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Abstract

Recently, there has been plenty of interest in XML. Since the amount of data in
XML format has rapidly increased, the need for effective storage and retrieval of
XML data has arisen. Many database researchers and vendors have proposed various
techniques and tools for XML data storage and retrieval in recent years. In this
paper, we present an XML data management system using a relational database as a
repository. our XML management system stores XML data in a schema independent
manner, and translates a comprehensive subset of XQuery expressions into a single
SQL statement. Also, our system does not modify the relational engine. In this
paper, we also present the experimental results in order to demonstrate the efficiency
and scalability of our system compared with well-known XML processing systems.

1 Introduction

As data are collected over diverse application areas, the requirement of inter-
operability for sharing and integrating them has increased. Therefore, W3C
has proposed the eXtensible Markup Language(XML) [4]. Due to its flexibility
and self-describing nature, XML is considered as the de facto standard for data
representation and exchange in the Internet.
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To retrieve XML data, several query languages have been proposed. Among
them, XQuery [2] is considered as the standard query language for XML data
since it is broadly applicable across all types of XML data.

Since the amount of data in XML format has rapidly increased, the need
for effective storage and retrieval of XML data has arisen. Many database
researchers and vendors have proposed various techniques and tools for XML
storage and retrieval [3,6,11,10,13,21,28,35,39].

Text file systems, native XML management systems (special-purpose systems),
and traditional databases can be used as repositories for XML data. Using a
text file system as an XML repository is the most convenient and prevalent
approach. But, it is inefficient in retrieval since XML data is always parsed
into an intermediate format such as a DOM tree.

An alternative for an XML repository is to use native XML database systems
such as LORE [25] and Strudel [14]. LORE is designed for managing semi-
structured data. Its data model is Object Exchange Model (OEM) which is
a simple and nested object model. Strudel is a web-site management system
and its data model is a labeled directed graph similar to OEM. Obviously,
these works suggest valuable techniques and insights for the management of
irregularly structured data. However, it is uncertain whether these approaches
will be widely accepted in the real world since they are not mature enough
to process queries on a large amount of data and in multi-user environments
[17].

In addition, native XML management systems have two potential drawbacks
as pointed in [33]. First, they do not use the existing mature storage and query
capability. Second, they have difficulty in integrating the existing data, most
of which is relational data. And, major DBMS vendors (SQL Server, Oracle,
and DB2) have developed an XML management system using an RDBMS.
Therefore, we focus an XML management system using an RDBMS.

1.1 The goals of XTRON

In this paper, we present an XML data management system using an RDBMS
called XTRON. We have chosen to use an RDBMS due to its ability to behave
as a stable repository as well as an efficient query optimizer and executor.

The design goals of XTRON are as follows:

• No modification of the relational engine: The modification of a re-
lational engine may incur unintended side effects such as the consistency
problem. Thus, the main goal of our design is to use the relational engine
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without modification.
• schema independence: Some works [23,36] ignore the schema information

of XML data. In [39], the relational schema using DTD is different from
that without DTD. Thus, a design goal of XTRON is to utilize schema
information if it is available and to store XML data over identical relational
tables whether DTD exists or not.

• Efficient evaluation of path expressions: To support an efficient eval-
uation of XML queries, some work uses path indexes which incur the mod-
ification of the engine. In contrast to the previous work, we represent a
label path as an interval in [0.0, 1.0). Using the containment relationships
between intervals of label paths and an interval of the path expression, the
path expression can be efficiently evaluated without the modification of a
relational engine.

In addition, to demonstrate the efficiency and scalability of XTRON, we
implemented XTRON and comparison systems: edge approach, region ap-
proach, and region with path table approach. Also, we show the effectiveness
of XTRON compared with well-known XML processing systems: Galax and
Berkeley DB XML.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we present
various methods for storing and retrieving XML data. After we show the
architecture of XTRON in Section 3, we describe the details of storing XML
data in XTRON in Section 4. In Section 5, we present mechanisms for XML
data retrieval. Section 6 and Section 7 show GUI of XTRON and the results
of our experiments. Finally, in Section 8, we summarize our work and suggest
some future studies.

2 Related work

Recently, in order to store XML documents using relational database systems,
many XML storage systems and techniques using relational tables have been
proposed.

With respect to mapping of the graph model to relational tables, these map-
ping schemes are basically classified into two groups: One is the edge ap-
proach [17] and the other is the region approach [20,23,36,37,41].

The edge approach stores the edges in the XML graph into the relational ta-
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<libraryDB>
<book>

<title> book1 </title>
<publisher> publisher1 </publisher>
<year> 2001 </year>
<author> author1 </author>
<section>

<title> title1 </title>
<contents>

<section> subsection </section>
</contents>

</section>
<references> 

<reference>reference1</reference>
</references>
<section> … </section>

</book>
…

</libraryDB>

(a) LibraryDB.xml

libraryDB
&1

title
&3

book
&2

publisher
&4

year
&5

author
&6

section
&7

title
&8

contents
&9

section
&10

references
&11

section
&13

…

…

reference
&12

“book” “publisher1” “2001” “author1”

“title1”

“subsection”

“reference1”

(b) The corresponding XML graph of (a)

Fig. 1. An XML data

bles. In this approach, a unique node identifier (nid) is assigned to each node of
the XML graph. An edge of the XML graph is represented as <nid1,label,nid2 >
where nid1 is a node identifier for the source of the edge, nid2 is a node identifier
for the target of the edge, and label is the label of the target node. Generally,
the edge approach is efficient in computing parent-child relationships. How-
ever, the edge approach is inefficient in computing ancestor-descendant rela-
tionships since ancestor-descendant relationships are computed by the massive
joins for parent-child relationships.

The edge approach has many alternatives according to the mapping rule from
a set of edges to relational tables. Florescu and Kossman [17] provided three
alternatives. The first one is to store all edges in a single table, called an edge
table. The second one is to partition all edges with respect to the label. Then,
each sub-group of edges is stored in distinct tables, called a binary table. The
last one, a universal table approach, is to store all sequences of edges to leaf
nodes of the XML graph in a single table which is equal to the result of a full
outer join of binary tables.

Based on the edge approach, [35] suggested the inlining technique which uti-
lizes the structural information contained in a DTD (Document Type Defini-
tion). The intuitive behavior of the inlining approach is that if one-to-many or
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many-to-many relationship between element nodes are defined in DTD, then
sets of edges between the element nodes are mapped to different tables, oth-
erwise (i.e., one-to-one relationship), sets of edges between the element nodes
are mapped to the same table using the inlining technique. Thus, the inlin-
ing approach reduces the join overhead for evaluating queries. However, this
inlining technique may lose the order information of child elements.

The region approach originated from the information retrieval (IR) field [7,29].
In this approach, XML data is considered as a tree structured data. As shown
in Figure 2 which is an example of the region approach corresponding to Figure
1, this approach assigns a region to an element in XML data. Generally, a
region is represented by a pair (start,end) consisting of the position of the
start tag and the position of the end tag of an element.

contents50019
………

publisher86
title53
book10002

library20001
labelendstart

XQuery X1: //book//title

SQL S2:
SELECT   t.*
FROM      region_table b, region_table t
WHERE   b.label = “book” AND t.label = “title”

AND  b.start < t.start AND t.end < b.end

region_table

Fig. 2. An example of the region approach

The root node &1 in Figure 1-(b) is represented by (1,2000) when XML data
in Figure 1-(a) has 2000 words. In this case, a region satisfies the following
property.

Property 1 An element e =(start, end) in an XML document is an ancestor
of e’ = (start’, end’) if start ≤ start′ ≤ end′ ≤ end.

Using the above property, ancestor-descendant relationships can be efficiently
evaluated. For example, as described in Figure 2, the SQL S2 corresponding
to XQuery X1 uses only one self join.

To improve the performance of path expressions, Shimura et al. [36,40] devised
the path table approach which is combined with the region approach. In the
path table, all distinct simple paths and their identifiers (i.e., path id) are
recorded. Then, instead of the label column of region table, the path id column
is used. Thus, by the join of the path table and the region table, a path
expression can be evaluated efficiently.

Besides the edge and region approaches, the prefix approach [8,22,27,39] is pro-
posed to support updates and preserve the document order efficiently. With
prefix encoding, an XML element is represented by a vector which is the con-
catenation of the parent element’s label and the local order among siblings.
Generally, the prefix approach is used on native XML systems. The disad-
vantages of the prefix approach on the relational engine are the waste of disk
space to keep the prefix value (i.e., a vector of integers) and the requirement
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for user defined operators since database systems do not support the operator
for the vector type generally.

3 The Architecture of XTRON

In order to achieve the goal of our system, we design the architecture of
XTRON. The architecture of XTRON is shown in Figure 3. As shown in
Figure 3, XTRON consists of two parts: the store part and the retrieval part.

XML document
Schema Information
(DTD or XML Schema)

XML ParserSchema Parser

Query Result

RDBRelational Engine

Query Parser Translator ResultGenerator

Schema Manager

SchemaExtractorSchemaTreeGen

XML Translator

Reverse
Arithmetic
Encoder

Extend 
Region 

Numbering

ID 
Manager

XTRON

store
part

retrieval
part

Fig. 3. The architecture of XTRON

One of design goals of XTRON is the schema independence. Also, we want
to maintain XML data over identical relational tables whether the structural
information exists or not. Thus, we equipped the SchemaTreeGen module
and the Schema Manager module which transform textual structural data
into a tree structure and maintain the structural information with a rela-
tional database. For the case that schema is not available, we designed the
SchemaExtractor module which extracts the structural information for XML
data (see details in Section 4.2).

XML data itself is transformed into structural data (i.e., relational data) by
the XML Translator module. In the XML Translator, the path information
of each element is encoded into an interval by Reverse Arithmetic Encoder.
Among the various mapping schemes from XML to relational data, we adapt
the region numbering scheme in which the element is represented by a region
using Extended Region numbering. In addition, ID and IDREF relationship is
maintained by ID Manager.

SQL statements for an XQuery are different according to the mapping scheme.
Thus, in retrieval part, the XQuery query is translated into an SQL statement
following the our storage scheme.
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Details of the store part and the retrieval part are presented in Section 4 and
Section 5, respectively.

4 Mapping XML to Relations

In this section, we present our approach to store XML data in relational tables.

XTRON does not require the modification of the relational engine. In or-
der to improve the query performance, diverse XML path indexes such as
DataGuide [18] have been proposed. To support these indexes in an RDBMS,
the relational engine should be modified. Some work uses the path table which
keeps all simple label paths in XML data. In this approach, the join between
the path table and the element table is required. However, we do not use
any additional data structure to handle a path but we speed up the query
performance by transforming a path into an interval.

4.1 Relational Schema

At first, we describe our model for XML data. As mentioned earlier, XML data
can be represented as an XML graph. In Definition 1, we do not distinguish
attributes and elements since attributes are considered as specific elements.
Also, we use the term element and node interchangeably in this paper.

Definition 1 XML data is represented by the directed labeled node graph
GXML = (V, root, Σ, λ, E). V = Ve ∪ Vt is the set of nodes where Ve is
the set of nodes for elements or attributes in XML data and Vt is the set of
nodes for data values. root ∈ V is the root node of GXML. Σ is the universe
of labels for elements and attributes and λ is a function mapping Ve to Σ.
E = Ee ∪ Et ∪ Er is the set of edges where Ee ⊆ Ve × Ve is the set of edges
between elements and/or attributes, Et ⊆ Ve×Vt is the set of edges whose tar-
get nodes are for data values, and Er ⊆ Ve × Ve is the edge set for referential
relationships (i.e., ID-IDREF). ¤

Also, as shown in Figure 4, the referential relationship is represented by an
edge 3 from a node for an IDREF typed attribute to a node for the element
which has the corresponding ID typed attribute as a child node. Since ID and
IDREF typed attributes are specified by the structural information such as
DTD [4] and XML Schema [12], the edge set Er for referential relationships
is specified when XML data is accompanied with DTD or XML Schema.

3 It is represented by the dotted line in Figure 4
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<!ELEMENT root  (a,b)>
<!ELEMENT a  (#PCDATA)>
<!ATTLIST   a  id      ID        #REQUIRED>
<!ELEMENT b  (#PCDATA)>
<!ATTLIST    b idref IDREF #REQUIRED>

(a) DTD

<root>
<a id = ‘1’> t1 </a>
<b idref = ‘1’>  t2 </b>

</root>

(b) XML

root

a b

id idreft1 t2

1 1

(c) XML graph

Fig. 4. An example of referential relationships

With respect to Definition 1, we create the relational schema (Table 1) which
does not lose any information of the XML graph.

Table Column Description

DocTable doc name XML document name

doc id Corresponding identifier

schema id Corresponding schema identifier

Vertex did Document id

path Path information for a node in Ve

start Start number of a region for a node in Ve

end End number of a region for a node in Ve

level Level of a node in Ve

order Order among same tagged siblings

parent Start number of the parent node

Text did Document id

start Start number of a region for a node in Vt

end End number of a region for a node in Vt

parent Start number of the parent node

value Data value of a node in Vt

ID did Document id

owner Start number of a node, the owner of the ID typed attribute

id value Data value of ID typed attribute

SchemaTable schema name Name of SchemaTree

schema id Corresponding identifier

SchemaTree schema id SchemaTree id

(see details label Label of a node in SchemaTree

in Section 4.2) p start Start number for Intervallabel (see Section 4.3)

p end End number for Intervallabel

start Start number of a region for a node in SchemaTree

end End number of a region for a node in SchemaTree

level Level of a node in SchemaTree

parent Start number of the parent node

type Cardinality and type information of a node in SchemaTree

Table 1
Relational Schema
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Relations DocTable, Vertex, Text and ID are for XML data. SchemaTable
and SchemaTree are for the structural information of XML data.

The relation DocTable records the XML document name, the corresponding
document identifier and structural information identifier. The relations Vertex
and Text correspond to Ve and Vt of Definition 1, respectively.

In the relations Vertex and Text, a node in GXML is represented as an interval
(start, end), which is generated by the Extented Region Numbering module
in Figure 3. In addition, the subsets Ee and Et of E are represented by parent

and start, where parent is equal to the value of the parent node’s start.

The column path in Vertex, storing a real number generated by the Reverse
Arithmetic Encoder, is for λ of Definition 1 (see details in Section 4.3). The
columns level and order of Vertex are extra information used to improve the
query performance. The column level keeps the number of nodes in the path 4

from the root to itself. The column order keeps the ordering value among the
same tagged siblings. For example, in Figure 1, there are two sections that are
children of book. In this case, the order value for section &7 is 1 and that for
section &13 is 2.

The relation ID is for Er in Definition 1. The constraints for ID are that
data values of ID typed attributes should be unique in an XML document
and an element should have only one ID typed attribute. The ID Manager in
Figure 3 gathers the elements having ID typed attributes and records them in
the relation ID with data values of ID typed attributes. All attributes including
IDREF typed attributes are recorded in Vertex. The data values of IDREF
are stored in Text. Then, by 4-way equi-join of Vertex, Text and ID, the
referential relationships can be computed. Thus, we explain our storage scheme
based on the tree structured data. That is, we do not further discuss Er in
this section.

The structural information of each XML document is identified by schema id

which is stored in SchemaTree(see details in Section 4.2). The name of the
structural information and the corresponding schema id are maintained in
SchemaTable. As mentioned above, the structural information such as DTD
and XML Schema is optional. For XML documents without DTD or XML
Schema, we extract the structural information using the SchemaExtractor
module in Figure 3 and obtain schema name by concatenating of the XML
document name and the extension “.sch”. Since the structural information is
represented as a tree in XTRON, the attributes of SchemaTree are similar to
Vertex.

4 This path consists of the edges in Ee only.
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4.2 Management of the Structural Information

In this section, we describe how to extract, maintain, and store the structural
information of an XML document.

The structural information of an XML document can be described using DTD.
Since a general DTD can be too complex to use for XML data storage, we
adapt the simplifying DTD technique in [35]. The simplifying DTD technique
gets rid of some information such as relative orders among subelements but
preserves the cardinality information of subelements such as zero or one (?)
and zero or more (*).

As a result of simplifying DTD, a set of trees, called Element Trees, is gen-
erated. An Element Tree describes the structure of each element. The root
of the Element Tree denotes an element. Each leaf node (i.e., subelement)
keeps a name of a subelement and a flag for cardinality information. Some
Element Trees for Figure 1 are shown in Figure 5.

libraryDB

book
*

book

title publisher author
*

section
*

reference
*

section

title contents
*

contents

section
*

<!ELEMENT  libraryDB (book*)> <!ELEMENT book (title, publisher, author*, section*, reference*)>

<!ELEMENT  section (title, contents*)> <!ELEMENT  contents (section*)>

Fig. 5. Examples of Element Trees

Unfortunately, the structural information such as DTD is not mandatory for
XML data. In this case, we extract Element Trees from the XML document.

Figure 6 describes the procedure SchemaExtractor which extracts Element Trees
from XML data without DTDs. To extract Element Trees, we traverse GXML

in a child-depth-first fashion [1] starting from root. While extracting the struc-
tural information for XML data, we consider whether each of the subelements
is optional(?) or multiple(*). The extracted structural information does not
contain the relative order information of subelements, but the order informa-
tion among elements still is still kept in the XML data. Thus.

When the procedure visits a node x, the procedure checks whether the cor-
responding Element Tree Ttag exists or not (Line (4)) using the label of x
(denoted by λ[x]). If the corresponding Element Tree does not exist, then the
procedure creates a new Element Tree for the node (Line (5)). Let the set of
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Procedure SchemaExtractor(GXML)
begin
1. r := root ∈ GXML

2. Extract Element Tree(r)
end

Procedure Extract Element Tree(x)
begin
3. Element Tree Ttag := find(λ[x])
4. if (Ttag = NULL) {
5. Ttag := new Element Tree(λ[x])
6. }
7. p := set of child nodes of x
8. for each unique λ[y ∈ p] do {
9. tsub := a leaf node in Ttag whose name is λ[y ∈ p]
10. if (tsub = NULL) {
11. tsub := new node(Ttag , λ[y ∈ p])
12. tsub.flag := ‘?’
13. }
14. subλ[y∈p] := subset of p whose elements’ tags are λ[y ∈ p]
15. if (number of elements in subλ[y∈p] > 1) tsub.flag := ‘*’
16. }
17. for each child node y of x do {
18. Extract Element Tree(y);
19. }
end

Fig. 6. An algorithm for Extraction of Element Tree

x’s children be p (Line (8)). For each unique label (denoted by λ[y ∈ p]) of x’s
children, the procedure checks whether the corresponding node tsub exists or
not in Ttag (Line (9),(10)).

If the tsub does not exist, we make the node in Ttag (Line (11)(12)). In this
case, we set the flag as ‘?’ (Line (12)). Suppose that the element B always
appeared as a subelement for element A in an XML data. However, we cannot
guarantee that B is a mandatory subelement of A since we do not know the
XML data creator’s intention. Thus, we use ‘?’ as the default flag value. If the
number of x’s children whose labels are λ[y ∈ p] is greater than 1, we set the
flag of tsub to ‘*’ (Line (14)(15)). Finally, for each node of x, we extract and
update the Element Tree by recursion (Line (17)-(19)).

The Element Tree shows only the structure of an element. Thus, as shown
in Figure 7-(a), the overall structure information of XML data is required. To
obtain the overall structural information of XML data, we consolidate the set
of Element Trees into a tree called SchemaTree. The SchemaTree is used for
XML data storage in XTRON.

We store and retrieve the SchemaTree by reusing the method to store and
retrieve XML data. Our storage method for XML data originated from region
numbering which is based on the tree structured data model. In addition, the
cardinality information (e.g., ?, *) or type information (e.g., ID and IDREF)
of each node is recorded in the attribute type in the relation SchemaTree.

[35] introduces a notion of a DTD graph to represent the structure of DTD.
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However, as shown in Figure 7-(b), the DTD graph may contain a cycle. To
store and retrieve a DTD graph in the rigid structure (i.e., relational tables),
specific methods should be devised.

libraryDB

book
*

title publisher
author

*
section

*
reference

*

title contents
*

contents
*

section
*

title

(a) SchemaTree

libraryDB

book

title publisher author section reference

contents

*

***

*

*

(b) DTD Graph

Fig. 7. SchemaTree vs. DTD Graph

To make a SchemaTree in a tree form, we consider two complications: sharing
and recursion. As shown in 7-(b), title is shared by book and section. This
sharing violates the tree form. Thus, we set shared elements apart. The recur-
sion is represented as a cycle in DTD graph. Section and contents show the
recursive relationship in Figure 7-(b). To represent the recursion in tree form,
we unfold the cycle. In this case, an infinite chain may appear. We restrict the
level of unfolding such that a name of a certain node appears at most twice
in the path from the root to the node. Therefore, only one section node and
one contents node have a section node and a content node as descendants, re-
spectively, as shown in Figure 7-(a). The schemaTree is utilized by the Extend
Region Numbering module.

4.3 Reverse Arithmetic Encoding

In this section, we present the behavior of the Reverse Arithmetic Encoder
which generates a real number to represents the path information of an el-
ement. The generated real number is recorded on the path column in the
Vertex relation.

We first define some notations on a simple XML snippet to explain the reverse
arithmetic encoding method.

Definition 2 A simple path of a node vn ∈ Ve in GXML is a sequence of one
or more dot-separated labels t1.t2 . . . tn, such that there is a path of n−1 edges
(e1,...,en−1) starting from root to vn where ei =< vi, vi+1 >∈ Ee, v1 = root,
and λ[vi] is ti. ¤
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For example, in the XML data shown in Figure 1, the simple path of a title
element is libraryDB.book.section.title.

Definition 3 When the simple path of a node v ∈ Ve is a1.a2 . . . an, a dot-
separated tag sequence bk.bk+1 . . . bn is a label path of v if we have bk = ak,
bk+1 = ak+1, . . . , bn = an, where 1 ≤ k and k ≤ n. For two label paths, P=
pi . . . pn and Q=pj . . . pn of v, if i ≥ j, then we call P a suffix of Q. ¤

Again in Figure 1, section.title is a label path of the title element, and title is
a suffix of section.title.

The reverse arithmetic encoding originates from XPRESS which is a queri-
able XML data compressor [26]. Basically, the reverse arithmetic encoding
represents the simple path of an element (or attribute) by an interval of real
numbers between 0.0 and 1.0.

To generate the interval, the statistics ( i.e., the frequencies of labels) are
required. In XPRESS, the frequencies of labels can be obtained by a scan of
XML data. But, in XTRON, the statistics are obtained by traversing Schema-
Tree instead of an XML data scan since SchemaTree contains whole tags in
XML data and is much smaller than XML data.

Then, according to the frequencies, each tag T has its own interval IntervalT
in [0.0, 1.0). The size of IntervalT is proportional to the frequency (normalized
by the total frequency) of tag T. Each IntervalT is recorded as p start and
p end attributes in the SchemaTree relation.

Function reverse arithmetic encoding(vn, [minvn−1 , maxvn−1 ) )
begin
1. pn := λ[vn]
2. [minvn , maxvn ) := Intervalpn

3. if([minvn−1 , maxvn−1 ) = NULL) return [minvn , maxvn )
4. length := maxvn - minvn

5. minvn := minvn + length* minvn−1 , maxvn := minvn + length* maxvn−1
6. return [minvn , maxvn )
end

Fig. 8. An algorithm of reverse arithmetic encoding

The reverse arithmetic encoding encodes the simple path P= p1.. . . .pn of an
element vn into an interval [minvn , maxvn) using the algorithm in Figure 8.

An input parameter [minvn−1 , maxvn−1) of the function reverse arithmetic encoding
is the interval for the simple path (= p1. . . . .pn−1) of vn’s parent node vn−1.
Basically, we encode the simple path of a node in GXML starting from the
root element in the depth first tree traversal. Therefore, [minvn−1 , maxvn−1)
has already been computed in the time of encoding the simple path of vn−1.

Intuitively, the reverse arithmetic encoding reduces Intervalpn in proportion
to the interval [minvn−1 , maxvn−1) (Line (4)-(6)). In the case of the root node,
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since it does not have a parent node, [minvn−1 , maxvn−1) is null. Thus, the
interval for the root node is the Intervalpn itself (Line (3)).

The following example shows the intervals for nodes in Figure 1.

Example 1 Suppose that the IntervalT s of labels = {libraryDB, book, sec-
tion, title, year, . . . , reference} are {[0.0,0.3), [0.3,0.5), [0.5,0.6), [0.6,0.7),
[0.7,0.75) . . . , [0.9,1.0)}, respectively. Then, the interval [0.653, 0.6536) for a
simple path libraryDB.book.section.title in Figure 1 is obtained by the following
process:

element simple path IntervalT subinterval

libraryDB libraryDB [0.0, 0.3) [0.0, 0.3)

book libraryDB.book [0.3, 0.5) [0.3, 0.36)

section libraryDB.book.section [0.5, 0.6) [0.53, 0.536)

title libraryDB.book.section.title [0.6, 0.7) [0.653, 0.6536)

The intervals generated by the reverse arithmetic encoding express the rela-
tionship among label paths as follows:

Property 2 Suppose that a simple path P is represented as the interval I,
then all intervals for suffixes of P contain I.

For instance, the interval [0.6, 0.7) for a label path title and the interval
[0.65, 0.66) for a label path section.title contain the interval [0.653, 0.6536) for
a simple path libraryDB.book.section.title. As a result, path expressions are
effectively evaluated, thanks to Property 2 without the join of the path table.

Also, since Property 2 is valid even though the interval is replaced by the min-
imum value minvn of the interval, we record only minvn as the path attribute
in the Vertex relation instead of the interval.

4.4 Numbering on XTRON

Now, we explain our numbering scheme for elements in XML data.

As mentioned earlier, the edge approach is efficient in obtaining the parent-
child relation among elements and the region approach is efficient in computing
the ancestor-descendant relation among elements. Thus, we combine the edge
approach and the region approach into a tuple of a relation.

In XTRON, an element x is represented by a region (startx, endx) based on the
region approach. The representation of each XML element has the following
property.
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Property 3 If and only if an XML element x is an ancestor of an XML
element y, startx < starty < endy < endx. And, if and only if XML element
x is a parent of an XML element y, startx = parenty.

A weakness of the original region approach is concerned with updates. To
prevent the renumbering of region numbers at each insertion, we preserve extra
space between elements. In this view, our approach is similar to the numbering
scheme (i.e., extended preorder) of XISS [20]. However, extended preorder uses
ad-hoc numbering to assign the extra space. In contrast to extended preorder,
we utilize the structural information to assign extra space in each region.

For example, as shown in Figure 5, an element book can have title, publisher,
author, section, and reference elements as children. Among them, title and
publisher elements are mandatory children. Thus, only three kind elements
(i.e., author, section, and reference elements) can be inserted several times
in future. Our numbering scheme preserves the extra space for three kind
elements between each child element of book element.

Although the efficient update of XML data is important, it is not the focus
of our paper. Therefore, we omit any further discussions on efficient updates.
The update issue will remain as our future work since the efficient supporting
to update is a major research issue.

5 Query Processing on XTRON

In this section, we present a method for translating from XQuery to SQL over
the relational representation presented in Section 4. The syntax and semantics
of XQuery are too wide to discuss since XQuery is designed to support a
broad class of applications. Thus, we present our translation mechanism from
XQuery to SQL based on two core expressions of XQuery: path expressions
and FLWR expressions.

5.1 Translation of Path Expressions

Path expressions are used to select (address) parts of an XML document. A
path expression traverses its input document using location steps. A step con-
sists of 3 parts.

step::= axis“::”NodeTest (“[”predicate“]”)*
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For each step, an axis describes the direction in which the nodes should be
traversed. In XQuery, thirteen axes are available such as child, descendant,

attribute, self, descendant-or-self and parent. XQuery includes XPath’s
shorthand notation for some axes. Among the thirteen axes, child can be
omitted since child is the default axis. Also, descendant is replaced by // 5 .
NodeTest specifies the node type and the name of nodes selected by the axis.
predicate uses arbitrary expressions to further refine the set of nodes selected
by the step.

As mentioned in Section 4.3, the simple path of each element is encoded as
a real number by the reverse arithmetic encoder and recorded in the path

attribute of the relation Vertex. The structural relationships among elements
such as parent-child and ancestor-descendant relationships can be computed
by the attributes start, end and parent in the relation Vertex.

In general, to process multi-step (k > 1) XPath path expressions, the system
generates an SQL query that is nested to depth k, and then this scheme is
improved to generate an SQL query involving a k-way self-join [19]. XTRON
reduces the number of self-joins using the reverse arithmetic encoding.

The algorithm for translating a path expression into an SQL query is shown
in Figure 9. An object sql for an SQL statement has attributes :select, from,
where, orderby, and with for SELECT, FROM, WHERE, ORDERBY and
WITH clauses. Also, to keep the relation name for the temporary result of an
XQuery expression, prev rel is used.

For brevity, we only describe the behavior for child and descendant among
the various axes (Line (6)-(15)) and label among diverse NodeTests (Line (16)-
(21)) in Figure 9. The portion in Line(22)-(27) is for predicates of a step.

Based on Property 2, a path expression formed in //l1/l2/. . . /ln or /l1/l2/. . . /ln
is transformed into an interval [minpath,maxpath) with level gap( = n) and
desc (Line (2)-(4)). At Line (3), pathexp[i] denotes the i’th step in the path
expression.

The variable desc is used to specify that the first axis of the current path ex-
pression (or subpath expression) is descendant or not. Then, we can generate
the corresponding SQL query using [minpath,maxpath), level and desc in the
function gen SQL().

For understanding of the algorithms, we will use examples to explain the parts
of the algorithms.

Example 2 Suppose that the tags and the corresponding IntervalT s are the

5 Strictly speaking, // is the abbreviation form of descendant-or-self::node()/
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function TranslatePath(sql, pathexp)
begin
1. desc := false, level gap := 0, minpath := 0.0, maxpath := 1.0
2. for i := 1 to length(pathexp) do {
3. sql := tran step(sql, pathexp[i], desc, level gap, minpath, maxpath)
4. }
5. return sql
end
function tran step(sql, step, desc, level gap, minpath, maxpath)
begin
6. switch(step.axis) {
7. case ”//”: /* descendant */
8. if([minpath,maxpath) != [0.0,1.0)) {
9. sql := gen SQL(sql, desc, level gap, minpath, maxpath)

/*genete SQL fragment for the subpath expression */
10. level gap := 0, minpath := 0.0, maxpath := 1.0
11. }
12. desc := true, level gap := level gap+1
13. case ”/”: /* child */
14. level gap := level gap+1
15. }
16. switch(step.NodeTest) {
17. case label: [minlabel, maxlabel) := get Intervallabel

18. length := maxlabel - minlabel

19. minpath := minlabel+length·minpath

20. maxpath := minlabel+length·maxpath

21. }
22. if(step.predicates != NULL) {
23. sql := gen SQL(sql, desc, level gap, minpath, maxpath)
24. desc := false, level gap := 0, minpath := 0.0, maxpath := 1.0
25. for i = 1 to length(predicates) do
26. sql := tran predicate(sql, i, step)
27. } else if(step is the last step of pathexp) sql := gen SQL(sql, desc, level gap, minpath, maxpath)
28. return sql
end

Fig. 9. An algorithm of translation from Path expression to SQL

same as those in Example 1. A path expression P = //book/section/title is
translated into the following SQL query:
SELECT V1.*
FROM Vertex V1

WHERE 0.653 <= V1.path AND V1.path < 0.655 AND V1.level >= 3

Example 2 illustrates the translation from a path expression such as //l1/l2/. . . /ln
to an SQL query. Since the axis of the first step is descendant, desc is set as
true (Line (12)). Also, since the axes of the remaining steps are child, level is
increased to 3 (Line (14)). The NodeTest of each step is label. Thus, we obtain
a single interval (Line (17)-(20)) based on the reverse arithmetic encoding.

As mentioned in Section 4.3, the labels and the corresponding IntervalT s of
an XML document are stored in the relation SchemaTree. Thus, an InteveralT
for a label is obtained efficiently (Line (17)). Finally, at Line (27), the corre-
sponding SQL query of P is generated by calling the function gen SQL().

XTRON is similar to BLAS [6] in the aspect of the utilization of interval rep-
resentation. But, BLAS uses an ad-hoc numbering to assign a region, whereas
XTRON utilizes the structural information of XML data to assign a region.
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In addition, only path expressions are considered in BLAS. However, we sup-
port a more powerful query facilities based on XQuery features such as the
dereference operator (i.e., =>), FLWR expressions and Element Constructors.

Unlike the path expression P in Example 2, some path expressions which
contain ‘//’ (i.e., descendant) in the middle of the path expression cannot be
translated into a single interval. Conceptually, these kinds of path expressions
are divided into subpath expressions and consolidated using the difference of
the levels.

For instance, a path expression Q = //l1/. . . /li//li+1/.../lj is divided into Q1

= //l1/. . . /li and Q2 = //li+1/.../lj.

During the process from the first step to i’th step (= /li), level (= i), desc
(= true) and [minpath, maxpath) are computed like the path expression P in
Example 2. When visiting the i + 1’th step ( = //li+1), [minpath, maxpath) is
not [0.0, 1.0). So, the SQL statement for Q1 is generated (Line (8)-(11)). And,
desc, level, and [minpath,maxpath) are reinitialized, respectively.

Then, we can obtain level (= j − i), desc (= true) and [min′path,max′path) for
Q2. In this case, the level of the result elements of Q2 is greater than or equal
to (j − i) + level of the elements accessed by Q1 . In addition, an element
accessed by Q2 is a descendant of an element accessed by Q1. Suppose that
the result relation for Q1 is V1 and the result relation for Q2 is V2. Then, the
SQL query is such that :
SELECT V2.*

FROM Vertex V1, Vertex V2

WHERE minpath <= V1.path AND V1.path < maxpath /*path condition for Q1*/

AND V1.level >= i /*level condition for Q1*/

AND min′path <= V2.path AND V2.path < max′path /*path condition for Q2*/

AND V2.level >= V1.level+(j − i) /*level condition for Q2*/

AND V1.start < V2.start AND V2.end < V1.end

/*structural condition between Q1 and Q2*/

Next, let us consider the path expressions which contain predicates (Line (22)-
(27) in Figure 9).

A step can include a sequence of predicates. As mentioned above, predicates
are used to prune the set of nodes selected by the current step. Thus, the SQL
query for the relation which is the result of the step is generated (Line (23) in
Figure 9). Let the resulting relation for the step be kept in sql.prev rel.

To translate the predicates of a step, more dedicated handling is required.
The algorithm which translates a predicate into an SQL query is shown in
Figure 10.
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function tran predicate(sql, i, step)
begin
1. predicate := step.predicates[i]
2. switch(predicate) {
3. case [pathexp]: /*path expression
4. temp rel : = sql.prev rel
5. sql := TranslatePath(sql, pathexp);
6. sql.prev rel := temp rel
7. case [n]: /*order based predicate
8. if(i = 1) {
9. sql.where := sql.where+ AND + sql.prev rel.order = n
10. }
11. else { // in form of label[path][2]
12. x := sql.prev rel
13. sql.from :=
14. ( SELECT DISTINCT x.did, x.path, x.start, x.end, x.level,
15. ROWNUMBER() OVER (ORDER BY x.start) AS order, x.parent
16. FROM sql.from WHERE sql.where) AS Xt

17. sql.where := Xt.order = n
18. sql.prev rel := Xt

19. }
20. case [pathexp op value]: //conditional expression
21. temp rel := sql.prev rel
22. sql := TranslatePath(sql, pathexp)
23. sql.from = sql.from+ TEXT Tt

24. sql.where = sql.where+ AND sql.prev rel.start = Tt.parent
25. sql.where = sql.where+ AND Tt.value op value
26. sql.pre rel := temp rel
27. case => name test: //derefence
28. if(IS IDREF(step) = false) return ERROR
29. sql.from := sql.from + Text Tt, ID idt, Vertex Vt

30. sql.where := sql.where+ AND sql.prev rel.start = Tt.parent //get data value of current node
31. sql.where := sql.where+ AND Tt.value = idt.id value //get the corresponding ID attribute
32. sql.where := sql.where+ AND Vt.start = idt.owner
33. if(name test is label) {
34. [minlabel, maxlabel) := get Intervallabel

35. sql.where := sql.where+ AND minlabel <= Vt.path AND Vt.path < maxlabel //for label
36. }
37. sql.prev rel := Vt

38. t := t+1
39. }
40. return sql
end

Fig. 10. An algorithm for translation from a predicate to SQL

A path expression can be applied as a predicate. Such a predicate selects all
nodes whose paths starting from themselves satisfy the path expression. For
instance, //book[title] selects all book elements which have title as a child.

The path expression as a predicate is handled in Line(3)-(6). Basically, the
SQL query for a predicate is added in the SQL query for a step by calling
TranslatePath() which in turn calls gen SQL(). In this case, a θ-join of the
relation for the predicate and the relation for step is involved. According to the
definition of a θ-join, the tuples satisfying the θ condition remain as results.
Thus, by a θ-join, the elements which do not satisfy the predicate are pruned.
After calling TranslatePath(), sql.prev rel is changed. Thus, the recovery of
sql.prev rel is required (Line(6)).

Another type of the predicate is the order-based predicate formed in [posi-
tion() = n]. Such a predicate selects a node whose position is n among the
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currently visited nodes. The order-based predicate simplifies like [n]. For in-
stance, //section[2] selects all descendant section elements that are the second
section children of their parents.

To compute each order-based predicate, Tatarinov et. al [39] uses the function
RANK(), originally proposed as an OLAP extension. However, they do not
consider the more complicated semantics of the order-based predicate.

The meaning of the order-based predicate varies according to the owner step of
the predicate and the location of the predicate among predicates. For instance,
//section[title][2] means “among all section elements which have a title child,
select the second section element.” But //section[2][title] means “selects all
descendant sections that are the second section children of their parent and
have title as children.” The approach of [39] does not distinguish between
these cases.

As shown in Table 1, the order of same tagged siblings is recorded in the order
attribute in the Vertex relation in XTRON. Thus, a position-based predicate
located at the first position such as label[n] can be easily translated into SQL
without the function RANK() (Line (8)-(10)).

The position-based predicate which is not located at the first position is han-
dled using the function ROWNUMBER() which assigns the order number of
each row specified by ”ORDER BY” to each row starting from 1 (Line(11)-
(19)).

Also, a conditional expression can be applied as a predicate (Line (20)-(26)).
To support the conditional expression, the data values of the nodes are ob-
tained by the join of the result relation and Text (Line (24)). Then, the con-
dition between the data values and value is inserted (Line (25)). In this case,
according to the type of value, the type casting of data values may occur using
the function CAST(), such as CAST(Vt.value AS INT).

A difference between XQuery path expressions and XPath is the support of
the dereference operator (i.e., =>). In XTRON, the start value of the region
for an element, which has an ID typed attribute, is stored in the owner column
of the ID relation with the value of the ID typed attribute. Thus, XTRON
supports the dereference operator (Line(27)-(38)) 6 . The left side of the deref-
erence operator must be an IDREF typed node. Thus, type checking of a step
is performed using type of SchemaTree (Line (28)). The node set of the defer-
ence operator is identified (Line (30)-(31)) by a 4-way join of the relation for
currently visited nodes (i.e., sql.prev rel), Text Tt, ID idt, and Vt. The Vt is
the result relation of the dereference operator. By the join of sql.prev rel and

6 Actually, the dereference operator is not categorized into predicates. But, for
brevity, we explain the dereference operator in the algorithm for predicates
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Text Tt, we can obtain the data values of IDREF attributes. Then, by the join
of Text Tt and ID idt, we can obtain the information for the corresponding
ID type attributes. As mentioned in Section 4, the start number of an element
which is the owner of an ID typed attribute is kept in the owner column of
the ID table. Thus, by the join of ID idt and Vertex Vt, we can select result
elements of the dereference operator (Line (32)).

In addition, a deference operator is followed by name test that specifies the
name of the target element. If name test is label, we refine the nodes accessed
by the deference operator using the Intervallabel for label.

5.2 Translation of FLWR Expressions

In this section, we briefly present the translation mechanism for FLWR ex-
pression since FLWR expression itself is complicated. Conceptually, a FLWR
expression consists of FOR, LET, WHERE, and RETURN clauses.

FLWRExpr ::= (FORClause|LETClause)+ WHEREClause? RETURNClause
FORClause ::= ”FOR” variable ”in” Expr (”,” variable ”in” Expr)*
LETClause ::= ”LET” variable ”:=” Expr (”,” variable ”:=” Expr)*
WHEREClause ::= ”WHERE” Expr
RETURNClause :: = ”RETURN” Expr

FOR and LET clauses are used to bind one or more variables to one or more
expressions. The FOR clause is used whenever the iteration is needed. In the
FOR clause, the variables are bound to individual values returned by their
corresponding expressions, whereas the LET clause simply binds each variable
to the value of its respective expression without iteration. The tuples bound
by FOR or LET clause can be pruned by an optional WHERE clause. The
RETURN clause generates the output of the FLWR expression.

Figure 11 shows a simple FLWR expression which generates the titles of the
books published in 2000 as millennium sales.

FOR $x IN document(librarayDB.xml)/libraryDB/book
LET $y := 2000
WHERE $x/year = $y
RETURN <millennium sales> $x/title </millennium sales>

Fig. 11. A FLWR expression

The algorithm for translating from a FLWR expression into a single SQL query
is shown in Figure 12.

With respect to the syntax of XQuery, FOR and LET clauses which bind one
or more variables to one or more expressions can appear in an arbitrary order.
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1.symtable := new Hash() //symbol table for variable
function TranslateFLWR(sql, flwrexp)
begin
2. sql list := new SQL[length(flwrexp.bindings)]
3. for i := 1 to length(flwrexp.bindings) do {
4. sql list[i] = TranslateBinding(sql list[i], flwrexp.bindings[i])
5. symtable.insert(flwrexp.bindings[i].variable, sql list[i].prev rel)
6. }
7. sql where := new SQL()
8. if(flwrexp.where != null) {
9. sql where := TranslateWhere(sql where, flwrexp.where)
10. } else sql where := null
11. sql := TranslateReturn(sql, flwrexp.return, sql where, flwrexp.bindings, sql list)
12. return sql
end
function TranslateBinding(sql, binding)
begin
13. switch(type(binding.exp)) {
14. case pathexp:
15. sql := TranslatePath(sql, binding.exp)
16. case FLWRexp:
17. sql := TranslateFLWR(sql, binding.exp)
18. }
19. return sql
end

Fig. 12. An algorithm of translation from FLWR to SQL

1. ...
2. case variable:
3. sql.prev rel := symtable.hash(variable)
4. ...

Fig. 13. Partial extension of Figure 9 for variables

The variables and the corresponding expressions of FOR and LET clauses in a
FLWR expression flwrexp are kept in flwrexp.bindings. Each expression for
a variable is translated by calling TranslateBinding() (Line (4) in Figure 12).
Since the binding variables may be used in other expressions, the result of
the expression for the variable is kept in a hash table symtable (Line (5)).
Also, to support some path expressions in the FLWR expression starting with
variables (e.g., $x/title), the portion in Figure 13 is required at Line (7) of the
function TranslatePath() in Figure 9.

The function TranslateBinding() translates the expression into a single SQL
query according to the type of the expression (Line (13)-(18)). In this case,
path expression (Line (14)-(15)) or another FLWR expression (i.e., nested
FLWR expression) (Line (16)-(17)) can be involved.

Next, the WHERE clause is translated (Line(7)-(10)). The WHERE clause
which is an optional clause refines the nodes selected by FOR or LET clauses.
As presented in Section 5.1, predicates of the path expression’s step are similar
to the WHERE clause. Thus, the translation mechanism of the WHERE clause
is similar to that of predicates. We omit the details of the translation of the
WHERE clause since we present the translation mechanism for predicates in
Section 5.1.
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Finally, the RETURN clause which generates the output of the FLWR expres-
sion is translated (Line(11)). The SQL queries for FOR, LET and WHERE
clauses are consolidated into a single SQL query by the function TranslateRe-
turn(). XML data are stored across multiple tables, and an XQuery query is
translated into an SQL query. Then, the tuples which are the results of the
SQL query are obtained by the relational engine. Thus, the reconstruction of
the XML fragments using the tuples is required. Many researchers proposed
various publishing techniques for relational data in the form of XML docu-
ments [5,15,16,31,32]. One of the prominent XML publishing techniques is the
sorted outer union [31,32]. Thus, like most related literatures [24,34,38], we
adapt sorted outer union technique for a result generator.

6 GUI of XTRON

For providing the user interface, we implemented GUI of XTRON. Figure 14
shows GUI of XTRON. There are a menu and icons in the top part of GUI. By
clicking a menu or icons, we can log in XTRON, log out XTRON, choose XML
data, store XML data or run XQuery. The tree in the left window represents
XML data lists which are stored in each database. Currently, shake1.xml and
xmark1.xml are stored in DB2 database. In the side of the tree, there are XML
document and Query tab. We can see XML data through XML document tab
and perform XQuery by Query tab. The contents of xmark1.xml are shown in
XML document tab of Figure 14.

Fig. 14. GUI of XTRON

In order to execute XQuery, we must write the query in the text window of
the Query tab which are located in the top as shown in Figure 15. Then, if we
click the RUN button, the result for XQuery will be shown in the text window
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of the Query tab which are located in the bottom. Figure 15 shows GUI after
performing the following XQuery.

FOR $i in document(”xmark1.xml”) /site/regions/australia/item
RETURN <item> {$i/description} </item>

The result of that query is displayed in GUI. We can see the previous results or
next results by clicking PREV or NEXT button in Query Tab. For removing
the results, click Clear button. In the case that the size of the result is large,
we can see the result by moving the scroll bar. Also, if the wrong XQuery
enter, the error message window will be shown.

Fig. 15. Performing XQuery in GUI

7 Experiments

To show the efficiency of our system, we empirically compared it with diverse
storage schemes: the edge approach, the region approach, and the path ta-
ble with region approach 7 on real-life and synthetic data sets. In addition,
we compared the query performance of XTRON with the well-known XML
processing systems: Galax 0.3.5 8 and Berkeley DB XML 2.0 9 .

For the experiments, we implemented XTRON and the systems for above
approaches with JAVA language. Galax is a native XML query processing
system which does not utilize the relational databases. Berkeley DB XML
performs the XQuery processing using the relational database. To support

7 we call it the region path approach
8 available at http://www.galaxquery.org/
9 available at http://www.sleepycat.com/
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XML query processing, Berkeley DB XML modifies the relational engine. In
contrast, as mentioned earlier, XTRON does not change the relational engine.

In this section, we first explain the experimental data sets and the query set.
Then, we present the query performance.

7.1 Experimental Environments

The experiments were performed on a Pentium IV-3.6 Ghz platform with MS-
Windows XP and 3.25 GBytes of main memory. We used IBM DB2 Universal
Edition 8 as a repository and stored the data on a local disk. In the database,
we built up the multi-column index with did (document id), path, and start
columns on the Vertex table for XTRON, the multi-column index with did,
source, and target columns on the edge table for the edge approach, the multi-
column index with did and start columns on the region table for the region
approach, and the multi-column index with did, start, path id columns on the
region path table for the region path approach. To connect DB2, we used the
JDBC driver. No other optimization such as physical storage tuning was made
on DB2. We begin by describing the XML data sets and queries used in the
experiments.

Data Sets We evaluated XTRON using real-life and synthetic XML data
sets: Shakespeare and XMark. Each data set consists of five XML documents.
The characteristics of the data sets used in our experiment are summarized in
Table 2. Size denotes the disk space of XML data in MBytes and Description
indicates how each XML document is constructed.

Data Set Name Size (MBytes) Description

XMark XM1 0.19 f = 0.001

XM2 1.18 f = 0.01

XM3 11.88 f = 0.1

XM4 118.55 f = 1

XM5 1185.5 f = 10

Shakespeare SH1 0.28 1 Play

SH2 0.97 4 Plays

SH3 7.89 37 Plays

SH4 78.95 37 Plays X 10

SH5 789.5 37 Plays X 100

Table 2
XML Data Set

We used the XMark data [30] developed for the XML benchmark project for
the synthetic data sets. The XMark data simulates the contents of an Internet
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auction site. The XMark data set is generated using xmlgen 10 , the XML data
generator of the XMark benchmark. By adjusting the scaling factor, f , we
generated five XML documents for the XMark data set.

The Shakespeare [9] data set is the real-life XML data composed of the col-
lection of plays of Shakespeare. As shown in Table 2, the Shakespeare data
set also consists of five XML documents: SH1, SH2, SH3, SH4 and SH5. SH1
is the play entitled “The Tragedy of Hamlet, Prince of Denmark.” SH2 con-
tains four tragedies (Hamlet, Macbeth, Othello, and King Lear), and all plays
of Shakespeare are contained in SH3. To test the effectiveness of XTRON on
large sized XML data, we scaled up SH3 by 10 times for SH4 and by 100 times
for SH5.

Query Sets We evaluate XTRON using several queries. The queries used in
this experiments are presented in Table 3.

The first character in the first column indicates the data set on which the
query is executed: ‘X’ denotes XMark, ‘S’ denotes Shakespeare.

The number in the first column represents the type of query. The queries of
type 1 are path expressions based on a simple path, the queries of type 2 are
partial matching path expressions, the queries of type 3 are FLWR expressions,
the queries of type 4 are FLWR expressions with an element constructor, and
the queries of type 5 are nested FLWR expressions. Query Definition in Table 3
describes the corresponding XQuery queries.

7.2 Experiments for the Query Evaluation

In our experiments, some queries did not terminate within twelve hours on
some approaches. We denote these cases as DNT (Did Not Terminate). The
query time is the average over multiple executions.

First, we present the performance of path expressions (i.e., query types 1
and 2) compared with the edge approach since it is difficult to systematically
translate a FLWR expression into a single SQL query in the edge approach.
Table 4 shows the path expression performance on XM3 and SH3. Parsing
denotes the parsing time of given path expressions and Translation represents
time consumed to convert a parsing result to an SQL statement in milliseconds.
Execution denotes the execution time of the translated SQL statement and
Total is the sum of parsing time, translation time and execution time.

As shown in Table 4, the performance of the edge approach is very low.

10 Available at http://monetdb.cwi.nl/xml/downloads.html
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Name Query Definition

X1 /site/regions/australia/item/mailbox/mail/date

X2 //description//text/keyword[1]

X3 FOR $a in /site/people//profile

WHERE $a/education = ”College”

RETURN $a/interest

X4 FOR $i in /site/regions/australia/item

RETURN <item> $i/description </item>

X5 FOR $a in /site//africa/item/mailbox

RETURN <seller>

FOR $b in /site//closed auctions/closed auction

WHERE $b/date = $a/mail/date

RETURN $b/seller

</seller>

S1 /X/PLAY/ACT/SCENE/SPEECH/STAGEDIR

S2 //ACT//TITLE[1]

S3 FOR $a in /X/PLAY//SPEECH

WHERE $a/SPEAKER = ”Ghost”

RETURN $a/STAGEDIR

S4 FOR $b in /X/PLAY/PERSONAE

RETURN <PERSONAE> $b/PGROUP </PERSONAE>

S5 FOR $a in /X//PERSONAE/PGROUP/PERSONA

RETURN <PGROUP SPEAKER>

FOR $b in /X//ACT/EPILOGUE//SPEAKER

WHERE $b = $a

RETURN $b

</PGROUP SPEAKER>

Table 3
XML Query Set

Data Query Approach Parsing Translation Execution Total(msec)

XM3 X1 XTRON 203 94 750 1047

EDGE 328 31 31141 31578

X2 XTRON 203 94 10875 11281

EDGE 172 16 2856750 2857047

SH3 S1 XTRON 203 16 1531 1750

EDGE 328 16 115828 116266

S2 XTRON 203 16 734 953

EDGE 1187 178 5390735 5392367

Table 4
Evaluation Cost of Path Expressions (msec)

In XTRON, the path expression is translated into intervals by using the re-
verse arithmetic encoder. Thus, the parsing time and the translation time of
XTRON is a little worse than those of the edge approach. However, the exe-
cution time of XTRON is significantly better than that of the edge approach.
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In the edge approach, to obtain all descendant elements of the target elements
which are reached by a path expression, massive joins are required. Also,
to compute descendant axes (i.e., //) in type 2 queries, additional recursive
clauses are required. Thus, the performance gap of type 2 queries between
XTRON and the edge approach is greater than that of type 1 queries.
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Fig. 16. Query evaluation cost for XMark Data Set

Next, we present the query performance of XTRON compared with the region
approach and the region path approach over diverse query types. As shown in
Table 4, the performance of the edge approach is much worse due to massive
joins. However, the region based approaches (i.e., XTRON, region, and region
path approach) do not require massive joins to obtain descendant elements
of a certain element. Thus, in this experiment, we did not contain the edge
approach.

The query evaluation times over various sized XML data are shown in Fig-
ure 16 and Figure 17. As shown in Figure 16 and Figure 17, XTRON shows
good performance over most cases except when XML data is very small.

When XML data is very small (i.e., see Figure 16-(a) and Figure 17-(a)),
XTRON is not superior to the other approaches. As mentioned above, XTRON
translate the path expression into intervals using the reverse arithmetic en-
coder. Thus, the parsing time and translation time of XTRON are relatively
greater than the other approaches. Therefore, total evaluation times of XTRON
for small sized XML data is a little bit slower than the other approaches.

28



0

0.1

0.2

0.3

0.4

0.5

0.6

S1 S2 S3 S4 S5

tim
e(

se
c)

XTRON REGION REGION PATH

0

0.5

1

1.5

2

2.5

S1 S2 S3 S4 S5

tim
e(

se
c)

XTRON REGION REGION PATH

0

50

100

150

200

250

S1 S2 S3 S4 S5

tim
e(

se
c)

XTRON REGION REGION PATH

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S1 S2 S3 S4 S5

tim
e(

se
c)

XTRON REGION REGION PATH

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

S1 S2 S3 S4 S5

tim
e(

se
c)

XTRON REGION REGION PAT H

(a) SH1

(c) SH3

(e) SH5

(b) SH2

(d) SH4

D
N

T
D

N
T

D
N

T
D

N
T

D
N

T
D

N
T

D
N

T

D
N

T

D
N

T

N
R

N
R

Fig. 17. Query evaluation cost for Shakespeare Data Set

For simple path expressions (i.e., type 1 queries), the region path approach
is superior to the other approaches over various sized XML data. A simple
path expression is mapped to a unique path identifier in the path table. Thus,
selection with a single value (i.e., a unique path identifier) is performed in the
region path approach.

In contrast to the evaluation results of simple path expressions, the region path
approach shows the worst performance for partial matching path expressions
(i.e., type 2 queries) due to joins of the path table and the element table.

Now, we compare XTRON with well-known XML processing systems: Galax
and Berkeley DB XML. In our experiment, some queries do not run due to
memory-full or internal exceptions. We denote these cases as NR(Not Run).

In addition, Galax and Berkeley DB XML do not handle large sized XML
data (i.e., XM5 and SH5). Thus, we do not show the query performance for
large sized XML data. The query performance of XTRON for large sized XML
data is shown in Figure 16-(e) and Figure 17-(e). As shown in Figure 16-(e)
and Figure 17-(e), XTRON can generate the query results on large sized XML
data, although some queries do not terminate within five hours.

As described earlier, XTRON uses the reverse arithmetic encoding method.
Thus, as shown in Figure 18 and Figure 19, when XML data is small, XTRON
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Fig. 18. Query evaluation cost with Galax and Berkeley DB XML for XMark Data
Set
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Fig. 19. Query evaluation with Galax and Berkeley DB XML for Shakespeare Data
Set

does not show efficient performance compared with Galax and Berkeley XML
DB due to the query translation time. In contrast, as the size of XML data
increases, XTRON shows good performance. XTRON does not modify the
relational engine. In contrast, Berkeley DB XML modifies the relational engine
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to support XML. Nevertheless, the performance of XTRON is superior to that
of the Berkeley DB XML.

Although some queries do not terminate for five hours on XTRON, our pro-
posed method is the most efficient over almost all cases except the cases for
very small sized XML data. This is because the sequence of steps connected by
child axes is compacted and represented as an interval using the reverse arith-
metic encoder, and ancestor-descendant relationships are easily computed by
the region based numbering.

8 Conclusion

In this paper, we propose XTRON, an XML data management system using
a RDBMS, which does not incur the modification of an RDBMS.

In XTRON, the transformation technique from XML to relational data is
the schema independent since the schema information (e.g., DTD and XML
Schema) is utilized if it is provided. If the schema information is not avail-
able, XTRON extracts structural information efficiently and utilizes it. Since
XTRON utilizes the reverse arithmetic encoding method to represent the
label path of each element and adopts a hybrid approach of edge and re-
gion numbering techniques, path expressions are efficiently evaluated. Also,
XTRON supports a comprehensive subset of XQuery expressions including
nested FLWR expressions, wildcards, order-based predicates and so on. In
XTRON, an XQuery expression is translated into a single SQL statement
without the need for an escape to a general-purpose programming language.

In addition, we implemented XTRON and conducted an extensive experimen-
tal study with both real-life and synthetic data sets. The experimental results
show that XTRON outperforms the other approaches and well-known XML
data processing systems in most cases.

Currently, we are implementing an OWL management system on XTRON
since OWL is an XML data for the semantic web and we are building a
transformation tool from OQL to XQuery, where OQL is a query language for
OWL.

XTRON does not support update operations since the update syntax for XML
data is not announced yet. Thus, as future work, we plan to construct an XML
update syntax and extend XTRON to support update operations. Also, we
plan to extend the query facilities of XTRON to support a wider class of
XQuery (including set operators, and some XQuery functions).
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