label path expression when the
query contains any value comparison. Also, to support complicated partial match-
ing path queries whose examples are provided in Table III of Section 6.1, the query
parser breaks down a complicated path expression into multiple single path expres-
sions3 according to the occurrence of ’//’.

For example, a complicated path expression P = //p1/p2/p3//p4/p5/p6 is par-
titioned into P1 and P2, where P1 = //p1/p2/p3 and P2 = //p4/p5/p6. The query
executor looks for the elements which satisfy P1 and evaluates P2 among the de-
scendants of P1’s results.

The query transformer transforms the single path expressions to intervals. First,
the query transformer partitions each long single path expression obtained by the
query parser into short single path expressions whose corresponding interval sizes
are greater than 1.0 + 2−15 since an interval for each element is expressed based
on the precision of 1.0 + 2−15, as mentioned in Section 4.2. Suppose that a single
path expression Ps = //p1/ . . . /pn requires a precision higher than 1.0 + 2−15 and
P ′s = /p1/ . . . /pi requires a precision lower than 1.0+2−15. Then, Ps is partitioned
as Ps = P ′sP

′′
s , where P ′′s = /pi+1/ . . . /pn. Also, if a precision higher than 1.0+2−15

is required for P ′′s , we apply this partitioning process repeatedly. Thus, the query
transformer transforms the partitioned single path expression into a sequence of
intervals.

Finally, by using the sequence of intervals transformed by the query transformer,
the query executor evaluates the tokens of encoded elements in compressed XML
data whether their encoded values are in an interval of the sequence or not.

In the original XML document, the data value is a textual string. Thus, to
evaluate value-based predicates, a string comparison is required in uncompressed
XML data. In contrast, various comparison operators according to the type of data
values are applied in XPRESS. The type of data value with owner element’s tag
T is obtained easily using binary lookup of IntervalT . Therefore, we reduce the
overhead of the decompression and comparison operators.

For the exact matching query, a data value of exact matching conditions in a
query is converted into an encoded value using the type dependent encoder as
described in Section 4.2. Then, the query executor detects the elements which
satisfy the label path expression and the value comparison without decompression.

For the range query, the range condition for a numeric typed element is encoded
by the type dependent encoder for the element. Then, without the decompression
of encoded values, the query is evaluated since the type dependent encoders for
numeric typed elements preserve the order information among data values.

As mentioned earlier, XPRESS applies the dictionary encoder and the arithmetic
encoder to textual data. For the range condition of a textual typed element, a
partial decompression is required when the data value is a enumeration type since
the dictionary encoder (i.e., dict8) does not preserve the order information among
data values. However, since the original data value is efficiently obtained by the

3A single path expression denotes a path expression that contains at most one occurrence of ’//’.
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hash table, the partial decompression overhead is relatively small.
In the preliminary version of XPRESS, the general string values are encoded

by the huffman encoding method. Since the encoded values generated by huffman
encoder do not preserve the order information of original values, the partial de-
compression is required for range queries. In contrast to the huffman encoder, the
arithmetic encoder preserves the order information among data values. Thus, a
partial decompression is not required when the data value is a string type.

In addition, for order based predicates, the order among sibling elements is easily
computed since XPRESS preserves the structure of the original XML data.

5. UPDATE PROCESSING

In this section, we present the details of the update processor which supports direct
updates on compressed XML data.

The naive approach for updates on compressed XML data is that original XML
data is constructed by the complete decompression and the update and the re-
compression are performed on uncompressed XML data. In this case, the system
resource and time are wasted. Thus, we devised an update processor for compressed
XML data which does not perform a complete decompression.

Basically, the update operations can be categorized by three types: deletion,
insertion, and change. The deletion is trivially performed by eliminating a certain
portion of compressed XML data specified by the query. The change is considered
as the combination of the deletion and the insertion. Thus, in this paper, we only
focus on the insertion on compressed XML data.

Our subset of XPath queries contains the order based predicate and value based
predicate. By using the predicates, XPRESS specifies the insertion (or deletion)
points on the compressed XML data.

The other XML compressors do not consider direct updates on compressed XML
data. Basically, since XPRESS is a homomorphic and queriable compressor, direct
updates on the compressed XML data is possible. Similarly, XGrind can also
support direct updates. However, XGrind does not consider XML updates on
compressed XML data.

As mentioned earlier, XPRESS encodes tags and data values according to the
statistics (e.g, frequencies of tags, types of data values).

Actually, inserting and deleting XML elements that appeared in the original XML
document affect the frequencies of tags. However, to reduce the update cost, the
statistics for reverse arithmetic encoding are only renewed when new tags appear in
updates. This approach still guarantees correct query processing since the reverse
arithmetic encoding values obtained by reusing the statistics satisfy Property 1. In
order to maintain the correct statistics, it is necessary to recompress compressed
XML documents periodically.

The newly inserted XML fragment may affect currently compressed XML data.
Thus, by analyzing the newly inserted XML fragment, the update processor of
XPRESS renews the statistics. And then, with respect to the difference between the
renewed statistics and the current statistics, a partial decompression of compressed
XML data is performed. Using the renewed statistics, the XML fragment and the
partially decompressed XML data are recompressed.
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Procedure XMLUpdater(Xpath, XMLFragment)
begin
1. XMLParser.init(XMLFragment)
2. OLD Elemhash := new Hash()
3. OLD Elemhash.resume()
4. NEW Elemhash := new Hash()
5. NEW Elemhash.resume()
6. Update Analyzer(OLD Elemhash, NEW Elemhash)
7. UPDATEPOINT := get updatepoint(Xpath)
8. Updating(UPDATEPOINT, OLD Elemhash, NEW Elemhash)
end

Fig. 13. The algorithm of XML Updater

The main algorithm for the update processor of XPRESS is depicted in Figure 13.
Two input parameters of XMLUpdater are Xpath and XMLFragment. Xpath is an
XPath query which is used to specify the insertion points on the compressed XML
data. And, XMLFragment is the newly inserted XML fragment.

First, to parse XML fragment, XMLParser is initialized with the given XML
fragment (Line (1)). At Line (2)-(5), the algorithm XMLUpdater generates two
hash tables: OLD Elemhash and NEW Elemhash. OLD Elemhash is used to keep
the current statistics and NEW Elemhash is used to keep the renewed statistics.
By invoking the method resume, the statistics are reloaded into each hash table
from the header of compressed XML data. At the beginning, OLD Elemhash and
NEW Elemhash are the same, and NEW Elemhash is changed subsequently.

The core modules of XMLUpdater are Update Analyzer and Updating. Similar
to the compression scheme of XPRESS that is categorized as the semi-adaptive
compression, XMLUpdater of XPRESS requires two scans of XML fragment. The
procedure Update Analyzer (see details in Section 5.1) is invoked to renew the
statistics (Line (6)).

By using the query processor of XPRESS, the get updatepoint function at Line
(7) finds an UPDATEPOINT where the XML fragment is required to be inserted.
For brevity, in Figure 13, we assume that there is only one UPDATEPOINT on
given compressed XML data. However, the extension to maintain multiple UP-
DATEPOINTs is straightforward.

The procedure Updating (see details in Section 5.2) is invoked to insert the XML
fragment at the UPDATEPOINT and re-encode certain portions of compressed
XML data using the statistics gathered by the procedure Update Analyzer (Line
(8)).

5.1 Update Analyzer

The algorithm of Update Analyzer is presented in Figure 14. Basically, Update
Analyzer renews the statistics by scanning the XML fragment.

Pathstack is used to identify the tag of owner element of a data value in the XML
fragment.

The newly inserted XML fragment may incur two kinds of violations with respect
to the current statistics kept in OLD Elemhash. The first is the appearance of new
tags. The second is the change of the inferred data type.

As described in Section 3, the reverse arithmetic encoder for tags partitions the
entire interval [0,1) into subintervals, one for each distinct tag. Thus, the intervals
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Procedure Update Analyzer(OLD Elemhash, NEW Elemhash, Pathstack)
begin
1. Pathstack := new stack()
2. do{
3. Token := XMLParser.get Token()
4. if(Token is START TAG) {
5. Pathstack.push(Token)
6. eleminfo := OLD Elemhash.hash(Token)
7. if(eleminfo = NULL) {
8. eleminfo := NEW Elemhash.hash(Token)
9. if(eleminfo = NULL) {
10. eleminfo := new ELEMINFO(Token)
11. NEW Elemhash.insert(eleminfo)
12. }
13. eleminfo.adjusted frequency += 1
14. NEW Elemhash.total frequency += 1
15. }
16. } else if(Token is END TAG) {
17. Pathstack.pop()
18. } else //Token is a data value
19. Type Inferencing(Token, Pathstack, NEW Elemhash)
20. } while(Token != EOF)
end

Fig. 14. The algorithm of Update Analyzer

for new tags do not exist in the current statistics which are kept in OLD Elemhash.
Thus, to assign the intervals to new tags, the frequency of new tags is computed.
When an element with a new tag appears (Line (7)-(15)), the hash function of
OLD Elemhash returns NULL since the tag has not appeared on compressed XML
data before (Line (7)). Also, if this tag appears for the first time, the hash function
of NEW Elemhash returns NULL. In this case, the procedure Update Analyzer
makes an ELEMINFO for the element and inserts it into NEW Elemhash (Line
(9)-(12)). Then, Update Analyzer increases the adjusted frequency of the element
and the total frequency of NEW Elemhash by 1 (Line (13)-(14)).

Lastly, for data values in the XML fragment, the algorithm of the type infer-
ence engine described in Figure 10 is invoked with NEW Elemhash (Line (19)).
Thus, by the comparison between type information kept in OLD Elemhash and
type information kept in NEW Elemhash, we can identity the change of the data
type.

5.2 Updating

The Updating module inserts the XML fragment into UPDATEPOINT on com-
pressed XML data and changes portions of compressed XML data which are affected
by the XML fragment. The algorithm of Updating is shown in Figure 15.

At the beginning of the algorithm Updating, the initialization for NEW Elemhash
is performed to calculate IntervalT and choose a proper encoding method as de-
scribed in Section 4.2 (Line (1)).

For the initialization of OLD Elemhash, choosing proper decoding methods is
additionally required since the partial decompression of compressed data values is
necessary if the inferred type is changed to another type (Line (2)).

NEW Codestack is used to keep the trace of currently visiting element by using
the encoded value for the tag (Line (3)). In this case, if new tags appear in the
XML fragment, NEW Codestack is maintained with the newly calculated intervals
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.



A Compressor for Effective Archiving, Retrieval, and Updating of XML Documents · 23

Procedure Updating(UPDATEPOINT, OLD Elemhash, NEW Elemhash, XMLFragment)
begin
1. Initialization(NEW Elemhash)
2. Initialization(OLD Elemhash)
3. NEW Codestack := new stack()
4. do {
5. if(CompressedXMLParser.get position() = UPDATEPOINT) {
6. XMLParser.reinit(XMLFragment)
7. insert XMLFragment using NEW Elemhash and NEW Codestack
8. // Similar to XML Encoder in Figure 12
9. }
10. Comp Token := CompressedXMLParser.get Token()
11. if(Comp Token is START TAG) {
12. if(OLD Elemhash.total frequency != NEW Elemhash.total frequency) {
13. old eleminfo := OLD Elemhash.get info(Comp Token)
14. Comp Token := ARAE for Update(old eleminfo.Tag, NEW Codestack, NEW Elemhash)
15. }
16. NEW Codestack.push(Comp Token)
17. } else if(Comp Token is END TAG) {
18. NEW Codestack.pop()
19. }
20. else { // Comp Token is a data value
21. NEW Code := NEW Codestack.top()
22. new eleminfo := NEW Elemhash.get info(NEW Code)
23. old eleminfo := OLD Elemhash.hash(new eleminfo.Tag)
24. if(old eleminfo.inferred type != new eleminfo.inferred type) {
25. value := Decoding(Comp Token, old eleminfo)
26. Encoding for Update(value, new eleminfo)
27. }
28. }
29. } while(Comp Token != EOF)
end

Fig. 15. The algorithm of Updating

from NEW Elemhash after invoking Update Analyzer.
As mentioned previously, our proposed update processor directly inserts the XML

fragment into compressed XML data. Thus, to parse compressed XML data, a
specific parser called CompressedXMLParser is used. CompressedXMLParser gen-
erates a Comp Token while traversing compressed XML data. As mentioned in
Section 4, classifying Comp Tokens as START TAG, END TAG, and data values
is easy since all the MSBs of the encoded values for tags start with 1 while all the
MSBs for data values are 0. Especially, for END TAGs, XPRESS assigned 0x80
(=1000 0000).

When the parsing position of CompressedXMLParser is the same as UPDATE-
POINT, the XML fragment is inserted (Line (5)-(9)). First, XMLParser is reini-
tialized for the XML fragment (Line (6)). Next, as commented at Line (8), the
XML fragment is compressed by using NEW Elemhash and NEW Codestack, and
then inserted. This process is similar to XML Encoder described in Figure 12.

As described in Section 5.1, the total frequency of NEW Elemhash is increased
only when a new tag appears in the XML fragment. Thus, if the XML fragment
has new tags, the total frequency of OLD Elemhash and the total frequency of
NEW Elemhash are different.

For each START TAG, if the two total frequencies are different, a new encoded
value for each tag is required since the subinterval, IntervalT , for each tag is changed
(Line (12)-(15)). Otherwise, Comp Token is simply pushed into NEW Codestack
(Line (16)).
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Note that the value of Comp Token is the minimum value of the interval gen-
erated by the reverse arithmetic encoder using OLD Elemhash. By checking the
containment relationship between the minimum value (= Comp Token) and each
IntervalT in OLD Elemhash, proper element information (i.e., ELEMINFO) can
be obtained. Thus, the procedure Updating obtains the related ELEMINFO,
old eleminfo, by calling OLD Elemhash.get info (Line (13)).

From old eleminfo, the procedure Updating gets the tag (= old eleminfo.Tag) of
currently visiting element and the new encoded value of the parent element’s tag
which is kept at the top of NEW Codestack. Thus, by invoking ARAE for Update,
the new encoded value of Comp Token is computed and replaced (Line (14)).

Lastly, for data values, the algorithm Updating obtains an ELEMINFO from
OLD Elemhash, and an ELEMINFO from NEW Elemhash (Line (21)-(23)). The
encoded value of the tag of the element which is the owner of the given compressed
data value is at the top of NEW Codestack. Thus, by calling NEW Elemhash.get info
with the encoded value of the owner element’s tag, the new eleminfo is obtained.
And, using new eleminfo.Tag, the old eleminfo is acquired from OLD Elemhash.

Then, their inferred types are compared at Line (24). Thus, if their inferred types
are different, the decompression of the compressed data value (i.e., Comp Token)
and the recompression of the decompressed value are performed (Line (25)-(26)).

Note that, at Line (24), much more precise comparison is required since the min
or max can be changed even though the inferred type is not changed. In Figure 15,
we did not show the comparisons for such cases for brevity. However, an extension
to handle such cases is straightforward.

6. EXPERIMENTS

To show the effectiveness of XPRESS, we empirically compared the performance of
XPRESS with two representative XML compressors XMill4 and XGrind5 as well
as a general compressor, gzip, using real-life XML data sets. In our experiments,
XPRESS shows a reasonable compression ratio compared to XMill. We compared
the query performance of XPRESS to that of XGrind. In addition, to show the ef-
fectiveness of the queriable XML compressor, we compared the query performance
of XPRESS with that of XMill. Since XMill does not support direct querying on
compressed XML data, we implemented a query engine for uncompressed textual
XML data, based on the algorithms used in the query processor of XPRESS. The
query engine for XMill is a modified version of the query engine from XPRESS. The
query engine for XMill handles uncompressed textual XML data whereas the ver-
sion from XPRESS handles compressed XML data. Therefore, the query engine for
XMill keeps the trace of tags to compute the path expression. For XMill, another
alternative is to feed the SAX events generated by the XMill decompressor directly
into the XPath processor. While this alternative eliminates the need for re-parsing
for query processing after parsing in the process of decompression, the alternative
also incurs the complete decompression and requires recompiling the XPath pro-
cessor. Therefore, in our experiment, we decompressed the compressed XML data
generated by XMill, and executed the query engine on uncompressed XML data.

4available in http://www.research.att.com/sw/tools/xmill/
5available in http://sourceforge.net/projects/xgrind/
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For XGrind, we also implemented a new query processor since the original query
processor of XGrind does not support predicates and partial matching path ex-
pressions. Lastly, since there is no XML compressor which supports direct updates
on compressed XML data, for evaluating the efficiency of the update processor of
XPRESS, we compared the update performance of XPRESS with that of a naive
approach using XMill. As mentioned in Section 5, the naive approach decompresses
compressed XML data, updates decompressed XML data, and finally, recompresses
updated XML data. XPRESS shows significantly better query performance than
XGrind and update performance than the naive approach using XMill.

6.1 Experimental Environment

The experiments are performed on a Sun Ultra Sparc II 168MHz platform with
Solaris 2.5.1 and 384 MBytes of main memory. The data sets are stored on a local
disk. In our experiments, XMill does not have any user-specified encoders.

Data Sets We evaluated XPRESS using a number of real-life XML data sets:
Univ, MapData, Part, Lineitem, Orders, SigmodRecord, Baseball, Shakespeare,
SwissProt, and DBLP. The characteristics of the data sets used in our experiment
are summarized in Table II. Size denotes the disk space of XML data in MBytes,
Depth is the length of the longest simple path of each XML data set, Tags indicate
the number of distinct tags, Numeric represents the number of distinct elements
whose data values’ type is numeric (i.e., integer or float), and Enum indicates the
number of distinct elements whose data values’ type is enumeration.

Data Set Size(MB) Depth Tags Numeric Enum
Univ 2.33 5 22 0 9

MapData 5.97 6 9 1 1
Part 0.62 3 12 3 6

Lineitem 32.29 3 19 8 5
Orders 5.37 4 12 4 3

SigmodRecord 0.22 7 12 4 1
Baseball 1.06 6 46 32 5

Shakespeare 7.64 6 21 0 5
SwissProt 114.82 5 99 3 6

DBLP 133.85 6 41 2 10

Table II. XML Data Set

The Univ [UW ] address the description of courses held in Universities. Since
they are for the description of courses, they have some integer values to indicate
credits, and class rooms, as well as some enumerated values to describe course code,
title, days of classes, and building names.

The MapData [ETRI ] is an instance of GML [Open GIS Consortium ] which is
an XML specification for the geographical application. Since the MapData contains
the geographical information for a region of Seoul (the capital city of South Korea),
a large number of floating values for coordinates exists.

Part, Lineitem, and Orders [UW ] are the XML versions of TPC-H benchmark
data used widely in the field of relational databases. They have several numeric
typed elements to describe the key values.

The SigmodRecord [UW ] provides an index of articles from SIGMOD Record.
Since it describes information related to the articles, most elements are string typed
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except a small number of numeric typed elements (i.e., volume numbers, page
numbers).

The Baseball [Harold ] contains the complete baseball statistics of all players of
each team that participated in the 1998 Major League. Since it contains statistics,
it has many numeric typed elements.

The Shakespeare [Cover 2001] is the collection of plays of Shakespeare which
is marked up by Jon Bosak. Since it describes the overall scenario of plays of
Shakespeare, the Shakespeare does not have any numeric typed elements.

The SwissProt [UW ] is a protein sequence database which provides a high level
of annotations such as the description of the function of a protein, its domain
structure, post-translational modifications, and variants. Due to a large amount of
descriptions, string typed elements are dominant.

The DBLP(Digital Bibliography Library Project) [UW ] provides bibliographic
information on major computer science journals and proceedings. Since it describes
general information related to journals and proceedings, most of elements are string
typed, similar to the SwissProt.

Type Query Example
1 /root/course/time/start time
2 //course/place//building
3 //course[5]/place/building
4 //course/place[building = ”ELIOT”]
5 //course/place[building > ”CHEM” and building < ”SPORTS”]
6 /root//course/place[building = ”ELIOT”]/room[1]

Table III. XML Query Examples

Queries We evaluated XPRESS using several queries. The characteristics of
queries used in our experiment are described in Table III.

The number in the first column represents the type of queries. The queries of
type 1 are path expressions based on the simple path, the queries of type 2 are
partial matching path expressions, the queries of type 3 are complicated partial
matching path expressions with order based predicates, the queries of type 4 and
5 are complicated partial matching path queries with the exact data value and the
range of data values, respectively, and the queries of type 6 are the branch queries
with predicates. Query Example in Table III shows the examples of corresponding
XPath queries.

We choose these kinds queries for the following reasons. Queries of type 1 eval-
uate the query performance for long path expressions. Queries of type 2 test the
query performance of simple partial matching path queries. Query type 3 is similar
to query type 2 but contains order based predicates. To measure the query perfor-
mance of value based predicates, we chose Query type 4 and 5. Finally, to measure
the query performance of branch queries, we choose Query type 6. Query type 6
represents the most complicated queries.

Update Queries We evaluated the update processor of XPRESS using several
updates. The characteristics of updates are described in Table IV.

The number in the first column is used to denote the type. In Table IV, the
updates of type 1 are the insertions of XML fragments whose tags already appeared
and the types of data values are not changed, the updates of type 2 are the insertions
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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Type Update Example

1 //section/session[2] {
INSERT <time>

<start time> 940 </start time>
</time>

}
2 //DIVISION/TEAM/PLAYER[SURNAME = ”Fordham”] {

INSERT <AWARDS>
<MVP> 1 </MVP>
<GOLDEN GLOVE> OutField </GOLDEN GLOVE>

</AWARD>
}

3 DELETE //DIVISION/TEAM[TEAM CITY = ”Chicago”]/PLAYER[6]

Table IV. XML Update Query Examples

of XML fragment whose tags newly appeared, and the updates of type 3 are the
deletions on the compressed XML data. Update Example in Table IV shows the
examples of corresponding update queries represented using the syntax introduced
in [Tatarinov et al. 2001].

6.2 Experimental Results

In this section, we first present the compression ratio of each compressor. The
compression ratio is defined as follows:

Compression ratio = 1− Size of compressed XML data
Size of original XML data

Then, we report the compression time of each compressor. In addition, to show
the effect of zlib in XMill, we show the compression ratio of gzip which is applied
to the compressed XML data of XPRESS and XGrind. Then, we show the query
performance of XPRESS with that of XGrind and the query engine for XMill. The
update performance of XPRESS with that of the naive approach using XMill is
presented last.
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Fig. 16. Compression ratio
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Figure 16 shows the compression ratios for different data sets and compressors.
For each different size of XML data set, the four connected bars represent XMill,
gzip, XGrind, and XPRESS. Since XMill uses the dictionary encoding method for
structural information, and groups semantically related data values into containers
before compressing with zlib, as we expected, XMill achieved the best compression
ratio, on the average of 90%. The average compression ratio of XPRESS is 71%.
The compression ratio of XPRESS depends on the characteristics of data values, not
on the sizes of XML data. Since XPRESS uses the type inference engine to apply
appropriate compression methods for data values, it performs well if the data values
are enumeration, floating, or integer type. Thus, the compression ratio of XPRESS
for the Baseball and the MapData is better than that for the other data sets. As
shown in Table II, since the Shakespeare and the SwissProt do not have much
numeric and enumeration typed data, the compression ratio of XPRESS is just
slightly lower than that of XGrind. In our experiment, XGrind does not compress
the SigmodRecord and the DBLP data sets. We can observe that XPRESS shows
a reasonable compression ratio for all cases.
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Fig. 17. Compression time (log scale)

Figure 17 shows the compression time of each compressor based on the log scale6.
In our experiments, XGrind generally shows the worst compression time. As men-
tioned earlier, to determine the data value encoders (i.e., huffman encoding and
dictionary encoding), XGrind uses DTDs. To parse and obtain some information
from DTDs, XGrind adopts a shareware XML parser. Thus, the overhead of XML
parsing and DTD validation is significant. In contrast to XGrind, XPRESS and
XMill parse the XML document efficiently since they do not use any information
from DTDs.

As mentioned earlier, XGrind does not compress the SigmodRecord and the
DBLP data sets. Thus, we did not report the compression time of XGrind for
these data sets. XMill and gzip show the best performance of data compression
since they compress XML data by one scan. Using proper encoding methods that
are determined by the inferred types, XPRESS shows better compression time

6some bars for compression time of some data sets are not shown in the graph since their values
are less than or equal to 1.
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compared to that of XGrind. In the evaluation of the decompression time, the
result shows a similar pattern compared to that of the compression time. Thus, we
omit the graph of the decompression time.
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Fig. 18. Compression ratio after performing gzip

In addition, to show the effect of the built-in compression library zlib in XMill,
we re-compressed the compressed files generated by XGrind and XPRESS using
gzip which uses zlib internally. The result is shown in Figure 18. In Figure 18,
as we expected, XMill still shows the best compression ratio. Since XMill groups
semantically related data values into same containers, zlib effectively compresses
XML data. However, the compression ratios of the re-compressed XML data by
gzip are very close to that of XMill. Especially, for some data sets, the compression
ratio of XPRESS for the re-compressed XML data is slightly higher than that of
gzip. Thus, for archiving, applying gzip selectively for compressed XML data which
is seldom queried is another alternative.

Although XMill shows the best performance in the compression ratio and the
compression time, XMill does not support querying compressed XML data. Thus,
to show the effectiveness of XPRESS, we compared the query performance of
XPRESS to that of XGrind which supports querying compressed XML data and
that of the XMill query engine which supports querying the uncompressed textual
XML data.

We plotted the query processing cost of all queries for ten data sets in Figure 19.
The query processing cost contains the result reconstruction time for all queries.
Basically, Figure 19 (a) shows the query performance for small sized XML data
sets (i.e., SigmodRecord, Part, Baseball, and Univ data sets), (b) is for medium
sized XML data sets (i.e., Orders, MapData, and Shakespeare data sets), and (c)
is for large sized XML data sets(i.e., Lineitem, SwissProt, and DBLP data sets),
respectively. For each query, the three connected bars represent XMill, XGrind
and XPRESS. Since XMill does not support direct querying on compressed XML
data, XMill must completely decompress compressed XML data first before pro-
cessing queries. Thus, the query processing cost for XMill is a sum of the complete
decompression time and the actual query processing time. The complete decom-
pression time consists of the decompression time of the compressed XML data and
the creation time of the decompressed XML file. The actual query processing time
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consists of the parsing time of the decompressed XML file and the evaluation time
of the given query. In addition, Table V shows the complete decompression time
and query processing time of XMill for each data set in seconds. Under Query Pro-
cessing Time, the values correspond to the time taken for the query types described
in Table III. As shown in Figure 19, XPRESS outperforms XMill and XGrind over
all cases.

Data Set Decompression Time Query Processing Time(sec)
(sec) T1 T2 T3 T4 T5 T6

SigmodRecord 0.02 0.31 0.19 0.09 0.16 0.35 0.24
Part 0.05 0.51 0.51 0.21 0.56 0.59 0.52

Baseball 0.07 0.55 0.39 0.37 0.43 0.38 0.43
Univ 0.17 1.70 1.58 0.79 1.50 1.92 1.54

Orders 0.43 4.06 4.16 1.69 3.46 3.75 4.02
MapData 0.28 0.73 0.94 0.55 0.89 1.02 1.12

Shakespeare 0.8 17.80 7.90 2.20 5.41 7.01 8.86
Lineitem 4.56 21.05 21.69 10.77 18.83 19.77 21.87
SwissProt 60.3 55.47 64.51 36.98 65.29 80.01 82.91

DBLP 75.12 82.81 85.73 39.57 63.01 71.56 79.97

Table V. Query evaluation time of XMill

The query cost of query type 1 shows that the approximated reverse arithmetic
encoder does not incur the degradation of efficiency. XPRESS is not very efficient
for Shakespeare 1 because the query generates a large result. Since the lengths
of path expressions in query type 2 are short, the query processing cost is low.
Thus, the difference of query performance between XPRESS and XGrind is not
conspicuous. However, the query performance of XPRESS for complicated path
expressions (query type 3, 4, 5, and 6) is much better than those of XGrind and
XMill since the query processor of XPRESS efficiently evaluates the queries using
reverse arithmetic encoding. The advantage of using reverse arithmetic encoding
appears for both simple queries and complex queries because the simple path is the
building block of the complex query. Also, for the queries containing predicates,
the performance gap increases since XPRESS minimizes the overhead of a partial
decompression using order preserved encoders.

Of particular interest is the performance gap between query type 1, 2 and query
type 3, 4, 5, 6. Similar to the compression, the decompression time of XMill
is the most efficient. Although XPRESS and XGrind evaluate the queries on the
compressed data, the decompression of query results is required. As the size of query
results decreases, the decompression overhead for query results of XPRESS and
XGrind decreases. Therefore, the performance gap between XPRESS and XMill
increases in the cases where queries contain predicates rather than simple/partial
path expressions without predicates.

On the average, the query performance of XPRESS is 2.13 times better than
that of XGrind and 4.31 times better than that of XMill, with the performance gap
increased by the complexity of queries.

Lastly, we demonstrate the efficiency of the update processor of XPRESS. As
mentioned previously, we compared the update performance of XPRESS to that of
ACM Transactions on Internet Technology, Vol. V, No. N, Month 20YY.
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Fig. 19. Query evaluation time

a naive approach which decompresses compressed XML data using XMill, makes
updates, and recompresses updated XML data using XMill.
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(b) Orders, MapData, and Shakespeare Data
Sets
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(c) Lineitem, SwissProt, and DBLP Data Sets

Fig. 20. Update time

We provided the processing cost of the updates whose representative examples
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are in Table IV.
In Figure 20, we divided the update cost with respect to sizes of XML data sets

as presented for the query cost. The two connected bars in Figure 20 represent the
naive approach with XMill and XPRESS, respectively.

As we expected, XPRESS outperforms the naive approach with XMill over all
cases since the update processor of XPRESS does not perform the complete de-
compression of compressed XML data.

For update type 2, due to the insertion of the newly appeared tags, the recom-
pression for the new encoded values for all the tags is required. Therefore, the
updates of type 2 consume more time than those of type 1. However, the update
performance of XPRESS is considerably better than that of the naive approach with
XMill since the updater of XPRESS performs only a partial decompression instead
of the complete decompression, and the query performance of XPRESS is superior
to that of the query engine for XMill. Similarly, the performance of XPRESS for
the update type 3 is superior to that of the naive approach with XMill. As a result,
the performance of the update processor of XPRESS is about 5.7 times faster than
that of the naive approach with XMill.

In addition, we provided the updated portion of the updates presented in Fig-
ure 20 for the naive approach with XMill and XPRESS in Table VI. Type represents
the types of updates as described in Table IV and Updated Size denotes the total
size of the updated portion for the naive approach with XMill and XPRESS in
bytes.

Consequently, XPRESS achieves significantly improved query performance com-
pared to XGrind and shows a reasonable compression ratio. Also, XPRESS achieves
significantly improved update performance compared to the naive approach with
XMill.

7. CONCLUSION

In this paper, we propose XPRESS, an XML compressor which supports direct
updates and efficient querying on compressed XML data. In XPRESS, we devise
a novel encoding method, called reverse arithmetic encoding, which encodes a la-
bel path to a distinct interval in [0.0, 1.0). Using the containment relationships
among the intervals, path expressions are evaluated on compressed XML data ef-
fectively. Furthermore, to save the disk space, we implement the approximated
reverse arithmetic encoder which does not incur the loss of the accuracy and the
efficiency. Also, to apply proper encoders for data values, we devise an efficient
type inference engine and, by inferred type information, XPRESS encodes the data
values. Since the encoders for numeric typed data values and the encoder for string
typed data values do not lose the order information, we reduce the overhead of a
partial decompression for range queries.

We implemented XPRESS, a compressor as well as a query processor and an
update processor for compressed XML data. The query processor of XPRESS sup-
ports a wide class of XPath including order based and value based predicates. To
show the efficiency of XPRESS, we conducted an extensive experimental study with
real-life XML data sets. Experimental results show that XPRESS improves query
performance. On the average, the query performance of XPRESS is 2.13 times
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Data Set Type Updated Size(Bytes)
naive approach XPRESS

with XMill

SigmodRecord T1 402570 17892
T2 415989 73059
T3 69849 27702

Part T1 273999 42000
T2 558000 98000
T3 54893 10000

Baseball T1 167962 25746
T2 342054 60074
T3 22047 6130

Univ T1 279075 41175
T2 1276425 224175
T3 110931 20582

Orders T1 509999 52938
T2 4185000 432327
T3 462208 61761

MapData T1 1800 70
T2 1116 49
T3 180 28

Shakespeare T1 11757020 1923876
T2 29820078 5237218
T3 5685014 2956429

Lineitem T1 7160824 1263675
T2 16788825 2948575
T3 1854326 421225

SwissProt T1 62526526 9584358
T2 127335042 22363502
T3 10204644 5669208

DBLP T1 41392845 7004943
T2 59224167 10401279
T3 16873191 9710766

Table VI. Updating portion of the updates

better than that of XGrind and 4.31 times better than that of XMill, with the
performance gap increasing with the complexity of queries. The average compres-
sion ratio of XPRESS is 71%. Also, we demonstrated the efficiency of the update
performance of XPRESS by comparing with that of a naive approach using XMill.

Currently, the type inference engine of XPRESS distinguishes the numeric data
and textual data. Thus, for our future work, we plan to extent XPRESS to support
complex typed data values such as URI (Uniform Resouce Identifier) using data
mining algorithms.
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