
Dynamic Interval-based Labeling Scheme for

Efficient XML Query and Update Processing

Jung-Hee Yun a,∗, Chin-Wan Chung b

aIT Standards Team, IT Performance Evaluation Division
National Computerization Agency

NCA Bldg. 77, Mugyo-dong, Chung-ku, Seoul, 100-775, Korea
bDivision of Computer Science

Department of Electrical Engineering & Computer Science
Korea Advanced Institute of Science and Technology

373-1,Guseong-dong, Yuseong-gu, Daejeon, 305-701, Korea

Abstract

XML data can be represented by a tree or graph structure and XML
query processing requires the information of structural relationships
among nodes. The basic structural relationships are parent-child and
ancestor-descendant, and finding all occurrences of these basic struc-
tural relationships in an XML data is clearly a core operation in XML
query processing. Several node labeling schemes have been suggested to
support the determination of ancestor-descendant or parent-child struc-
tural relationships simply by comparing the labels of nodes. However, the
previous node labeling schemes have some disadvantages, such as a large number of
nodes that need to be relabeled in the case of an insertion of XML data, huge space
requirements for node labels, and inefficient processing of structural joins. In this
paper, we propose the nested tree structure that eliminates the disadvantages and
takes advantage of the previous node labeling schemes. The nested tree structure
makes it possible to use the dynamic interval-based labeling scheme, which supports
XML data updates with almost no node relabeling as well as efficient structural join
processing. Experimental results show that our approach is efficient in handling up-
dates with the interval-based labeling scheme and also significantly improves the
performance of the structural join processing compared with recent methods.

Key words: XML Query, XML Update, XML Labeling scheme

∗ Corresponding author.
Email addresses: yunjh@nca.or.kr (Jung-Hee Yun), chungcw@cs.kaist.ac.kr

(Chin-Wan Chung).

Preprint submitted to Elsevier 30 April 2007

1 Introduction

As XML is widely being used for data exchange, there have been many re-
searches about the problem of storing, managing and querying XML data ef-
ficiently. Generally XML data is modeled by a tree or graph structure, where
nodes represent elements, attributes and text data, and the parent-child rela-
tionship between two nodes is represented by an edge.

Several query languages such as XPath [6] and XQuery [7] have been pro-
posed to process XML data, and handling tree pattern matching, especially
the ancestor-descendant or parent-child structural relationship, is impor-
tant to execute queries efficiently. In order to improve the processing time for
deciding these structural relationships, several node labeling and index
schemes have been suggested [10,14,13,12,9,4,16,17]. Most of them model an
XML document as a node-labeled tree and every node is given a unique iden-
tifier(label) based on its location in the document or its order in the XML
data tree traversal. These labels can be used to determine whether ancestor-
descendant or parent-child structural relationship between two nodes ex-
ists.

In the case of the interval-based labeling scheme [10,14] that assigns start and
end position numbers as the label to each node, the label of each node can be
determined by the sequential assignment of positive integer numbers during
the depth first traverse of an XML data tree. By using this labeling scheme, it
is possible to decide the ancestor-descendant or parent-child structural
relationship between two nodes very simply. Also the feature of interval-based
labeling, in which the interval (between the start position and the end posi-
tion) of an ancestor node includes the interval of a descendant node, makes
it feasible to process structural join efficiently. Several algorithms and index
structures [11,5,8] using this feature for efficient structural join processing
have been studied. However they cannot handle dynamic updates efficiently
because of the sequential numbering. To solve this problem, additional space
is reserved for future data insertions[10], but after several data insertions the
space required to hold inserted data has exceeded the reserved space and in
the worst case the relabeling of the whole data tree is needed.

In the prefix labeling scheme [12,9], the nodes in XML data tree are la-
beled such that the ancestor-descendant structural relationship between
two nodes is determined by whether one label is the prefix of the other. If the
order of nodes does not need to be stored, data insertions do not
affect the labels of existing nodes. But if the order of nodes must
be stored, insertions cause changes in the labels. Also the large size
of labels and delimiters incurs high storage overhead, and when the
fan-out of the XML tree is large, the size of labels could be large.

2

Moreover, structural join processing using a prefix labeling scheme is less ef-
ficient than those using an interval-based labeling scheme because the prefix
comparison is slower than the simple integer comparison.

The prime number labeling scheme [13] is based on the property of prime
numbers. This scheme assigns a unique prime number to each node as the
self-label and the label of each node is the product of its parent node’s la-
bel and its own self-label. In this labeling scheme, the determination of the
ancestor-descendant structural relationship between any two nodes de-
pends on whether the label of a descendant-candidate node is divisible by
the label of an ancestor-candidate node. When a new node is inserted, it is
easy to assign a prime number that has not been assigned before as the self-
label for any node. However the space size for the node label is huge because
the label of each node is the product of self-labels from the root to each node.
Also several algorithms and index structures [11,5,8] for efficient structural join
processing can not be applied under this labeling scheme which does not have
the property of the interval, and m× n scans are necessary for the structural
join when the ancestor-candidate node list has m nodes and the descendant-
candidate node list has n nodes. Therefore this scheme cannot support the
efficient XML query processing.

In [15], a new labeling scheme called ORDPATH, a dynamic variant of the
Dewey order, is provided. In ORDPATH, the label of each node is determined
by the Dewey order scheme except that it reserves even and negative integers
for later insertions into an existing tree. Also it stores the label of each node
as the compressed binary representation and the ancestor-descendant or
parent-child structural relationship between two nodes is determined by the
substring comparison. Because of the reserved even and negative inte-
gers, almost no node relabeling occurred for new data insertions. But
the length of the binary representation of the label is very long and becomes
longer by frequent data insertions.

Recently [4] proposes a new XML update approach, the lazy XML update,
which deals with both XML updates and structural join processing in an effi-
cient way, based on the use of segments. The segment is a set of elements that
must be inserted into or deleted from the XML database and this approach
takes a segment as the unit of updates. Each segment is labeled by the global
position, local position and length. The segment containment relation-
ship can be determined by the labels of two segments. In this approach, the
traditional structural join algorithm is improved into the segment-based ex-
tended algorithm, which improves query performance. However by the XML
data insertion, the global position and the length of each segment must be
relabeled, and the total number of segments is limited because all segments
must be in memory. Also this approach is not applicable to the real time up-
date processing of XML data. In order to manage the segments, the update

3

log, the SB-tree and tag-list, must be maintained additionally.

In this paper, we propose an effective node labeling scheme that solves the
weak points of the previous schemes by supporting efficient update and query
processing. XML document consists of elements and we can consider an ele-
ment as a unit of XML data update. These elements are expressed by subtrees
in XML data tree, and the XML data insertion and deletion can be treated
by the combination of subtree insertions and subtree deletions respectively.

The interval-based labeling scheme is weak in data updates because of the
interval property of node labels. Although additional space is reserved for
the future data insertions, node relabeling is inevitable in the case of a large
data insertion or many data insertions. This is because the reserved space size
is not sufficient for the data insertions, so it is solvable if we can process the
insertion of a large XML data with small space. Motivated by this observation,
we propose a nested tree structure for the dynamic interval-based labeling
scheme. The inserted subtree is labeled as one leaf node and the nodes in
subtree are labeled by new numbering. Then the ancestor-descendant or
parent-child structural relationship between one node in the subtree and
another node not in the subtree is determined by comparing the label of
the subtree and the label of the latter node. The ancestor-descendant or
parent-child structural relationship between two nodes in the subtree can
be obtained by the new labels marked in the scope of the subtree. If the data
insertion occurs in the previous inserted subtree, a new subtree is formed in
the inserted subtree. As the data insertions like this occurs continually, the
structure of the whole tree is nested by subtrees, and we call it the Nested
Tree structure.

In the proposed Nested Tree structure, the numbering scheme is basically
the same as the traditional interval-based numbering scheme except that an
integer list is used to represent the start position and the end position instead
of an integer. If the integer comparison operation is changed to the integer
list comparison operation, the traditional structural join algorithm based on
the interval-based numbering scheme such as Tree-Merge-Anc and Stack-Tree-
Desc [11] can be applied with no change.

The contributions of this paper are the following :

• We propose new structures, the Nested Tree structure and Nested Inverted
List for the dynamic interval-based node labeling and efficient structural
join processing. Results of extensive experiments show that our approach
is more efficient than representative existing approaches for update as well
as structural join processing. Especially, our approach is on the average
6.2 times and up to 52.1 times faster than the most efficient representative
approach for structural join processing while on the average 10% faster for

4

update processing.
• We present an XML data insert and delete processing method with almost

no node relabeling using the advantage of the Nested Tree structure.
• We show the traditional structural join algorithms can be applied to our

model just with the change of the comparison operation between two labels.
Also we develop an enhanced structural join algorithm using the proposed
Nested Inverted List.

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 proposes the Nested Tree structure, while Section 4 discusses the
XML data update and delete algorithms. We describe the method of query
processing using the Nested Tree structure in Section 5. Section 6 reports
experimental results and then Section 7 concludes the paper.

2 Related Work

XML data is generally modeled by a node-labeled tree structure, where nodes
represent elements, attributes and text data, and the label of each node stands
for the name of an element, attribute, or the text data. To efficiently process
complex XML queries which can be represented by the query languages, such
as XPath [6] or XQuery [7], it is important to quickly determine the ancestor-
descendant or parent-child structural relationship between any pair of tree
nodes and to efficiently find all occurrences of these structural relationships.

To support efficient XML query processing, several node labeling schemes in
the XML data tree were proposed. And then several algorithms and index
structures using these schemes for XML query processing have been studies.

In the interval-based labeling scheme, such as [10,14], the label of any node
in a XML data tree is represented as the tuple (DocID, StartPos, EndPos,

LevelNum), where (i) DocID is the identifier of the document; (ii) StartPos

and EndPos can be generated by counting the number of words from the
beginning of the document with identifier DocID to the start of the element
and end of the element, respectively, or by the sequential assignment of positive
integers during the depth first traversal of XML data tree; and (iii) LevelNum
is the depth of the element in the document.

The ancestor-descendant or parent-child structural relationship between
two tree nodes N1 and N2 whose positions are recorded in this fashion, such
as (D1, S1, E1, L1) and (D2, S2, E2, L2), can be determined easily: (i) ancestor-
descendant : N2 is a descendant of N1 iff D1 = D2, S1 < S2 and E2 < E1;
(ii) parent-child : N2 is a child of N1 iff D1 = D2, S1 < S2, E2 < E1 and
L1 + 1 = L2.

5

There have been many studies about the structural join algorithms using the
interval-based labeling scheme. [11] proposed two families of structural join
algorithms for matching parent-child and ancestor-descendant relationships
efficiently: Tree-Merge and Stack-Tree. The Stack-Tree-Desc is the most effi-
cient algorithm among four algorithms in [11]. It assumes that each element
list of the inverted list is stored ordered on StartPos and a stack mechanism
is used to maintain elements that will be used later in the join. This leads to
the optimal join performance, which is proportional to the input and
output size.

[5] proposed the stack-based structural join algorithm that uses the B+-tree
index built on the StartPos. They enhance the stack-based structural join
algorithm by avoiding the comparisons of some of the elements that do not
participate in the join.

[8] proposed the index for efficient structural joins, XR-Tree. It is the XML
Region Tree, which is a dynamic external memory index structure. This index
can be used for an efficient new structural join algorithm that can evaluate the
ancestor-descendant structural relationship between two XR-tree indexed
element sets by skipping ancestors and descendants that do not participate in
the join.

These algorithms and index structures were made by using the interval-based
labeling scheme. Therefore the labeling schemes that produce a single label for
each node such as the prefix labeling and the prime number labeling scheme
[12,9,13] can not be applied to these algorithms and index structures.

In the prefix labeling scheme [12,9], the nodes in XML data tree are
labeled such that the ancestor-descendant structural relationship
between two nodes is determined by whether one label is the prefix
of the other. If the order of nodes does not need to be stored, data
insertions do not affect the labels of existing nodes. But if the order
of nodes must be stored, insertions cause changes in the labels. Also
the large size of labels and delimiters incurs high storage overhead,
and when the fan-out of the XML tree is large, the size of labels
could be large. Moreover, structural join processing using a prefix
labeling scheme is less efficient than those using an interval-based
labeling scheme because the prefix comparison is slower than the
simple integer comparison.

The prime number labeling scheme [13] is based on the property
of prime numbers. This scheme assigns a unique prime number to
each node as the self-label and the label of each node is the prod-
uct of its parent node’s label and its own self-label. In this labeling
scheme, the determination of the ancestor-descendant structural re-

6

lationship between any two nodes depends on whether the label of
a descendant-candidate node is divisible by the label of an ancestor-
candidate node. When a new node is inserted, it is easy to assign a
prime number that has not been assigned before as the self-label for
any node. However the space size for the node label is huge because
the label of each node is the product of self-labels from the root to
each node. Also several algorithms and index structures [11,5,8] for
efficient structural join processing can not be applied under this la-
beling scheme which does not have the property of the interval, and
m×n scans are necessary for the structural join when the ancestor-
candidate node list has m nodes and the descendant-candidate node
list has n nodes. Therefore this scheme cannot support the efficient
XML query processing.

In [15], a new labeling scheme called ORDPATH, a dynamic vari-
ant of the Dewey order, is provided. In ORDPATH, the label of
each node is determined by the Dewey order scheme except that it
reserves even and negative integers for later insertions into an ex-
isting tree. Also it stores the label of each node as the compressed
binary representation and the ancestor-descendant or parent-child
structural relationship between two nodes is determined by the sub-
string comparison. Because of the reserved even and negative inte-
gers, almost no node relabeling occurred for new data insertions.
But the length of the binary representation of the label is very long
and becomes longer by frequent data insertions.

[18] proposes new data structures, W-BOX and B-BOX, that effi-
ciently maintain order-based labeling for dynamic tree-structured
XML data. The proposed data structures handle arbitrary update
patterns while consuming minimal amount of storage. The two struc-
tures provide tradeoff between update and lookup costs. W-BOX
uses weight-balanced B-trees to reduce the relabeling overhead, ob-
taining a logarithmic amortized update cost and constant worst-case
lookup cost, whereas B-BOX further reduces update costs, result-
ing in a constant amortized update time and logarithmic worst-case
lookup cost, by avoiding the storage of labels. While the reported
theoretical and experimental results are good, no experimental re-
sults for queries are reported.

Recently [4] proposes a new XML update approach, the lazy XML
update, which deals with both XML updates and structural join
processing in an efficient way, based on the use of segments. The seg-
ment is a set of elements that must be inserted into or deleted from
the XML database and this approach takes a segment as the unit of
updates. Each segment is labeled by the global position, local posi-

7

tion and length. The segment containment relationship can be de-
termined by the labels of two segments. In this approach, the tradi-
tional structural join algorithm is improved into the segment-based
extended algorithm, which improves query performance. However
by the XML data insertion, the global position and the length of
each segment must be relabeled, and the total number of segments
is limited because all segments must be in memory. Also this ap-
proach is not applicable to the real time update processing of XML
data. In order to manage the segments, the update log, the SB-tree
and tag-list, must be maintained additionally.

[19] proposes a new labeling scheme, an extended Dewey labeling
scheme, in which all the elements names along the path from the
root to the element can be derived from the label of an element
alone. Based on extended Dewey they design a novel holistic twig
join algorithm, TJFast. To answer a twig query, TJFast only needs
to access the labels of the leaf query nodes. This reduces disk access
and supports an efficient evaluation of queries with wildcards in
branching nodes. However, if there is not the DTD of the XML
data, to construct the finite state transducer for the extended Dewey
labels the scan of the whole XML data is necessary. Also this scheme
is not suitable for the update processing because the labels of whole
nodes and the finite state transducer must be reconstructed after
data insertions.

3 Nested Tree Structure

The interval-based labeling scheme cannot support the dynamic update of
XML data efficiently because it takes the sequential numbers as the labels of
nodes and there is the interval property between the start and end positions for
each node. When a new node is inserted, re-labelings of the existing nodes are
indispensable. In order to solve this problem, it is possible to leave additional
space between any two nodes for future XML data insertions. However, the
size of the space can not be decided simply because update patterns are not
fixed generally.

While the inserted XML data can be regarded as one XML element, namely a
small tree representing the inserted XML data, the insertion of this tree can be
treated as the insertion of one node into the original XML tree. If the number
of nodes in that small tree is 100, the space of more than 200 in the inserted
position is needed for inserting this data in the original interval-based labeling
scheme. However, if the inserted data is regarded as one XML element or one
small tree, one space is sufficient for insert processing.

8

bib

book book

title titleauthor author sectionsection

title section“XML” “John” “Basic” “Query”“Jane”

“Cost” “Method”

(1,125)

(7,33)

(11,15)

(13,13)

(17,21)

(19,19)

(25,29)

(27,27)

(37,75)

(40,44)

(42,42) (49,49)

(47,52) (55,72)

(58,62)

(60,60) (67,67)

(65,70)

paper
(80,120)

“New”

title

section

74

(1,12)

(5,9)

(7,7)

. . .

Figure 1. An Example of Data Inserting

Based on this observation of XML data insertion, we propose the Nested
Tree structure for the dynamic interval-based labeling scheme. For example,
in Figure 1, if a new section is inserted into the second book, represented by
the dashed box, the space of between 72 and 75 is not enough to label all the
nodes of the new section. But if we treat the new section data as one tree
node, the number 74(or 73) can be the label of the section subtree. In such a
case the subtree is defined as Nested Tree. The labels of the section, title and
New nodes in the Nested Tree can be marked by new numbering regardless of
the numbering of the original tree, and the number 74 represents the position
of the Nested Tree in the original XML data tree.

We now define some terminologies and then prove a theorem that is necessary
to define the rule for the determination of ancestor-descendant or parent-
child structural relationships between tree nodes which are in the Nested Tree
structure.

Definition 1 A Nested Tree is a subtree which has an interval-based number
as a node of the containing tree and its own interval-based numbering as a
tree.

Definition 2 A k-Nested Tree (k=1, 2, . . .) is defined as follows:

(1) 1-Nested Tree is a Nested Tree of XML data tree which is not included
by any other Nested Trees.

(2) m-Nested Tree, Tm, is a Nested Tree that is included by (m-1)-Nested
Tree, Tm−1, (m=2, 3, . . .) and there is not any other Nested Tree that
includes Tm and is included by Tm−1.

9

Definition 3 The Nested Tree of node N is the Nested Tree that
includes the node N. The last Nested Tree of node N is the n-
Nested Tree where there are n Nested Trees of node N.

Definition 4 The startList of any tree node N is the list, s1; . . . ; sn; sn+1,
where the last Nested Tree T of N is an n-Nested Tree, where si is the label of
the i-Nested Tree of the node N (i=1, 2, . . . , n) and sn+1 is the start position
of N in the n-Nested Tree T. The endList of node N is defined in the same
way of the previous definition of startList of N except that the start position
is substituted by the end position of N.

To apply the Nested Tree structure to the interval-based labeling scheme, the
label of each node can be represented as the 4-tuple (DocID, sList, eList,

Level), where (i) DocID is the identifier of the document; (ii) sList and eList

is the startList and endList of the node, respectively; and (iii) Level is the
depth of the node in the data tree. We call the inverted list that is composed
of the lists of the above 4-tuples representation, Extended Inverted List.

For example, in Figure 1, the inserted section node is represented as 4-tuple, (1,
74;1, 74;12, 3), assuming that the DocID of every node in the tree is 1. The label
of the first book node is (1, 7, 33, 2). Figure 2 shows 4-tuple representations
of tree nodes except DocID and Level.

bib

book book

title titleauthor author sectionsection

title section“XML” “John” “Basic” “Query”“Jane”

“Cost” “Method”

(1,125)

(7,33)

(11,15)

(13,13)

(17,21)

(19,19)

(25,29)

(27,27)

(37,75)

(40,44)

(42,42) (49,49)

(47,52) (55,72)

(58,62)

(60,60) (67,67)

(65,70)

paper
(80,120)

“New”

title

section
(74;1, 74;12)

(74;5,74;9)

(74;7,74;7)

. . .

Figure 2. An Example of Nested Tree Structure

Lemma 1 For the labels of two nodes N1 and N2, (D1, s1;s2; . . . ; sm, e1;e2;
. . . ; em, L1) for N1 and (D2, t1;t2; . . . ; tn, f1; f2; . . . ; fn, L2) for N2, if si = ti,
for each i, 1 ≤ i ≤ k − 1, (k ≤ min(m,n)), then si = ei and ti = fi, for each
i, 1 ≤ i ≤ k − 1.

10

PROOF The Lemma is provided by the Definition 4. 2

Theorem 1 For the labels of two nodes N1 and N2, (D1, s1; s2; . . . ; sm, e1;e2;
. . . ; em, L1) for N1 and (D2, t1;t2;. . .; tn, f1;f2; . . . ; fn, L2) for N2, if si = ti
for each i, 1 ≤ i ≤ k−1(k ≤ min(m,n)), and sk 6= tk, then N1 is the ancestor
of N2 if and only if sk < tk and fk < ek.

PROOF By Lemma 1, si = ei = ti = fi, for each i, 1 ≤ i ≤ k − 1. Therefore
N1 and N2 are included in the same (k-1)-Nested Tree.

Case 1) If m = n = k, in other words the last Nested Tree of N1 and N2 is
(k-1)-Nested Tree, by the definition of startList and endList, sk and ek are the
start position and end position of N1 in the (k-1)-Nested Tree, and tk and fk

are the start position and end position of N2 in the same (k-1)-Nested Tree.
Therefore N1 is the ancestor of N2 if and only if sk < tk and fk < ek from the
property of the interval-based numbering.

Case 2) If min(m,n) > k, N1 and N2 are included in k-Nested Trees, and
the k-Nested Tree of N1 is different from that of N2. Therefore, there is not
an ancestor-descendant relationship between N1 and N2. Since, sk = ek and
tk = fk in this case, sk < tk and fk < ek is false. Consequently, the theorem
holds for this case.

Case 3) If min(m,n) = k(suppose m = k), in other words the last Nested
Tree of N1 is (k-1)-Nested Tree and that of N2 is not, then tk = fk and tk
is the label of the k-Nested Tree of N2. sk and ek are the start position and
end position of N1 in the (k-1)-Nested Tree. Therefore, sk < tk < ek if and
only if the k-Nested Tree of N2 is a descendant of N1, in other words, N2 is a
descendant of N1. 2

Figure 3 illustrates these three cases.

According to Theorem 1, ancestor-descendant or parent-child structural
relationships between tree nodes whose positions are represented in the 4-
tuple (DocID, sList, eList, Level) can be determined by the following
method: For a tree node N1 whose position in the XML data is encoded as
(D1, s1; s2; . . . ; sm, e1;e2; . . . ; em, L1) and N2 as (D2, t1;t2;. . .; tn, f1;f2; . . .
; fn, L2), suppose that si = ti, for each i, 1 ≤ i ≤ k − 1(k ≤ min(m,n)) and
sk 6= tk. (i) ancestor-descendant : N1 is an ancestor of N2 iff D1 = D2, sk < tk
and fk < ek; (ii) parent-child : N1 is the parent of N2 iff D1 = D2, sk < tk,
fk < ek and L1 + 1 = L2.

For example, in Figure 2, the book node with label (37, 75) is an ancestor of
the title node with label (74;5, 74;9), and the section node with label (74;1,
74;12) is the parent of the title node with label (74;5, 74;9).

11

N1

N2

N1

N2

N2

N1

(k-1)-Nested Tree

(k-1)-Nested Tree

(k-1)-Nested Tree

k-Nested Tree
of N1

k-Nested Tree of N2

k-Nested Tree
of N2

Figure 3. Examples for the cases of theorem

4 Update Processing

In this paper, we treat the XML data insertion as a subtree insertion into
the original XML data tree and the deletion as a subtree deletion from the
data tree because all patterns of XML data updates can be handled by the
combination of subtree insertions and deletions. In this section, we propose the
XML data insert and delete algorithms based on the Nested Tree structure.

4.1 Insert Processing

The XML data insertion can be processed by adding a subtree into the original
XML data tree. In the case of the interval-based labeling, if there is enough
space at the position of the insertion, it is possible to label nodes in the in-
serted subtree with integer numbers in the range of the space. However, it
is difficult to predict the pattern of data insertions and the space becomes
smaller gradually after several insertions of new data. Accordingly it is neces-
sary to solve such cases as the size of the space is zero or smaller than the size
of inserted data. We propose an insert algorithm based on the Nested Tree
structure to handle the above cases.

The space is the range of integers that are possible to be used as new labels
for the inserted data and the size of the space is the number of integers in the

12

range. We call the size of the space SpaceSize and the size of the inserted
data InsertSize. The insert processing is classified as follows:

• SpaceSize > InsertSize : use the integers in the range of the space as
labels for the inserted subtree

• 0 < SpaceSize ≤ InsertSize : treat the inserted subtree as a new Nested
Tree and label the Nested Tree with an integer in the range of the space

• SpaceSize = 0 : combine the inserted subtree with the subtree rooted by
the parent of the inserted subtree, treat the combined subtree as one Nested
Tree and label the Nested Tree with an integer in the space

Figure 4 shows the example of these cases. The first case does not need a
new method to process data insertions because the SpaceSize is enough to
label the nodes of the new inserted subtree. In the second case, the size of
the inserted subtree is larger than the size of the space. But if we treat the
new inserted subtree as one Nested Tree, only one integer is needed for the
label of the new Nested Tree. Accordingly if the size of the space is one or
more, the relabeling for the nodes in the original data tree is not necessary for
the new data insertion. The third case is the worst case. Because there is no
space at the position for the data insertion, we can not treat the new inserted
subtree as one Nested Tree. However, in this case, we can extend the scope of
the new Nested Tree such that the Nested Tree includes the subtree rooted by
the parent of the inserted subtree. In this case, it is required to relabel some
nodes in the original data tree.

Figure 5 shows the Insert Algorithm. In line 1 to 2, initialize the startList
and endList of each node of the inserted subtree. In line 3, get the size of the
empty space and in line 4, get the size of the inserted subtree. The first case
of insert processing is in line 6 to 9, the second case is in line 10 to 15 and
the third case is in line 16 to 27. In the first case, SpaceSize is larger than
InsertSize, the procedure uses the integers in the range of the space as labels
for the inserted subtree. In the second case, a new Nested Tree is created by
the inserted subtree and the third case makes a new Nested Tree by combining
the inserted subtree with the parent subtree.

When the SpaceSize is larger than the InsertSize, we can choose
one from two options, embedding the inserted tree using integers
in space or creating a new Nested Tree. The two options provide a
tradeoff between label size and space size. The first option leaves less
space for later insertions and the second one makes labels longer.
When data insertions occur frequently, the second option is better
and eliminates node relabelings of later data insertions. But the
query processing time can be higher because of the length of labels.
As the Nested Tree insertions occur, the lengths of the startList and
endList of nodes increase and the number of integer comparisons

13

(10,25)

(11,14) (22,24)

(23)(12) (13)

(10,25)

(11,14)

(12) (13)

(22,24)

(23)

(15,20)

(17,19)(16)

(18)• InsertSize = 6

• SpaceSize = 7

(a)

(10,19)

(11,14) (16,18)

(17)(12) (13)

(10,19)

(11,14)

(12) (13)

(16,18)

(17)

(1,6)

(3,5)(2)

(4)

15

• InsertSize = 6

• SpaceSize = 1

(b)

(10,18)

(11,14) (15,17)

(16)

(1,15)

(2,5)

(3) (4)

(12,14)

(13)

(6,11)

(8,10)(7)

(9)

10

• InsertSize = 6

• SpaceSize = 0

(12) (13)

(c)

Figure 4. Cases of insert processing

for processing a structural join increases also. However as shown
in experimental results, the nested depth of Nested Trees does not
affect the performance of the structural join significantly and also
we can release Nested Trees in delete processing or during the XML
database maintenance time. On the other side, when later queries
access the inserted data frequently, the first one is better.

When the insertion of subtree occurs inside of the Nested Tree which
is made from the previous subtree insertion and SpaceSize is less
than InsertSize but more than one, the worst case for the label

14

size happens. In this case, for each insertion, a new Nested Tree is
created. Therefore the lengths of the startList and endList of the
inserted node are increased by one for each insertion. The label size
in the worst case is proportional to the number of insertions.

procedure insert(ST, position)
//ST is the inserted subtree,
//position is the (start position, end position) pair
of the node under which the subtree is inserted
begin
1. foreach node n of ST do
2. Initialize the startList and endList of n to be

the startList and endList of the current Nested Tree

3. SpaceSize ← getSpaceSize(position)
4. InsertSize ← getSubtreeSize(ST)
5. < l1, l2, ..., lSpaceSize > ← getNewLabel(position)

6. if SpaceSize > InsertSize then
7. Label the nodes in ST by interval-based labeling scheme starting from l2
8. Attach the start and end positions to the startList and endList
9. of the nodes in ST

10. else if 0 < SpaceSize ≤ InsertSize then
11. k ← ldSpaceSize

2
e // the label of the new Nested Tree

12. foreach node n in ST do
13. Attach k to the startList and endList of n
14. Label the nodes in ST by a new numbering
15. Attach the start and end positions to the startList and endList

of the nodes in ST

16. else //SpaceSize = 0
17. PST ← subtree rooted by the node that ST will be attached to
18. foreach node n in PST do
19. Remove the last start and end position

from the startList and endList of n
20. NST ← PST combined with ST
21. NSpaceSize ← getSpaceSize(position of root of PST)
22. < l1, l2, ..., lNSpaceSize > ← getNewLabel(position of root of PST)
23. k ← ldNSpaceSize

2
e // the label of NST

24. foreach node n in NST do
25. Attach k to the startList and endList of n
26. Label the nodes in NST by a new numbering
27. Attach the start and end positions to the startList and endList

of the nodes in NST
end

Figure 5. Insert Procedure

15

(8,50)

10

(1,6)

(2,4)

(3)

(5)

(13,25)

(8,50)

(9,11)

(10)
• PositionSize = 4

• RemainTreeSize = 3

(13,25)

(a)

(10,50)

12

(1,6)

(2,4) (5)

(3)

(14,17)

(15) (16)

(18,…)

(10,50)

(11,16)

(12,14)

(13)

(15)

(18,…)

• PositionSize = 7

• RemainTreeSize = 6

(b)

Figure 6. Cases of delete processing

4.2 Delete Processing

The XML data deletion can be processed by the deletion of a subtree from the
original XML data tree. In the case of the interval-based labeling, the data
deletion does not require any processing except the subtree deletion because
the rule of the interval-based labeling is not broken after deleting some nodes.
However, the more subtree insertions occur, the more Nested Trees are created.
The more Nested Trees are created, the longer the lengths of the startList and
endList of nodes are. As the lengths of the startList and endList of the nodes
increase, the number of integer comparisons for the processing of a structural
join increases also. So it is necessary to release Nested Trees in the process of
subtree deletion as much as possible. In this subsection, we propose a delete
algorithm which releases Nested Trees during data deletions.

The way to release a Nested Tree by using the space made by subtree dele-
tions is classified by two cases. The first case is to release the last Nested
Tree in which the deleted subtree is included and the second case is to release
following-sibling or preceding-sibling Nested Trees of the deleted subtree re-
cursively. If the deleted subtree is not included by any Nested Tree, the former

16

is not applicable. In Figure 6, the PositionSize is the size of the space in
which the Nested Tree is included, and the RemainTreeSize is the size of the
Nested Tree, both after delete processing. As the cases in Figure 6, in order to
release a Nested Tree, PositionSize must be larger than RemainTreeSize.

Figure 7 is the delete procedure for these processes. The delete
procedure is divided into two cases. The first is that the deleted
subtree is included in a Nested Tree and the second is not. Line
1 to 8 is the procedure for the first case and line 9 to 25 is for
the second case. In the first case, when PositionSize is larger than
RemainTreeSize, line 5 to 8 can be applied and the Nested Tree that
includes the deleted subtree is released by the procedure. When the
deleted subtree is not included any Nested Tree, the line 10 to 25
can be applied.

Because recursively releasing the last Nested Tree is not possible,
our algorithm applies the recursive release procedure to only the
second case, releasing sibling Nested Trees. If releasing the (n-1)-
Nested Tree of the deleted subtree could be possible, where the last
Nested Tree is n-Nested Tree, it would have been released before the
releasing last nested Tree. After releasing the last Nested Tree(n-
Nested Tree), the number of nodes in the (n-1)-Nested Tree is bigger
than that before the release. On the other hand, recursively releasing
sibling Nested Tree is possible if enough space is added after deleting
subtree.

The delete procedure prefers releasing the last nested tree to re-
leasing siblings because releasing the last nested tree releases more
nodes compared with releasing siblings. The last nested tree con-
taining the deleted subtree includes any sibling nested trees of the
deleted subtree.

The performance of this delete procedure is not better than that of the simple
deletion procedure. However because the performance of the processing of the
future queries is influenced by whether the Nested Tree is released or not, this
delete procedure is very important.

4.3 Analysis of Update Processing

It is the number of relabeled nodes that determines the performance of the up-
date procedure. In the case of the insert procedure, node relabeling is required
when there is no space at the position for the data insertion. The number of
relabeled nodes is the size of the subtree that is rooted by the parent of the
inserted subtree. In the case of delete procedure, node relabeling is necessary

17

procedure delete(ST)
//ST is the subtree to be deleted
begin
1. if ST is included in any k-Nested Tree then
2. T ← k-Nested Tree in which ST is included
3. PositionSize ← getPositionSize(T, ST)
4. RemainTreeSize ← getRemainTreeSize(T, ST)

5. if PositionSize > RemainTreeSize then
6. Delete the nodes in ST
7. Release T
8. Relabel the nodes remaining in T

9. else //ST is not included in any Nested Tree
10. if the following-sibling(or preceding-sibling)

of ST is Nested Tree then
11. NST ← following-sibling

(or preceding-sibling) of ST
12. PositionSize ← getPositionSize(NST + ST, ST)
13. RemainTreeSize ← getSize(NST)
14. if PositionSize > RemainTreeSize then
15. while following-sibling(or preceding-sibling)

of NST is Nested Tree(NNST) and the size
of NNST is smaller than (PositionSize-RemainSize) then

16. NST ← NST + NNST
17. PositionSize ← getPositionSize(NST+ST, ST)
18. RemainSize ← getSize(NST)
19. Delete the nodes in ST
20. Release NST
21. Relabel the nodes in NST
22. else
23. Delete the nodes in ST
24. else
25. Delete the nodes in ST
end

Figure 7. Delete Procedure

when the nearest sibling of a deleted subtree is a Nested Tree and it is possible
to release the Nested Tree by using the space deleted. The number of relabeled
nodes is the size of the Nested Tree.

The worst case of the insert procedure is that the position for the data insertion
is under the root of the original data tree and there is no space for the insertion.
In this case, it is required to relabel the whole nodes of the original data tree.
If d is the depth of the data tree and f is the maximal fan-out of the data
tree, the number of relabeled nodes is

∑d
i=0 f i in the worst case.

If for each node in the data tree the probability to be chosen as the parent
node of an insertion is equal, the average number of relabeled nodes for a data

18

insertion is O(d).

Theorem 2 Suppose that for each node in the data tree the probability to be
chosen as the parent node of insertion is equal. If the depth of the data tree
is d and the maximal fan-out is f with f > 1, the average number of relabeled
nodes for a subtree insertion is O(d).

PROOF Let N be the average number of nodes to be relabeled. Then N is
calculated by the following equation.

N =

∑
of nodes in each subtree

of nodes in the tree

Then

N =

∑d
i=0(i + 1) · f i

∑d
i=0 f i

=
(d + 1) · fd+1

fd+1 − 1
− 1

f − 1

<
(d + 1) · fd+1

fd+1 − 1

Because fd+1

fd+1−1
< 2, N is O(d). 2

Considering the fact that XML data trees with huge numbers of nodes have
relatively small numbers of depths, from Theorem 2, insert processing based
on the Nested Tree is efficient.

5 Query Processing

Under the proposed Nested Tree structure, the existing structural join algo-
rithms based on the interval-based labeling scheme can be used to determine
structural relationships between two elements, if the integer comparison is
changed to the integer list comparison. Therefore we can adopt the advantages
of the existing structural join algorithms under the Nested Tree structure. Also
by using the features of the Nested Tree structure we can extend the inverted
list to the Nested Inverted List, and the structural join algorithm using the
Nested Inverted List improves the performance of the structural join process-
ing. In this section, we present the query processing using existing algorithms
and the query processing using Nested Inverted List.

19

5.1 Query Processing using Traditional Algorithms

The structural join processing using the existing algorithms(i.e. Stack-Tree-
Desc [11], Anc-Desc-B+ [5] or XR-tree [8]) can provide the result in time
proportional to the input and output size. The proposed labeling method
using the Nested Tree structure is an enhanced interval-based labeling scheme
that overcomes the weakness of the existing interval-based labeling scheme in
update processing. Therefore, we can use all the existing algorithms to process
the structural joins in the Nested Tree structure.

The position of a node in the Nested Tree structure is represented by the
startList and endList, defined in Section 3.2. The startList and endList are lists
of integers. If the integer comparison operation is changed to the integer list
comparison operation given in Figure 8, the existing structural join algorithms
can be used under the Nested Tree structure.

procedure int comparison(a1; a2; ...; am, b1; b2; ...; bn)
//ai and bi are integers
//a1; a2; ...; am and b1; b2; ...; bn are lists of integers
begin
1. i ← 1
2. while(ai = bi and i < m and i < n)
3. i ← i + 1
4. if(i ≥ m or i ≥ n) then return 0
5. if(ai < bi) then return -1
6. else if(ai > bi) then return 1
end

Figure 8. Integer List Comparison operation

5.2 Query Processing using Nested Inverted List

The structural join processing using the existing algorithms described in the
above section must access all the nodes in the result of a structural join. For
example, in Figure 9(a), to get the result of structural join A//B, the node
a2 in the element A list must be compared with nodes b1, b2, b3 and b4 in
the element B list. The result consists of 4 pairs (a2, b1), (a2, b2), (a2, b3) and
(a2, b4). However the nodes b1, b2, b3 and b4 are represented by the label of the
Nested Tree, that is 6, and the label of node a2 includes the label 6. Therefore
we can make the 4 result pairs with only one comparison of node a2 with node
b in Figure 9(b).

In order to use this feature of the Nested Tree structure we define the Nested
Inverted List to represent the list of nodes. Figure 9 illustrates the structure

20

Figure 9. Structural Join

of the Nested Inverted List. The Nested Inverted List is the list of Nodes, in
which the Node is either the pair of start and end or the label of a Nested Tree
and the link to a child list. If there is no Nested Tree in XML data, the Nested
Inverted List is the same as the traditional inverted list. But as the Nested
Trees are nested deeply, the Nested Inverted List is nested deeply also. The
Nested Inverted List can reduce the space to store the inverted list because
the repeated labels of Nested Trees are stored by one label and link to a child
list.

The structural join processing based on the Nested Inverted List structure can
also use the existing structural join algorithms [11,5,8]. Figure 10 shows the
structural join algorithm, Nested-Stack-Tree-Desc, using the Nested Inverted
List and the Stack-Tree-Desc [11] algorithm. The procedure is similar to the
existing algorithm Stack-Tree-Desc, except that it includes the case that the
label of AList is the same as that of BList. In such case, the Nested-Stack-
Tree-Desc is called recursively and the parameters are substituted by child
lists. The line 10 to 11 shows this case.

21

procedure Nested-Stack-Tree-Desc(AList, DList)
begin
1. a ← AList.firstNode
2. b ← DList.firstNode
3. output ← null
4. while the input lists are not empty

or the stack is not empty do
5. if a.startPos > stack.top.endPos

and d.startPos > stack.top.endPos then
6. stack.pop()
7. else if a.startPos < d.startPos then
8. stack.push(a)
9. Let a ← a.nextNode
10. else if a.startPos = d.startPos then
11. Nested-Stack-Tree-Desc(a.child, d.child)
12. else
13. foreach node a1 in stack do
14. append (a1, d) to output
15. d ← d.nextNode
end

Figure 10. Nested Query Procedure

5.3 Query Processing using Query Workload

A Nested Tree can be created after an XML data insertion. However, if we
know the query workload, we can make Nested Trees during the initial load
in order to improve the efficiency of query processing. For example, for the
query A//B, when C is an ancestor of B and a descendent of A, and there are
several B elements below an element C, we can make the Nested Tree rooted
by C and several B elements can be treated by one child list in the Nested
Inverted List and then the performance of the query A//B can be improved.
In this case we call C the middle-element of the query A//B. Of course, there
can be many such C’s in the XML data tree.

We can consider several node labeling methods based on the Nested Tree
structure by analyzing a given query workload. The simplest way is to make
Nested Trees which are rooted by middle-elements of a query in the workload.
Ultimately there are Nested Trees as many as middle-elements of queries in
query workload. However, if there are thousands of queries, this way is not
good for an efficient query processing, and it is better to make Nested Trees
based on frequently used queries.

Next we should consider whether there is an ancestor-descendant structural
relationship between two different middle-elements. In such a case, if we create
Nested Trees each of which is rooted by a middle-element, the depth of Nested
Trees will increase. Accordingly the length of startList and endList will become

22

longer, which makes the query processing inefficient. So it is necessary to make
the Nested Trees without increasing their depths.

We propose a method for node labeling using given query workload. The
method is based on the set of frequently used queries. Table 1 shows the set
of frequently used queries and the middle-element for each query. The Ratio
shows the relative frequency of the query and the sum of all ratios is 100.

Query Ratio(%) Middle-element
a1//d1 t1 c1

a2//d2 t2 c2

...
an//dn tn cn

Table 1
Frequently Used Queries

Table 2 is made from the middle-elements in Table 1 removing the duplicated
middle-elements. The Ratio in Table 2 is the sum of all ratios of the duplicated
middle-elements in Table 1.

Middle-element Ratio(%)
s1 p1

s2 p2

... ...
sk pk

Table 2
Ratio of Middle-element

We can partition the middle-elements in Table 2 such that there is an ancestor-
descendant structural relationship between two elements in the same partition.
For each partition, we assign a weight to each element in the partition such
that the sum of weights is 100.

The performance of each query is determined by the weight of the correspond-
ing middle-element. The bigger the weight of the middle-element is, the better
the performance of the query is. We consider two methods to assign weights
to middle-elements in the same partition : 1) Assign the same weight to each
middle-element and 2) Assign the weight to each middle-element proportional
to the ratio of the middle-element in Table 2.

Let the partition be represented by (e11, e12, ..., e1l1), (e21, e22, ..., e2l2), ...,
(em1, em2, ..., emlm) with l1 + l2 + ...+ lm = k. Then the weight of each element
is calculated as follows when pij is the pk of eij :

Weight of eij =

100 ∗ 1/li for case 1

100 ∗ pij/(pi1 + pi2 + ... + pili) for case 2

After the weights of elements in the partition are determined by the above
method, we can label nodes based on the given weights. For example, element

23

A and B are in the same partition and the weights are 80 and 20, respectively.
Then A and B are in the same path and we make the Nested Trees rooted by
A for 80% of the paths and rooted by B for 20%.

6 Experimental Results

Our experiments were carried out on an Intel Pentium 1.7Ghz with 1GB mem-
ory, running Windows XP. All procedures are implemented in Java. All
experiments were repeated 10 times independently and the average processing
time was calculated disregarding the maximum and minimum values.

The experiments described in this section use three sets of test data. The
three data sets are Shakespeare [2], XMark [1] and Nasa [3]. The XMark data
set contains information about auctions and it is a synthetic benchmark data
set generated by the XML Generator from XMark. The Shakespeare data set
represents Shakespeare’s plays in XML format. The Nasa data set is generated
from the legacy flat file format of astronomical data. Characteristics of these
data sets are summarized in Table 3.

Shakespeare XMark Nasa
size 7.7MB 115.7MB 25.2MB

nodes 179,619 1,666,315 476,646
depth 7 12 8

Table 3
Experimental Data

6.1 Update Processing

In order to analyze the efficiency of the update processing based on the Nested
Tree structure, we measure the performance of XML data insertions and dele-
tions based on the traditional interval-based labeling, prime labeling, lazy
approach, ORDPATH and our approach, the Nested Tree structure, that we
call Interval, Prime, Lazy, ORDPATH and Nested, respectively.

We use the XMark data with various sizes as the original data, and assume
that there is space more than one but less than the number of nodes
in the inserted data. We measure the processing time of data insertions as
we increase the size of the original data. There are 382 nodes in the inserted
data. The experimental result is shown in Figure 11. We can see that the data
insertion time of Interval increases proportionally as the size of the inserted
XML data increases. In the Interval approach, the relabeling of nodes in the
original data tree is inevitable when new data is inserted, and the number of
nodes to be relabeled increases as the size of the original data increases. In
the Prime, Lazy, ORDPATH and Nested approach, the relabeling of nodes

24

in the original data tree is not necessary and only the labeling of nodes in
the inserted data is needed. Therefore the size of the original data cannot
affect the time of data insertions. However in the Prime approach the label
of a node is determined by the product of the self-label and the label of the
parent node, so the time of data insertion exceeds these of Lazy, ORDPATH
and Nested approaches. In the Lazy approach, the relabeling of inserted data
is not necessary, but labels of segments are updated in processing XML data
insertions. Therefore the time of data insertions of Lazy is similar to that of
Nested, but the average time for Lazy is 251 ms while that for Nested is 216 ms.
In the ORDPATH approach, the dewey-similar labels are converted to binary
representations. Therefore the average time of data insertions of ORDPATH
is 245ms that is worse than the Nested approach. In the Nested approach, a
new label is assigned to the inserted Nested Tree, and then the label of each
node in the inserted Nested Tree is assigned by the sequential assignment of
new integers during the depth first traversal of the inserted data. Therefore
in the Nested approach, the data insertion is processed by a simple integer
assignment to each node, so the performance is the best.

1

10

100

1000

10000

100000

10 20 30 40 50

Size of Original Data(MB)

In
se

rt
io

n
T

im
e(

m
s) Interval

Prime

Lazy

ORDPATH

Nested

Figure 11. Insert Processing as increasing the size of original data

In order to see the effect of the size of inserted data in insert pro-
cessing, we measure the processing time of data insertions as we
increase the number of inserted nodes. The size of original data is
20MB. The experimental result is shown in Figure 12. The result of
Interval is about 16,000ms, which cannot be included in the figure.
We can see that the data insertion times of Interval, Prime, Lazy,
ORDPATH and Nested increase proportionally as the number of
inserted nodes increases. In this case, our approach has also best
performance.

To see the performance of XML data deletions, we used 20MB

25

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

num of inserted nodes

In
se

rt
io

n
T

im
e(

m
s) Prime

Lazy

ORDPATH

Nested

Figure 12. Insert Processing as increasing the number of inserted nodes

XMark data as the original data and measure the processing time
of data deletions as increasing the number of deleted nodes. In the
case of Nested, we used the delete algorithm including Nested Tree
releasing processing. The experimental result is shown in Figure 13.
The result of Nested is somewhat slower than others, but in the case
of no releasing, the deletion time of Nested is close to Interval.

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500

num of deleted nodes

D
el

et
io

n
T

im
e(

m
s) Interval

Prime

Lazy

ORDPATH

Nested

Figure 13. Delete Processing as increasing the number of deleted nodes

26

6.2 Structural Join Processing

Query Sets. We use several structural join patterns against the three data
sets to analyze the query performance. All the structural joins use ancestor-
descendant relationships because the parent-child relationships can be simply
determined by whether the level of a child is one larger than that of a parent.
Table 4 shows the information about experimental queries. For the Shake-
speare data set, we use seven queries from Q1 to Q7 used in [13], and for the
XMark data set, we use seven queries from Q8 to Q14 a part of which is used
in [4]. For the Nasa data set, we use five queries from Q15 to Q19. In Table 4,
the Results shows the number of pairs in query results for 7.7MB Shakespeare
data, 115.7MB XMark data and 25.2MB Nasa data.

Data Set Query XPath Expression Results
Shakespeare Q1 play//act 185

Q2 speech//line 107991
Q3 play//persona 969
Q4 act//speech 30937
Q5 act//line 107405
Q6 play//speech 31014
Q7 play//line 107791

XMark Q8 person//phone 12679
Q9 profile//interest 37689
Q10 person//watch 50269
Q11 person//interest 37689
Q12 regions//incategory 82151
Q13 category//listitem 1267
Q14 open-auctions//bidder 59486

Nasa Q15 dataset//reference 2435
Q16 dataset//author 9766
Q17 tableHead//name 60663
Q18 dataset//field 60663
Q19 dataset//name 71688

Table 4
Query Set

Performance. As described in Section 5, to process structural joins under
the Nested Tree structure, we can consider two cases. The first case is to extend
the traditional inverted list into the Extended Inverted List that represents
the start and end positions of a node as integer lists. Because this approach
takes the same method as the existing algorithms, it is not able to improve
the query performance. But it supports the update processing efficiently and
query processing with reasonable performance. It is the depth of the nested
tree containing the nodes in the lists(this depth will be called the nested
depth of a node subsequently), which are the list of A and the list of B under
the structural join A//B, that dominates the performance of structural join
processing. The Figure 12 shows the time to process Q8 for the XMark data

27

0

500

1000

1500

2000

2500

3000

k=0 k=1 k=2 k=3 k=4

Nested Depth

R
es

po
ns

e
T

im
e(

m
s)

Figure 14. Structural Join Processing with increasing Nested Depth

0

500

1000

1500

2000

2500

3000

3500

4000

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Query

R
es

po
ns

e
T

im
e(

m
s)

Interval

Lazy

ORDPATH

Nested

Figure 15. Structural Join Processing for the XMark data(115.7MB)

set as we increase the nested depth k of nodes in the lists of person and phone.
k=0 means that there is no data updates and so there is not Nested Tree in the
data tree. This performance is the same as that of the traditional structural
join processing. For k=1, the nested depth of each node in the lists is one,
that means each node is included in one Nested Tree, and the Nested Trees
are different. For k=2, the nested depth of each node is two and for k=3,
three. In the case of k=4, the nested depth of each node in the list of person
is three while that in the list of phone is four because the depth of person is
three while the depth of phone is four in the data tree. It is natural that the
processing time increases as k increases. However the increasing rate is small
enough not to degrade the performance of structural join processing.

28

0

500

1000

1500

2000

2500

Q2 Q4 Q5 Q6 Q7

Query

R
es

po
ns

e
T

im
e(

m
s)

0

5

10

15

20

25

Q1 Q3

Query

R
es

po
ns

e
T

im
e(

m
s) Interval

Prime

Lazy

ORDPATH

Nested

(a) (b)

Figure 16. Structural Join Processing for the Shakespeare data(2.8MB)

0

1000

2000

3000

4000

5000

6000

7000

Q2 Q4 Q5 Q6 Q7

Query

R
es

po
ns

e
T

im
e(

m
s)

0

10

20

30

40

50

60

Q1 Q3

Query

R
es

po
ns

e
T

im
e(

m
s)

Interval

Lazy

ORDPATH

Nested

(a) (b)

Figure 17. Structural Join Processing for the Shakespeare data(7.7MB)

The second case is to construct the Nested Inverted List that represents the
position of each node as a nested list described in Section 5.2 and this case
avoids unnecessary integer comparison operations.

To analyze the effect of the Nested Inverted List, we measure the
performance of structural join processing for XMark data with 115.7MB.
Initially we load 50% of the data and then perform the insert pro-
cessing of the rest of the data. The result of structural join pro-
cessing in this approach is shown in Figure 15. The performance of
our approach for from Q10 to Q14 is better than those of other ap-
proaches. Those queries are to find the ancestor-descendant struc-
tural relationships, so they can take advantage of the Nested In-
verted List. However, for the parent-child structural relationship,
like Q8 and Q9, the performance of the ORDPATH is better than

29

0

500

1000

1500

2000

2500

3000

3500

4000

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Query

R
es

po
ns

e
T

im
e(

m
s)

Interval

Lazy

ORDPATH

Nested

Figure 18. Structural Join Processing for the XMark data(115.7MB)

0

500

1000

1500

2000

2500

3000

3500

Q15 Q16 Q17 Q18 Q19

Query

R
es

po
ns

e
T

im
e(

m
s)

Interval

Lazy

ORDPATH

Nested

Figure 19. Structural Join Processing for the Nasa data(25.2MB)

our approach.

Secondly we measure the performance of structural join processing using the
approach described in Section 5.3. During the initial data load, we label tree
nodes as we make Nested Trees using the query workload. We assume that
the queries given in Table 4 are frequently used queries. First we perform the
structural join processing using the case 1 in Section 5.3, which assigns the
same ratio to each middle-element in the same partition.

Figure 15, 16, 17 and 18 show the results of structural join processing for
Shakespeare, XMark and Nasa data. For the Shakespeare data with 2.8MB,

30

we compare our approach with four approaches, Interval, Prime, Lazy and
ORDPATH. The size of Shakespeare data must be less than 2.8MB in order
for Prime to process structural joins given in Table 4. For comparing with the
Lazy approach, we use the three data sets and construct 50 segments for the
Lazy approach. For the Shakespeare data with 7.7MB, the XMark data with
115.7MB and the Nasa data with 25.2MB, we compare our approach with the
Interval, Lazy and ORDPATH approach because the data set is too large for
Prime to process.

Mostly the performance of our approach, the Nested approach, is better than
those of other approaches. However, for Q2, Q8, Q9 and Q15, the performance
of the Nested is similar to that of Interval, better than those of the Prime and
Lazy, but worse than that of the ORDPATH. These queries have the parent-
child relationship, so they cannot take advantage of the Nested Inverted List.

Particularly the performance of the Shakespeare data set shows huge improve-
ments. In the Shakespeare data set, some elements with the same name are
repeated under one parent, and this feature improves the performance of struc-
tural join processing.

Table 5 shows the performance comparisons. The average number is gener-
ated by dividing the average processing time of another approach by that of
our approach. In update processing, our approach is 113.0 times faster than
Interval on the average and 182.7 times faster maximally. Other numbers can
be similarly interpreted.

Interval Prime Lazy ORDPATH
Avg Max Avg Max Avg Max Avg Max

Update 113.0 182.7 7.3 7.5 1.2 1.2 1.1 1.2
Join 11.4 102.1 12.9 44.1 12.6 111.1 6.2 52.1

Table 5
Performance Comparison

7 Conclusions

In this paper we propose the Nested Tree structure to provide efficient XML
update processing and query processing. The Nested Tree structure solves the
weak points and takes advantages of previous node labeling schemes. It can
support the dynamic interval-based labeling scheme, which supports XML
data updates efficiently. We present XML data insert and delete processing
with almost no node relabeling using the proposed Nested Tree structure. Also
we show the traditional structural join algorithm can be applied to our model
just with the change of the comparison operation between two labels, and
we develop an enhanced structural join algorithm using the proposed Nested
Inverted List. In our experiments, the performance of XML data insert pro-

31

cessing of our approach is better than those of Prime, Lazy and ORDPATH.
Also the performance of structural join processing can be upgraded by our pro-
posed structure. Experimental results show that our approach is significantly
better than the Lazy and ORDPATH, which are the recent approaches, for
query processing while slightly better for update processing.

References

[1] XMark :
The XML-benchmark Project, http://monetdb.cwi.nl/xml/index.html. April
2001.

[2] J. Bosak. Shakespeare, http://www.ibiblio.org/xml/examples/shakespeare/.

[3] GSFC/NASA XML Project, Nasa,
http://www.cs.washington.edu/research/xmldatasets/.

[4] B. Catania, B. C. Ooi, W. Wang, and X. Wang. Lazy XML Updates: Laziness
as a Virtue of Update and Structural Join Efficiency. In Proc. of the ACM
SIGMOD 2005, 2005.

[5] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient
Structural Joins on Indexed XML Documents. In Proc. of the VLDB 2002,
pages 263–274, 2002.

[6] J. Clark and S. DeRose. XML Path Language(XPath) Version 1.0, W3C
Recommendation. 1999.

[7] D. C. et.al. XQuery 1.0 : An XML Query Language, W3C Working Draft. 2001.

[8] H. Jiang, H. Lu, W. Wang, and B. C. Ooi. XR-Tree: Indexing XML Data for
Efficient Structural Joins. In Proc. of the ICDE 2003, pages 253–263, 2003.

[9] H. Kaplan, T. Milo, and R. Shabo. A Comparison of Labeling Schemes for
Ancestor Queries. In Proc. of the SODA 2002, 2002.

[10] Q. Li and B. Moon. Indexing and querying XML data for regular path
expressions. In Proc. of the VLDB 2001, pages 361–370, 2001.

[11] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu.
Structural Joins : A Primitive for Efficient XML Query Pattern Matching. In
Proc. of the ICDE 2002, pages 141–152, 2002.

[12] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang. Storing and Querying Ordered XML Using a Relational Database
System. In Proc. of the ACM SIGMOD 2002, pages 204–215, 2002.

[13] X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In Proc. of the ICDE 2004, pages 66–78, 2004.

[14] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman. On Supporting
Containment Queries in Relational Database Management Systems. In Proc.
of the ACM SIGMOD 2001, pages 425–436, 2001.

[15] P. E. ONeil et al. ORDPATHs : Insert-friendly XML Node Labels. In Proc. of
the ACM SIGMOD 2004, pages 903–908, 2004.

32

[16] Y. Chen, S. B. Davidson and Y. Zheng. BLAS : An Efficient XPath Processing
System. In Proc. of the ACM SIGMOD 2004, pages 47–58, 2004.

[17] M. Yoshikawa and T. Amagasa. XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases. ACM Transactions
on Internet Technology, Vol. 1, No. 1, August 2001, Pages 110–141.

[18] A. Silberstein, H. He, K. Yi and J. Yang. BOXes: Efficient Maintenance of
Order-Based Labeling for Dynamic XML Data. In Proc. of the ICDE 2005,
2005.

[19] J. Lu, T. W. Ling, C. Chan and T. Chen. From Region Encoding To Extended
Dewey: On Efficient Processing of XML Twig Pattern Matching. Proc. of the
VLDB 2005, pages 193–204, 2005.

33

